

Appendix 11 – Parramatta Road Corridor Precinct-Wide Traffic and Transport Study

March 2022

Contents

Precinct-wide transport study and its relationship to Council's Planning ProposalProposal	3
Context Report	5
Future Year Modelling Report	119
Parking Note	419
Transport Plan	460

Precinct-wide transport study and its relationship to Council's Planning Proposal:

PRCUTS Implementation Plan 2016-2023 requires that 'prior to any rezoning, a traffic and transport study be prepared for the Corridor'. To fulfill this requirement, IWC and DPE jointly commissioned Cardno consultants to carry out a transport study analysing the transport network implications of proposals contained in the PRCUTS, in combination with the numerous adjacent infrastructure projects, including WestConnex.

This study was commissioned to Cardno in 2018 and finalised in March 2022 through a series of iterations over the period of four years. This study has a primary focus on IWC precincts of Camperdown, Leichhardt and Taverners Hill. The report includes four subreports:

- Context Report which provides a comprehensive background analysis of the land use and transport in the area to inform future recommendations;
- Future Modelling Report which investigates the traffic network along the Parramatta Road Corridor including an AIMSUM hybrid traffic simulation model;
- Parking Policy and Rate Review which provides car parking recommendations in the key precincts to achieve sustainable mode share;
- *Transport Plan* which sets the vision for Parramatta Road Corridor and provides set of recommendations including the Implementation Plan.

Cardno have generally used the PRCUTS' principles and its assumptions to set the framework for Transport Plan's recommendations. The Transport Plan in its final set of recommendations adopts many aspects of the PRCUTS, including its vision:

"Incremental renewal of the Corridor will occur over the long term to deliver a high quality, multi-use Corridor with improved transport choices, better amenity, and balanced growth of housing and jobs."

In order to achieve this vision, it will be essential to implement a comprehensively integrated approach to transport, public domain, land use and urban design. An important first step in this process is the establishment of measures which will encourage a mode shift away from private car use and so creating a more "liveable" environment in the Corridor.

Working from this baseline, Council has used both PRCUTS and this Transport Study to inform this Planning Proposal's provisions. There has, however, been a slight divergence in the final outcomes, as the study's modelling was primarily focused on traffic.

While the modelling carried out in association with this plan is driven predominantly by traffic-based circumstances, it is considered to provide an adequate baseline for the establishment of mode share targets for the three Inner West Precincts (Leichhardt, Taverners Hill and Camperdown).

Based on this modelling it will be essential to achieve a minimum mode shift in private car use, from 79% in 2019 to 71% in 2036 (a 10% reduction of existing car use).

However, noting that this mode shift is required purely to achieve acceptable movement along the corridor, to achieve the desired liveability PRCUTS proposes a 30% mode shift away from private car use, as an average improvement across the three Inner West Precincts. Consequently, this Planning Proposal's key mode shift target is to reduce private car use by a minimum of 10%, and up to 30% between 2019 and 2036.

Based on experience in Australia and around the world, Council considers that sustainably-based Corridor activation leading to more liveable environments in inner city areas, requires

the inclusion of significantly enhanced public transport. Consequently, Council does not agree with numerous road network capacity increases recommended in the study and is unlikely to accept these unless these enhance public and active transport outcomes.

That said many of the strategies and actions recommended in the Transport Plan are strongly supported by Council, including, but not limited to, proposals such as:

- Implement an enhanced public transport solution in the corridor which achieves the following outcomes:
 - Safety;
 - Place-making benefits;
 - High capacity;
 - High frequency;
 - Reliability;
 - Travel time efficiency; and
 - Streetscape improvements.
- Develop a travel behavioural change plan.
- Initiate public domain improvements along Parramatta Road and on adjacent side streets.
- Provide gateway treatments at key intersections.
- Construct missing links in the walking and cycling network, including completing a cycle route immediately to the north of, and parallel to, Parramatta Road.
- Install continuous footpath treatments across the mouth of numerous streets in the Corridor.
- Work with the State Government to provide an enhanced local bus network and increased frequency of services along Parramatta Road.
- Examine reasons for crash clusters at specific intersections.
- Rationalise of parking controls, both kerbside and on-street, including the introduction
 of a maximum rate for on-site provision and the use of unbundled parking where
 practical.
- Develop controls to better accommodate the needs of freight and servicing within the Corridor.

This Planning Proposal has used many of the Transport Plan's strategies and actions to cater for increased population and residents, while enabling the creation of a more liveable environment. Intrinsically this means that private car dependence must be reduced in relation to both local journeys and travel along the Corridor, to and from points beyond the Inner West LGA.

In moving forward, it will be essential for Council, DPE and TfNSW to work together to:

- Prioritise the actions recommended in the Transport Plan;
- Examine funding sources for the actions;
- Create a formal agreement on processes to implement the Plan's actions;
- Establish and agreed set of criteria linking population and employment growth with public transport improvements.

Council is keen to continue working with the State Government to introduce both local and regional measures to realise the outcomes of PRCUTS vision of a healthier, more sustainable and more liveable Corridor.

Transport Plan context Report:— Camperdown, Leichhardt and Taverners Hill

Parramatta Road Corridor Urban Transformation Strategy

80018116

Prepared for

Department of Planning, Industry & Environment and Inner West Council

10 March 2022

Contact Information

Document Information

Cardno (NSW/ACT) Pty Ltd

ABN 95 001 145 035

Level 9 - The Forum 203 Pacific Highway

St Leonards NSW 2065

PO Box 19

www.cardno.com

Phone +61 2 9496 7700

Prepared for Department of Planning,

Industry & Environment and

Inner West Council

Project Name Parramatta Road Corridor

Urban Transformation

Strategy

File Reference 210914 Transport Study

context.docx

Job Reference 80018116

Date 10 March 2022

Version Number 5

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	28/01/2021	Draft	May Chew	Chris Slenders
2	08/03/2021	Draft 02	Shobhan Baranwal	Chris Slenders
3	14/09/2021	Final	Chris Slenders	Chris Slenders
4	18/02/2022	Final 02	Ivo Pais	Ivo Pais
5	10/03/2022	Final 03	Elizabeth Muscat Ivo Pais	Ivo Pais

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Report	structure	1
2	Introdu	uction	2
	2.1	Purpose	2
	2.2	Background	2
	2.3	Study precincts	2
3	Popula	ation	4
	3.1	Residents and employment	4
4	Summ	ary of findings	8
5	Summ	ary of transport issues and opportunities	10
	5.1	Issues	10
	5.2	Opportunities	11
6	Consid	derations and options	13
	6.1	Parramatta Road	13
Back	ground revi	ew analysis and case studies	18
7	State o	government document summary	19
	7.1	Eastern City District Plan, Greater Sydney Commission, 2018	19
	7.2	Parramatta Road Corridor Urban Transformation Strategy, UrbanGrowth NSW 2016	′, 19
	7.3	Camperdown Ultimo Collaboration Area Place Strategy, Greater Sydney Commission, 2019	20
	7.4	Camperdown Collaboration Area (Tech central) Place Based Transport Strates Transport for NSW, 2021	gy, 20
	7.5	Parramatta Road and Victoria Road Integrated Transport Strategic Business Cases, Transport for NSW 2021 (ongoing)	21
	7.6	Future Transport Strategy 2056, Transport for NSW	21
8	Local	government document summary	22
	8.1	Inner West Community Strategic Plan, Inner West Council, 2018	22
	8.2	Inner West Local Strategic Planning Statement, Inner West Council, 2020	23
	8.3	Inner West Local Housing Strategy, Inner West Council, 2020	24
	8.4	Employment & Retail Land Study, Inner West Council, 2020	25
	8.5	Inner West Integrated Transport Strategy, Cardno & Inner West Council, 2020	25
	8.6	Parramatta Road Transport Opportunities Study Summary, Inner West Council City of Canada Bay Council, 2017	il & 31
9	Emerg	ing travel trends and technology	32
10	Land ւ	se – existing conditions	35
11	Travel	demand	41
	11.1	Mode share	41
	11.2	Average trip distance	42
	11.3	Trip purpose	42
	11.4	Journey to work	43

12	Transp	ort network – existing conditions	45
	12.1	Connectivity and major movement	45
	12.2	Active transport	45
	12.3	Public transport	51
	12.4	Road network	58
	12.5	Freight network	66
	12.6	Crash history	68
	12.7	Parking	71
13	Road s	pace reallocation case studies	74
Appen	dices		
Appendix	A PRCUT	ΓS Land Use Review	
Tables			
Table 1-1	Report stru	ucture	1
Table 3-1	PRCUTS I	IWC study area residential and employment population	4
Table 6-1	Parramatta	a road corridor long list of options	14
Table 7-1	PRCUTS 9	supporting documents	19
Table 8-1	Communit	y Strategic Plan, strategic directions, outcomes and strategies	22
Table 8-2	Strategic p	pedestrian and bicycle network	28
Table 8-3	Kerbside s	space use hierarchy	30
Table 9-1	Emerging	technologies and megatrends	32
Table 12-1	Rail servic	es summary	51
Table 12-2	L1 Dulwich	n Hill Line weekday service information	52
Table 12-3	PRCUTS I	IWC bus routes	53
Table 12-4	Key roads		64
Table 12-5	Crash clus	ster locations	68
Table 12-6	Top four c	rash types by RUM code (2013 – 2017)	71
Table 12-7	Residentia	al Parking Scheme areas	72
Figure	S		
Figure 2-1	PRCUTS I	IWC study precincts	3
Figure 3-1	Population	n – residential and employment forecasts	4
Figure 3-2	Residentia	al projection (2016 – 2036)	6
Figure 3-3	Employme	ent projection (2016 – 2036)	7
Figure 5-1	Issues and	d opportunities	12
Figure 8-1 Investigation areas from 2019 for additional housing in 2021-2026			

Figure 8-2 Parrama	atta Road concept layouts	26
Figure 8-3 Green G	Grid	27
Figure 8-4 Strategi	c pedestrian network – existing and proposed	29
Figure 8-5 Strategi	c bicycle network – existing and proposed	29
Figure 8-6 Grid bus	s network	30
Figure 10-1 Camper	down Hotel	35
Figure 10-2 Parrama	atta Road, Camperdown	35
Figure 10-3 Core an	nd frame precinct areas	37
Figure 10-4 The Itali	ian Forum	38
Figure 10-5 Norton S	Street	38
Figure 10-6 MarketF	Place Leichhardt	39
Figure 10-7 Parrama	atta Road, Taverners Hill	39
Figure 11-1 IWC ave	erage trips per day/ mode	41
Figure 11-2 Sydney	GMA average percentage of trips/ day	41
Figure 11-3 Modal a	verage trip distance	42
Figure 11-4 Trip pur	pose portion	43
Figure 11-5 Journey	to work 2016 mode share	44
Figure 12-1 Footpat	h widths	46
Figure 12-2 Distance	e between formal pedestrian crossings along Parramatta Road	47
Figure 12-3 Bicycle	network in and adjacent to PRCUTS	50
Figure 12-4 Taverne	ers Hill light rail stop from Brown Street	52
Figure 12-5 Public tr	ransport network	54
Figure 12-6 Leichha	rdt Local Link bus route	55
Figure 12-7 Midday	high frequency public transport services 12:00PM – 1:00PM	56
Figure 12-8 Evening	high frequency public transport services 9:00PM – 10:00PM	57
Figure 12-9 Google	typical traffic (Thursday 8:00am)	58
Figure 12-10Google	typical traffic (Thursday 5:00pm)	59
Figure 12-11Google	typical traffic (Saturday 12:00pm)	59
Figure 12-12Parrama	atta Road	60
Figure 12-13Parrama	atta Road at Taverners Hill	61
Figure 12-14Norton	Street, Leichhardt	62
Figure 12-15Parrama	atta Road, Camperdown	63
Figure 12-16Freight	routes	67
Figure 12-17Crashes	s within precincts (2013 – 2017)	68
Figure 12-18Pedestr	ian and cyclist crash locations (2013 – 2017)	69
Figure 12-19Crash c	luster locations (2013 – 2017)	70
Figure 12-20Natural	light conditions of crashes (2013 – 2017)	71
Figure 12-21Off-stree	et car parking	73
Figure 13-1 Traffic c	congestion on Crown Street, Darlinghurst in the 1970s	75
Figure 13-2 Crown S	Street 2021	75
Figure 13-3 Bourke	Street cycleway	75

Figure 13-4	Taylors Square from Bourke Street	75
Figure 13-5	Epping Road aerial photograph	76
Figure 13-6	Epping Road	76
Figure 13-7	Champs-Élysées 2021	77
Figure 13-8	Concept plans for Champs-Élysées	77

1 Report structure

This report has been structured with key information in Part 1 which is supported by review and analytics documented in Part 2. The structure outline is shown in **Table 1-1**.

Table 1-1 Report structure

Part 1: Introduction, sur	Part 1: Introduction, summary of findings, issues, opportunities and considerations and options.					
Introduction Report purpose Background summary of the project and it need. Study precincts including mapping						
Population	A review of the existing population and forecast in 2026 and 2036.					
Summary of findings	This summarises the findings and transport implications of works documented in Part 2 of this report.					
Summary of transport issues and opportunities	Tabulated issues and opportunities as identified in Part 2.					
Considerations and options	Discussion of potential ways to manage the transport network to support access and movement for PRCUTS.					
Part 2: Background revi	ew analysis and case studies.					
State government document summary	A summary of relevant documents from the Greater Sydney Commission, Urban Growth NSW, specifically the Parramatta Road Corridor Urban Transformation Strategy (PRCUTS) and Transport for NSW documents.					
Local government document summary	Relevant Inner West Council documents which have implications for PRCUTS areas.					
Emerging travel trends and technology	Desktop review of emerging transport technology which may have implications and benefits for the study area and are consideration for transport options and planning.					
Land use – existing conditions	A high level summary of existing land uses in the PRCUTS areas of Camperdown, Leichhardt and Taverners Hill.					
Travel demand	Findings of data analysis based on Transport for NSW Household Travel Survey and Australian Bureau of Statics Census, Journey to Work data.					
Transport network – existing conditions	A review of the existing transport network infrastructure and services. This is categorised into the categories of connectivity and movement, active transport, public transport, road network, freight network, crash analysis, and parking.					
Road space reallocation case studies	Selected example case studies where road space for general traffic has been reallocated as a result of either an alternative road being provided or broad reaching policy changes to improve place.					

2 Introduction

2.1 Purpose

This transport context report is a supporting sub- report that documents the background review of documents, data and existing conditions to inform recommendations and actions for the Transport Plan.

It tables a summary of findings, issues, opportunities and initial considerations.

This study focuses on Parramatta Road precincts within the Inner West Council (IWC) Local Government Area (LGA).

2.2 Background

Opened in 1811, Parramatta Road is one of the oldest roads in New South Wales. Parramatta Road Corridor is a key east-west link between the Sydney CBD and Parramatta, spanning 20 kilometres from Granville to Camperdown.

Parramatta Road was formally a destination in itself, with people visiting for its adjacent businesses and shopping offerings.

Parramatta Road's function as a vehicle movement corridor has gradually taken priority over its place function from previous decades. This has had a reductive effect on its place value and attraction and it can no longer be described as a vibrant high street.

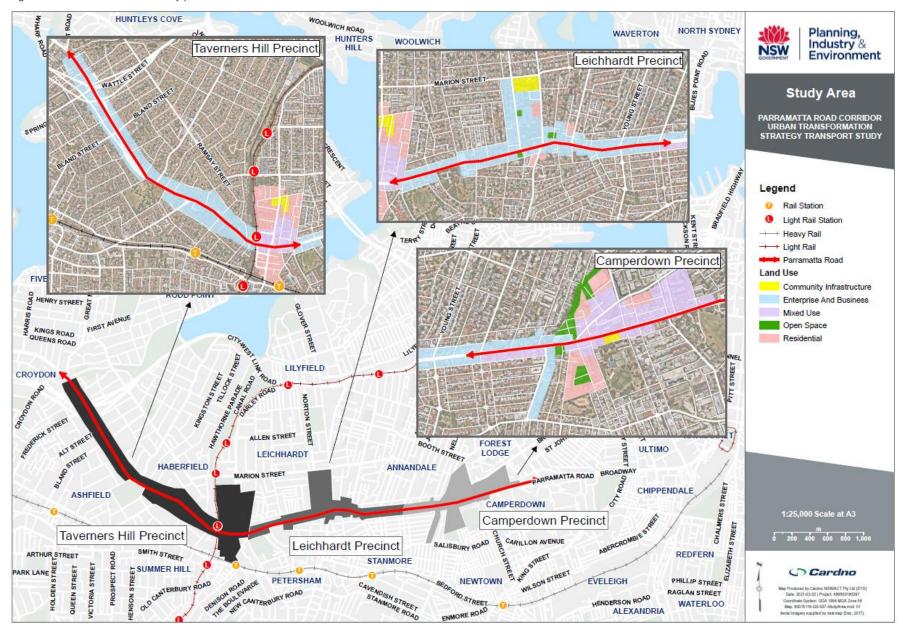
Parramatta Road serves an important function within regional Sydney for public transport and freight vehicles as well as general traffic.

The NSW government has recognised that Parramatta Road and surrounding land uses are not achieving their full potential, and a multitude of studies over the years have proposed various options and solutions to improve conditions.

The Parramatta Road Urban Transformation Strategy (PRCUTS) proposes approximately 27,000 new dwellings along the Parramatta Road corridor between Granville and Camperdown. There are also 50,000 new jobs planned along the corridor.

For IWC PRCUTS precincts, there is forecast to be an additional 10,000 residents and employees in the period 2016 - 2036.

The opening of WestConnex in 2023 will provide the option for some through-traffic to redistribute off Parramatta Road. This will open up opportunities to reimagine how people move along the corridor and the land uses it can support.


The Parramatta Road Urban Corridor Transformation Strategy (PRCUTS) brings together the elements of successful place making to provide a strategy to support population and employment growth, land use and place making and transport to improve the attractiveness and liveability of the corridor and surrounding areas.

2.3 Study precincts

This study has a primary focus on IWC precincts of Camperdown, Leichhardt and Taverners Hill shown in **Figure 2-1**.

Figure 2-1 PRCUTS IWC study precincts

3 Population

The key determinate of transport needs is the population it serves. The following section outlines the 2016 population and the forecast to 2036.

3.1 Residents and employment

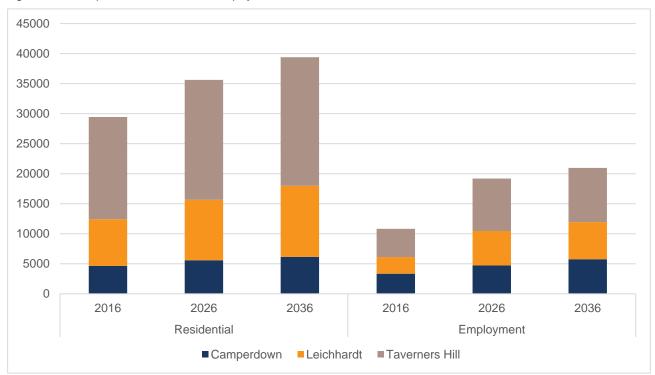

DPIE commissioned a PRCUTS land-use projections review in 2021 to assess the land use in IWC PRCUTS precincts more broadly for traffic modelling analysis. While this review assumed precinct boundaries slightly different to those shown in **Figure 2-1**, it provides a good indication of projected changes to residential and employment numbers. The population and employment forecast is as outlined in **Table 3-1** and graphed in **Figure 3-1**.

Table 3-1 PRCUTS IWC study area residential and employment population

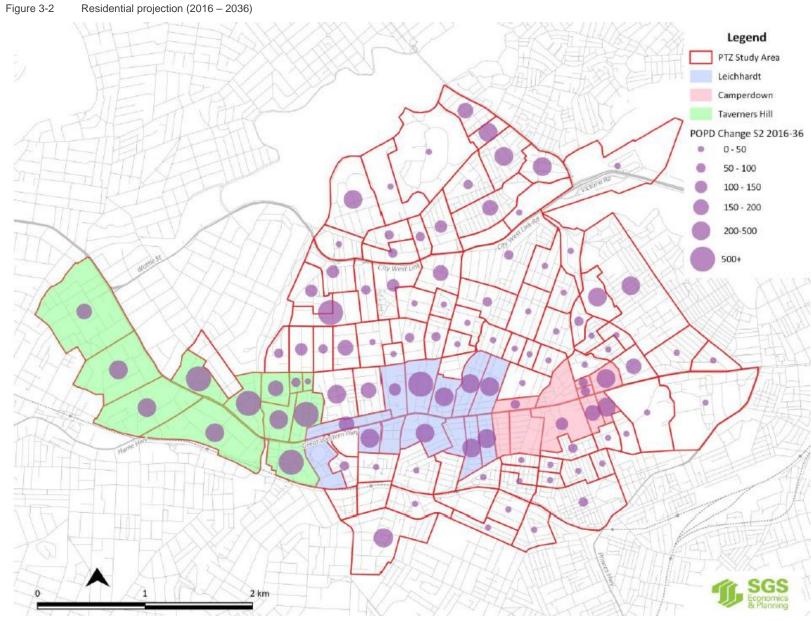
Precinct		Population		E	Employment	
Frecinct	2016	2026	2036	2016	2026	2036
Taverners Hill	17,018	19,964	21,409	4,705	8,732	9,025
Leichhardt	7,786	10,075	11,834	2,766	5,748	6,172
Camperdown	4,637	5,589	6,159	3,354	4,716	5,767
Total	29,441	35,628	39,402	10,825	19,196	20,964

Data source: PRCUTS land use review, SGS, 31/05/2021

Figure 3-1 Population – residential and employment forecasts

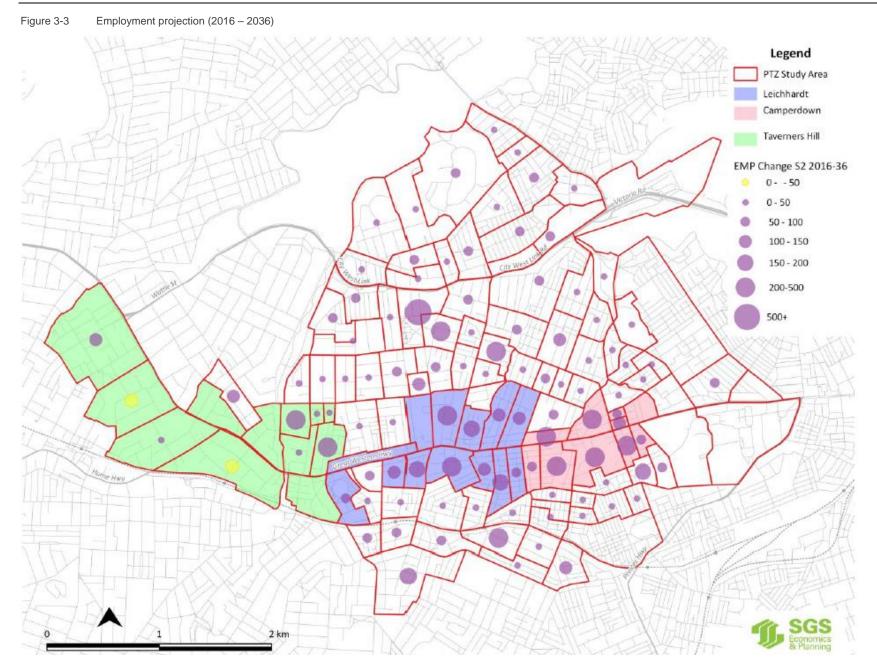
Data source: PRCUTS land use review, SGS, 31/05/2021

The data in **Table 3-1** and **Figure 3-1** shows that Taverners Hill will continue to house the most residents and employment.


By 2036, it is anticipated the PRCUTS IWC areas will accommodate approximately 39,400 residents and 22,300 workers. Between 2016 and 2036, the transport network must facilitate the movements for an additional:

> 10,000 residents	> 10,000 employees (some of which will be residents)	
--------------------	--	--

The population and employment analysis (*PRCUTS land use review, SGS, 31/05/2021*) and calculations is provided in **Appendix A**. This shows the difference between previous forecasts and the additional growth PRCUTS brings over previous land use forecasts.


Residents and employment projects are shown in Figure 3-2 and Figure 3-3.

Source: PRCUTS land use review, SGS, 31/05/2021

4 Summary of findings

Vision and principles

Vision

"Incremental renewal of the Corridor will occur over the long term to deliver a high quality, multi-use corridor with improved transport choices, better amenity, and balanced growth of housing and jobs."

The vision must continually be referred to for all recommendations to ensure that recommendations give effect to the vision and principles.

Transport implications

- > Support increased travel demand through a changed mode split with increasing pedestrian, cycling, public transport share and reduce car mode share.
- > Increased sustainability and accessibility for all.
- Contribute to affordable living conditions.
- > High and easy connectivity.
- > High frequency and serving north-south demands as well as east-west.
- > Leverage and enhance existing transport infrastructure and services
- > Support and improve desired place making outcomes.

Land use

Intensification of land uses in IWC PRCUTS precincts are forecast to result in a change (from 2016 – 2036) of:

- > 10,000 more residents
- > 10,000 more employees.

These will generate additional trips across the transport network in addition to growth in population and employment from surrounding precincts.

Travel demand

There will be higher travel demand.

Inner West residents make approximately 3.6 trips on a typical weekday, therefore an extra 10,000 people would result in approximately 36,000 trips across the transport network on a typical weekday.

Based on a general assumption that 80 per cent of employees may attend work on a typical day, an extra 16,000 trips would occur on typical working days travelling to/ from work plus any lunch time trips or other business generated trips throughout the day.

The volume of additional trips highlights the necessitates the need to shift trips away from private vehicles to walking, riding and public transport. Therefore, the conditions, issues and opportunities for pedestrians, cycling and public transport are key considerations for providing a functional and safe transport network for PRCUTS and surrounds.

Pedestrians

- There are limited crossing opportunities on Parramatta Road.
- > Footpath quality varies from good to poor (narrow/ uneven).

Cycling

- > Variable standard bicycle network.
- > No safe opportunity along Parramatta Road and parallel routes have many turns.

Roads

> High crash rates are noted due to high vehicle volumes and congestion.

> High traffic demand during peak periods resulting in traffic congestion.

Public transport

- Shared infrastructure with general traffic results in reduced reliability of road based public transport.
- > Some challenges with feeder bus routes to better service heavy and light rail stops.
- > Public transport frequency can limit the attractiveness of planning a multi-modal public transport trip.
- > The existing high frequency network needs to be promoted and identify opportunities for turn up and go routes (very high frequency routes).

Deliveries and Freight

- > Increasing competition with general traffic on the road network kerbside space for small parcel/ package delivery.
- > Freight trips can be leveraged for a benefit of reduced private car trips.
- > Increasing residential and employment populations generate increased delivery demand.

Parking

Car parking is examined in detail in a separate car parking note. In summary

- > Car parking takes up space and this needs to be considered against the opportunity cost for other uses of the space.
- Car parking increases the cost of development. In multi-deck car parks, one car parking space can easily cost \$50,000 and this cost must be borne by the users a given site/ locality through the purchase price or lease costs.

Amenity

The impact on amenity, streetscape and liveability will be considered particularly noting opportunities to improve:

- > Landscaping, tree planting and shading, with a strong preference given to WSUD;
- Increased footpath widths and improved footpath surfaces/pavement treatments;
- > Buffering of pedestrians from traffic;
- Provision of all-weather cover, ideally in the form of awnings which are sympathetic to the existing urban fabric;
- > Air quality and noise;
- > Public art and place-making.

5 Summary of transport issues and opportunities

Categorised transport-related issues and opportunities are outlined in the following tables. The location-specific issues and opportunities are shown in **Figure 5-1**.

5.1 Issues

Category	#	Issue
People	I-P1	Growing population (20 per cent growth between 2017 and 2036) and aging population (52 per cent increase of population aged 65 years and over by 2036) generating demand for new and improved infrastructure.
Land use integration	I-LU1	Parramatta Road is a barrier for permeability, and poses a safety hazard, particularly for pedestrians and cyclists.
Active transport	I-AT1	Disconnected cycling infrastructure and high-speed roads such as Parramatta Road are a barrier for north-south active transport.
	I-AT2	Non-car modes of travel have low levels of connectivity to adjacent neighbourhoods and local centres.
	I-AT3	Kerbside bus lanes, traffic volumes and speeds discourage use of Parramatta Road as a cycling corridor and parallel routes have turns and are less legible.
Public	I-PT1	Mixed traffic lanes reduce bus reliability, speed and thus attractiveness and route capacity.
transport	I-PT2	Poor interchange between light rail and bus at Taverners Hill.
	I-PT3	Light rail infrastructure (single track in each direction) restricts the ability to increase frequency to and from Dulwich Hill.
	I-PT4	Legibility and complexity of existing bus routes.
	I-PT5	Missing north-south connectivity of public transport network, causing rail travel needing to pass through Redfern or Central before travelling along the north-south axis.
	I-PT6	Bus network is Sydney city centric, 11 out of 15 routes begin and end in there.
Roads and freight	I-R1	Congestion on roads, including Parramatta Road, particularly on weekday peak periods and weekends affecting travel times and reliability of buses.
	I-R1	Proximity with Port Botany and forecasted growth of freight activity increasing heavy vehicle pressure on road network.
Parking	I-Pa1	Publicly accessible parking demand is high in activity areas and residential streets.
	I-Pa2	There is an equity issue between land uses that service their own parking needs on-site as to sites that utilise on-street parking. I.e. the residential parking scheme subsidises users that forgo the cost of providing their own parking.
	I-Pa3	On-street parking limits opportunities to provide the space for other uses including trees, vegetation, runoff filtration, wider paths, separated cycleways.
	I-Pa4	Provision of car parking in new multi-level development cost in the order of \$50,000 per space, which results in increased development costs which is passed on to new residential and employment land uses.
	I-Pa5	There is a relationship between the high provision of car parking and increased traffic generation.



5.2 Opportunities

Category	#	Opportunity
Movement and Place	O-MP1	Identify greening opportunities in all transport network upgrades to achieve a "60% tree canopy cover over all pedestrian spaces (footpaths, trafficable pedestrian areas)."
	O-MP2	Enhance streetscapes through water-sensitive urban design (WSUD).
	O-MP3	Provide outdoor seating to encourage activation of street frontages and enhance the pedestrian environment.
	O-MP4	Consider gateway treatments at each precinct through the provision of space for murals by local artists on side streets at key intersections to local centres and to create a sense of neighbourhood identity.
Land use integration	O-LU1	Leverage on development of the Camperdown Triangle for creating more vibrant streets and stimulating local economy.
	O-LU2	Opportunity to enhance night time economy in the precincts through reliable night time public transport and welcoming streetscapes.
	O-LU3	Enhance permeability for all modes of travel across the precincts by introducing new north-south laneways south of Parramatta Road and east west laneways north of Parramatta Road.
	O-LU4	Consider temporal changes where regular road closures of low volume streets could be used for activation by outdoor dining, street markets and active travel.
	O-LU5	Consider use of existing at-grade off-street car parks as market places or community "nodes".
Active transport	O-AT1	Improve connections across roads and side streets with initiatives such as continuous footpaths.
	O-AT2	Improve connectivity between Leichhardt Precinct and Petersham Station via existing active transport network particularly in the north-south alignment.
	O-AT3	Provide new cycle connections as planned under the Parramatta Road Urban Amenity Improvement Program.
Public transport	O-PT1	New public transport services providing critical north-south connectivity across Parramatta Road.
	O-PT2	Enhance integration between light rail, heavy rail and bus services.
	O-PT3	Ensure all bus stops are DDA compliant and provide shelter and seating.
	O-PT4	Provide on-demand or turn-up-and-go bus services to improve the public transport catchment to light and heavy rail services.
	O-PT5	Reallocate road space on Parramatta Road for high-frequency mass transport (such as GETS). Consider providing this along the centre of the road.
	O-PT6	Develop direct access to Taverners Hill LRS from Brown Street.
Roads and freight	O-R1	WestConnex to maximise diversion of heavy vehicle through-traffic (except dangerous goods vehicles) for improved freight efficiency and local safety.
	O-R2	WestConnex provides opportunities to transform Parramatta Road as a pedestrian friendly space, recognising "Traffic Evaporation" theory, where road space can be taken away to reduce traffic demand.
	O-R3	Reduce speed limits to support place making and improve safety for pedestrians and cyclists.
Parking	O-Pa1	Reduced provision of car parking provides positive enforcement of shift to sustainable modes.

Figure 5-1 Issues and opportunities

6 Considerations and options

6.1 Parramatta Road

Parramatta Road can be described as in environmental, economic and urban decline. It is the major historical east-west artery of metropolitan Sydney and has been overwhelmed by heavy traffic, excessive noise and declining commercial spaces in recent years. Vacant buildings, pollution and large volumes of freight vehicles have contributed to the corridor becoming less pleasant and less attractive for all road users.

Parramatta Road currently accommodates:

- > A major bus corridor;
- > A high amount of vehicle traffic over a day, especially during peak periods;
- > High levels of congestion along the corridor during peak periods;
- > Limited north-south movement opportunities as signals are prioritised for east-west movement; and
- > Car parking during off-peak periods.

Redevelopment of the area through planning and infrastructure investment will assist in overcoming the challenges discussed above.

6.1.1 Long list of considerations/ options

The long list of options is tabled to show a potential consideration for discussion only. Not all can be selected, as some options preclude or negate the need for other options.

The long list of opportunities and options to manage the PRC road space are outlined in **Table 6-1**. The treatments included in this table are generally applicable to all streets within the PRCUTS precincts, wherever practical. These are actions for IWC, DPIE and TfNSW to review and decide on.

Table 6-1 Parramatta road corridor long list of options

Initiative	Benefit	Impact	Consideration
Place-making			
Streetscape improvements: Landscaping Public art Street furniture Pavement treatments Lighting Water sensitive urban design	Improved place value and amenity, making the corridor attractive and comfortable for pedestrians. Street trees and landscaping provide shade, improve air quality and reduce the heat island effect. Providing spaces for murals at key intersections will support local Inner West artists and function as gateways to local centres. This would create a sense of place and neighbourhood identity.	Reduction in footpath width due to landscaping and benches in the verge.	Benches, bins and pot plants are currently provided. Footpath pavements are inconsistent and of varying quality and condition and can form components of urban realm improvement projects.
Active transport			
Continuous footpath treatment	Improved amenity and comfort for pedestrians who have increased priority. Attractiveness of active travel is increased.	Slower vehicle speeds (the intended effect) for vehicles turning off Parramatta Road which may cause traffic issues.	Continuous footpath treatments are raised, physical traffic management devices and are appropriate for intersecting streets with low traffic volumes.
Pedestrian countdown timer	Reduction in the risk of pedestrian and vehicle conflict. Pedestrians know exactly how much time they have to safely complete their crossing.	Cost and complexity to signalised intersection.	Pedestrian countdown timers work best at intersections where pedestrians are the only people on the road with a green light (no simultaneous turning movements for vehicles).
Separated cycleway	Provides a safer, dedicated space for cycling along Parramatta Road and throughout the corridor. The corridor would form a major and direct eastwest link for commuters, students, food delivery riders and recreational cycling linking with the GreenWay. Provides a buffer/ calming effect between vehicle movements and the pedestrian realm on one or both sides.	Reduced space for: Motor vehicle traffic; and Car parking.	Unlikely to be supported by motorists or local businesses that perceive front of business parking opportunity as a key metric to support business viability. Sydney has a well-documented history of opposition of providing dedicated cycling space at the expense of motor vehicle space. A separated cycleway for Pyrmont Bridge Road is to be delivered under the Parramatta Road Urban Amenity Improvement Program.
Signalised bicycle crossings	Introducing signalised bicycle crossings of Parramatta Road and key side streets (where possible) contributes to a safer and more attractive experience for cyclists, especially for less experienced / more vulnerable groups.	Vehicle delays at the intersection level due to the modified signal phasing. Cost and complexity to signalised intersection.	Detailed analysis will be required at the intersection level to assess feasibility, quantify possible impacts and optimise signal phasing.
Introducing pedestrian phases on all legs of all intersections	Improved amenity and comfort for pedestrians who have more direct routes. Attractiveness of active travel is increased.	Vehicle delays at the intersection level due to the modified signal phasing.	Detailed analysis will be required at the intersection level to assess feasibility, quantify possible impacts and optimise signal phasing.

Initiative	Benefit	Impact	Consideration
		Cost and complexity to signalised intersection.	
Public transport			
Full-time / turn up and go mass transit lane (i.e. Bus Rapid Transit, trackless trams)	Dedicated road space for mass transit improves journey reliability, capacity and efficiency of the mass transit vehicle. This can also make a difference to the number of vehicles and resourcing required. Mass transit is a highly effective method of carrying a high volume of	Reduces road space for general traffic. Can limit on-street car parking opportunities.	A highly effective way of moving a high amount of people along the corridor. This requires planning to ensure it is an attractively positioned transport offering that people want to use. Centre running (rather than kerbside running)
	people in a limited space. It is more efficient than private vehicle traffic while simultaneously having lower environmental and amenity impact. GETS/ trackless trams are relatively quick and inexpensive to implement, have minimal disruption to the local economy during construction and have a higher speed, capacity and ride quality than Bus Rapid Transit (BRT).		design can help improve efficiency of public transport along the corridor by removing conflict with left turning vehicles and bicycles - thus enhancing public transport service time reliability. However, it introduces complexities for right turns and requires passengers to cross the road before/after using the public transport service.
			Consideration can be given to investigate opportunities to introduce "turn-up-and-go" public transport services and/or introduce B-Signals to enhance public transport priority along the corridor.
Improved pedestrian/passenger storage on the footpaths adjacent to major public transport stops	Improved amenity and comfort for public transport passengers. Attractiveness of public transport and active travel is increased.	Could conflict with other uses of footpath width	Smart design can be incorporated to increase placemaking opportunities and improve amenity.
Traffic management			
Optimised signal timings / modified signal phasing to improve pedestrian and/or public transport	Reduction in delay for pedestrians crossing Parramatta Road and improve public transport travel times / reliability. Improve attractiveness of sustainable travel modes.	Longer travel times for vehicles.	Excessive pedestrian delay can result in severance of communities. Connectivity across Parramatta Road for pedestrians is currently weak.
			Public transport priority contributes to increased attractiveness and improved travel times.
Examine opportunities for alternative heavy vehicle routes including reduced heavy vehicle tolls on WestConnex to encourage heavy vehicles to use WestConnex	WestConnex will provide a motorway bypass opportunity for some through-traffic. It is anticipated that the majority of freight traffic that currently passes along Parramatta Road between Port Botany and Western Sydney will re-divert trips to WestConnex.	Houses have been lost. Motorways have been documented to induce traffic demand. Entry and exit locations to WestConnex are likely to have high traffic demands.	WestConnex is likely to provide an initial benefit to the locality. Historic evidence of major road projects and bypasses indicate that traffic volumes can return to normal unless interventions are made to the bypassed road.

Initiative	Benefit	Impact	Consideration	
	The WestConnex Strategic Business Case suggests traffic volumes along IWC portions of Parramatta Road will be similar to 2012 volumes in 2031.			
Co-ordinated traffic signals	Optimised traffic flow and capacity. Improved level of service.	Delays to side street traffic. Does little to reduce demand along Parramatta Road.	Signals are already co-ordinated and optimised for east-west flow. Parramatta Road has reached its capacity during peak periods and other interventions must be considered to maintain a functional corridor in the future.	
Tidal flow lane management	Use lane management to increase the number of lanes in the peak movement direction, improving traffic flow and capacity. May provide the opportunity to select a dedicated mass transit lane. Often has a lower capital cost than alternative capacity increasing measures such as widening.	Increased resourcing to manage the road network. Removal of medians increases the chance of collisions of vehicles travelling in the opposite direction, unless a moveable median was selected. Effectiveness reduced where heavy right-turn movements must be accommodated.	This would require removal of all fixed central medians and installation of moveable barriers or overhead lane control signals with illuminated pavement markers. A directional split of traffic flow of at least 70/30 favouring the peak direction is generally necessary before tidal flow operation is justified.	
No right turn movements at congestion points	More green time for through traffic. Signalised intersections have less phases.	Limits road network connectivity and accessibility. This can lead to vehicles first turning left and circulating in local streets to undertake an at-grade loop movement to position themselves at a signalised through point to get to the far side of Parramatta Road.	No right turns are already implemented at multiple intersections. Detailed analysis should be carried out to determine whether additional right term prohibitions will result in rat running through residential areas>	
Right turn lanes at signalised intersections	Improved access to and from side-streets in more locations. This would distribute right turn movements along the corridor and reduce the through-movement function of the corridor. This would require increased signalisation which could be used to provide additional pedestrian crossings along the corridor.	Increased traffic demands on residential streets. This may reduce through capacity on Parramatta Road.	This could be done in conjunction with more signalised intersections.	
			There are limitations associated with right turn lanes given how road widening is not supported from a place making perspective.	
Reduced speed limit	Reduce the severity and potential occurrence of crashes for all road users and improve amenity adjacent to the carriageway.	Longer travel times which may reduce road capacity.	Dynamic speed management (variable speed limits) could vary the speed limit throughout the day/ week.	
			While reduced speed limit is likely to result in longer travel time for vehicles it can help maintain or improve reliability and predictability of public transport travel times. This is aligned with the high level of pedestrian activity that will	

Initiative	Benefit	Impact	Consideration
			materialise over time along the corridor due to increased residential population, employees and visitors combining with reactivated frontage uses.
Clearways	Additional road capacity through a parking lane and no delays from drivers undertaking parking movements.	No convenient on-street parking is available to support local businesses during clearway operation periods.	Initiative already implemented during peak periods in some areas. Clearways may be acceptable during peak periods however it is equally important to maintain kerbside parking outside peak periods.
Variable Message Signs (VMS)	Improved road efficiency and enhanced safety. Electronic signs assist with traffic and incident management.	Fully automated systems require the integration of incident detection systems with message selection and deployment for the management of incidents, congestion and impact of adverse weather conditions.	VMS are already implemented along the PRC: Before Dalhousie Street (westbound) After Ross Street (eastbound)
Travel demand management			
Tolls	Toll revenue could be used to fund transport initiatives along Parramatta Road and would likely reduce traffic demand.	Expensive to implement and requires on-going management.	Unpopular, unlikely to be supported by the majority of motorists unless there was a linked scheme to reduce WestConnex tolls for certain trips. Could be developed as a scheme where short trips are free and long trips are tolled.
Kerbside Management			
Improved kerbside management recognising the numerous competing elements in relation to land use, vehicle flow, freight and service delivery, pedestrian amenity, temporal demand and safety	Efficient kerbside management has the potential to achieve and effective balance of the competing demands by recognising the temporal changes in demand.	Use of the kerbside for purposes other than traffic flow has the potential to reduce traffic speeds in the through-lanes, however in the light of the numerous competing uses this may ultimately prove to be beneficial	In order to achieve a revitalization of the corridor it is essential that the placemaking benefits of efficient kerbside management be recognised.
			 Use of the kerbside lane for parking has the ability improved pedestrian amenity on the footpaths by buffering pedestrians from through traffic
			- Use of the kerbside lane for Loading on deliveries has the potential to improve the built form of frontage uses
			 Use of the kerbside lane for through traffic may increase traffic speeds and so reduced safety and increase vehicle noise, In so doing reduce the overall amenity of the corridor.

Background review analysis and case studies

The following sections of this report provide summaries of a range of state and local government documents, existing land use, existing transport network conditions and case studies of road space reallocation.

These were used to inform the:

- > Summary of findings.
- > Summary of transport issues and opportunities.
- > Considerations and options.

7 State government document summary

7.1 Eastern City District Plan, Greater Sydney Commission, 2018

The Greater Sydney Commission (GSC) is implementing The Greater Sydney Region Plan (the Regional Plan) through five district plans, which detail district-specific directions, place-based outcomes, and the actions to achieve these. The relevant district plan covering the Inner West is the *Eastern City District Plan* (the District Plan).

The District Plan describes how integrated land use and transport planning can help achieve the 30-minute city through increasing development density near transit corridors. It sets a housing supply increase for the Inner West of 5,900 new dwellings between 2016 and 2021, around 14,000 more people which is the third largest housing target for the District Plan.

The key infrastructure elements committed to in the District Plan that would impact the Parramatta Road Corridor (PRC) include Sydney Metro West and Parramatta Road public transport improvements.

7.2 Parramatta Road Corridor Urban Transformation Strategy, UrbanGrowth NSW, 2016

The Parramatta Road Corridor Urban Transformation Strategy (PRCUTS) represents the NSW Government's 30-year plan to guide amplified land use functions and support urban revitalisation along the PRC. It presents the long-term infrastructure, commercial and housing delivery programs for the PRC, with an emphasis on place-based planning and liveability. It plans for an estimated 56,000 additional residents in 27,000 new homes and 50,000 new jobs focused within eight Precincts.

The Strategy is supported by a suite of technical documents prepared for UrbanGrowth NSW as part of the Parramatta Road Corridor Urban Transformation Program:

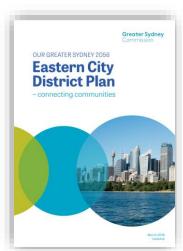
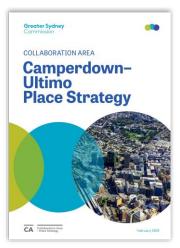


Table 7-1 PRCUTS supporting documents

Document	Description
Parramatta Road Urban Transformation Precinct Transport Report	The first step in developing transport plans for each of the eight Precincts to support urban transformation in the PRC over the short-, medium- and long-term.
Parramatta Road Corridor Implementation Plan 2016 – 2023	A prioritised set of actions to facilitate transformation of the Corridor in the short term.
Parramatta Road Corridor Planning and Design Guidelines	Suggested land use and built form controls to guide future development.
Parramatta Road Corridor Urban Amenity Improvement Plan	A program of urban amenity improvements attached to \$198 million of government funding to deliver tangible public domain improvements to the Corridor aligned with its staged redevelopment.
Parramatta Road Corridor Infrastructure Schedule	A prioritised and costed list of future infrastructure including open space, transport, traffic community, health and education facilities required to support the long-term growth in the Corridor.



7.3 Camperdown Ultimo Collaboration Area Place Strategy, Greater Sydney Commission, 2019

The Camperdown-Ultimo Collaboration Area Place Strategy informs public and private policy and investment decisions through identification and recognition of complex, challenges and issues faced by the Collaboration Area and identification of growth priorities. The following priorities under the theme of "connectivity" are particularly relevant to this study:

- Integrate and connect the Collaboration Area within and beyond its edges;
- 2. Improve local transport options and amenity within the Collaboration Area; and
- 3. Promote smart technology, drive innovation and connect locally globally.

The following action items under the three overarching priorities are relevant to this Transport Study:

- Action 1: Develop a strategy for transport investigations and initiatives, underpinned by the principles of movement and place, to enhance safety, accessibility and permeability within and surrounding the Collaboration Area by prioritising pedestrian, safety and amenity, encouraging cycling, and planning for public transport, freight movements and parking.
- Action 2: Advocate for better connections between Greater Sydney's collaboration areas, innovation clusters and health and education precincts, including transport, technology, utility and digital networks, and information sharing.
- > **Action 3:** Advocate for a mass transit system that strengthens connections between the Collaboration Area and Greater Sydney's economic corridors.
- > Action 4: Advocate for a Sydney Metro West station in Camperdown activity node.
- > Action 7: Improve public transport, pedestrian and cycling connectivity between the three activity nodes:
 - Haymarket to Camperdown along the Ultimo axis;
 - Camperdown to Eveleigh along the Darlington axis (particularly Redfern Station to University of Sydney); and
 - Haymarket to Eveleigh.
- Action 8: Implement a pilot project along Broadway and Parramatta Road to reallocate road space and prioritise pedestrians between Central Station and key land uses on the Ultimo axis, while achieving an acceptable level of service for vehicles at the gateway to the Harbour CBD.
- Action 9: Identify shared partnership transport solutions to optimise connectivity within the Collaboration Area.
- Action 11: Consider piloting a Smart Places program in the Collaboration Area.

7.4 Camperdown Collaboration Area (Tech central) Place Based Transport Strategy, Transport for NSW, 2021

The Place-based Transport Strategy recognises the need to enhance Parramatta Road to be a safe, convenient, and connected movement corridor for all road users. The future of Parramatta Road requires a high-quality public transport solution to ensure accessible, frequent, and reliable services that enhance efficient movements along the corridor.

The implementation of a connected metropolitan cycling network will support access between the Tech Central node and surrounding areas. In addition, the Strategy recommends the creation of a better pedestrian environment along and across Parramatta Road with wider footpaths, increased dwell space and improved priority for walking at traffic signals, recognising its key role in connecting the Camperdown and Haymarket nodes.

7.5 Parramatta Road and Victoria Road Integrated Transport Strategic Business Cases, Transport for NSW 2021 (ongoing)

TfNSW are preparing Parramatta Road and Victoria Road Integrated Transport Strategic Business Cases with the aim to provide enhanced public transport, active transport and public domain opportunities along Parramatta Road.

The outcomes of this Strategic Business Case will be made available in 2022. TfNSW will continue to engage with DPIE and Council to ensure that the outcomes of Strategic Business Case are aligned with vision and recommendations of this Transport Study/Plan.

7.6 Future Transport Strategy 2056, Transport for NSW

Future Transport 2056 (FT56) was released in early 2018, with the objective of ensuring that the Greater Sydney area is prepared for rapid changes in technology and innovation, in order to create and maintain a world class, safe, efficient, and reliable transport system over the next 40 years. It outlines a comprehensive strategy that focuses on how people and goods will be transported around the state, including details of the proposed infrastructure and initiatives.

The vision is built on six outcomes:

- > Customer Focused;
- > Successful Places;
- > A Strong Economy;
- Safety and Performance;
- > Accessible Services; and
- > Sustainability.

With respect to tying land use and transport planning, Future Transport notes that 'The best places take time and strong partnerships to develop and flourish. Integrated land use and transport planning can activate public spaces, corridors and networks, and positively impact the delivery of health, education and local government services. Transport can improve the liveability and character of places across the state, achieve wider benefits from investment and encourage more desirable patterns of development' (p. 6).

This statement is particularly relevant to the PRC with respect to integrating transport infrastructure and land use planning to enable the desired transport mode splits.

Parramatta Road is identified as a 'committed initiative' being the beneficiary of a 'major infrastructure upgrade'. The strategy notes that Parramatta Road is subject to public transport improvements in the 0 to 10-year timeframe.¹

7.6.1 Greater Sydney Service and Infrastructure Plan

The *Greater Sydney Services and Infrastructure Plan* focuses on specific policy, service and infrastructure initiatives to support the strategic direction of Future Transport 2056.

The Plan discusses a number of specific Eastern City infrastructure initiatives. These include the following initiatives which are relevant to this study:

- > WestConnex;
- > Sydney Metro West;
- > Parramatta Road public transport improvements;
- > Priority Cycleway links in inner Sydney, including the Inner West GreenWay; and
- Inner Sydney Regional Bike Network within 10km of the Harbour CBD.

¹ Future Transport 2056, p.103

8 Local government document summary

8.1 Inner West Community Strategic Plan, Inner West Council, 2018

The *Inner West Community Strategic Plan* (CSP) was produced by Council with active community input to identify a high-level vision of how the Inner West Council might best evolve socially to satisfy community needs over the next two decades. The Plan's implementation will involve collaboration with key stakeholders and Council has committed to reporting back to the community every four years on progress.

This transport study can help to give effect to the CSP. Relevant strategic directions, outcomes, strategies and indicators are reproduced in **Table 8-1**.

Table 8-1 Community Strategic Plan, strategic directions, outcomes and strategies

Strategic directions	No.	Outcome	Strategies	Indicators
1: An ecologically sustainable Inner West.	1.1	The people and infrastructure of Inner West contribute positively to the environment and tackling climate	Provide the support needed for people to live sustainably. Develop planning controls to protect and support a sustainable environment. Provide green infrastructure that	Residential energy consumption.
	1.4	change. Inner West is a zero emissions community that generates and owns clean energy.	supports increased ecosystem services. Develop a transport network that runs on clean renewable energy.	
	1.5	Inner West is a zero waste community with an active share economy.	Support people to avoid waste, and reuse, repair, recycle and share.	
2: Unique, liveable, networked neighbourhoods.	2.1	Development is designed for sustainability and makes life better.	Identify and pursue innovative and creative solutions to complex urban planning and transport issues. Develop planning controls that protect and support a sustainable environment and contribute to zero emissions and zero waste community.	Community satisfaction with managing development in the area. Community satisfaction with long-term planning for Council area. Satisfaction with safety of public spaces. Satisfaction with access to public transport. People who travel to work by public transport. Satisfaction with Cycleways. Satisfaction with maintaining footpaths. Community satisfaction with management of parking.
	2.3	Public spaces are high-quality, welcoming and enjoyable places, seamlessly connected with their surroundings.	Plan and deliver public spaces that fulfil and support diverse community needs and life Ensure private spaces and developments contribute positively to their surrounding public spaces Advocate for and develop planning controls that retain and protect existing public and open spaces	
	2.5	Public transport is reliable, accessible, connected and enjoyable.	Advocate for improved public transport services to, through and around Inner West. Advocate for, and provide, transport infrastructure that aligns to population growth.	
	2.6	People are walking, cycling and moving around Inner West with ease.	Deliver integrated networks and infrastructure for transport and active travel. Pursue innovation in planning and providing new transport options. Ensure transport infrastructure is safe, connected and well maintained.	

Strategic directions	No.	Outcome	Strategies	Indicators
3: Creative communities and a strong economy.	3.3	The local economy is thriving.	Strengthen economic viability and connections beyond Inner West. Promote Inner West as a great place to live, work, visit and invest in.	Satisfaction with Council support of local jobs and businesses.
	3.5	Urban hubs and main streets are distinct and enjoyable places to shop, eat, socialise and be entertained.	Pursue a high standard of planning, urban design and development that supports urban centres.	
4: Caring, happy, healthy communities.	4.1	Everyone feels welcome and connected to the community.	Foster inclusive communities where everyone can participate in community life. Empower and support vulnerable and disadvantaged community members to participate in community life.	Satisfaction with support for people with a disability. Walkable open space within 400 metres of all residents. Satisfaction with provision of services for older residents.
	4.3	The community is healthy and people have a sense of wellbeing.	Provide the facilities, spaces and programs that support wellbeing and active and healthy communities.	
	4.4	People have access to the services and facilities they need.	Plan and provide services and infrastructure for a changing and ageing population.	
5: Progressive local leadership.	5.2	Partnerships and collaboration are valued and recognised as vital for community leadership and making positive change.	Collaborate with partners to deliver positive outcomes for the community, economy and environment.	Satisfaction with Council's community engagement. Satisfaction with the community's ability to influence Council's decision making. Community satisfaction with long term planning for council area. Overall satisfaction with Council's performance.

8.2 Inner West Local Strategic Planning Statement, Inner West Council, 2020

The Inner West Local Strategic Planning Statement (LSPS) outlines the vision:

"A place of creative, connected, sustainable and productive neighbourhoods – as vibrant, innovative and diverse as our community".

This is supported by fourteen planning priorities. Key planning priorities that the transport study are most related to and can help give effect to include:

- > Priority 1: Adapt to climate change;
- > **Priority 2**: Inner West is a zero emissions community;
- > **Priority 6**: Plan for high quality, accessible and sustainable housing growth in appropriate locations integrated with infrastructure provision and with respect for place, local character and heritage significance.
- > **Priority 7**: Provide for a rich diversity of functional, safe and enjoyable urban spaces connect with and enhanced by their surroundings.
- > **Priority 8**: Provide improved and accessible sustainable transport infrastructure.
- > Priority 9: A thriving local economy; and
- > Priority 11: Provide accessible facilities and spaces that support active, health communities.

8.3 Inner West Local Housing Strategy, Inner West Council, 2020

The Inner West Local Housing Strategy is a high-level strategy providing direction for the provision for housing for communities within the LGA. It is an evidence-based study that informs the LSPS, LEP and DCP.

This Strategy aligns with Council's and the community's vision for housing and state government strategic plans and shows how Council will meet the requirements of the District Plan. It also:

- Identifies the unique housing needs of Inner West's current and future residents:
- > Develops an approach to boost housing supply, diversity and affordability responding to local needs while enhancing the character of local neighbourhoods;
- Provides for population and housing growth;
- Aligns growth and infrastructure; and
- Supports the role of centres and informs Affordable Rental Housing mechanisms and strategies to increase affordable housing supply in the LGA.

The Strategy identifies significant potential development capacity from 2019 in Leichhardt, with some capacity for additional dwellings in Taverners Hill and Camperdown as shown in Figure 8-1. It is noted that this is dependent on rapid mass transit on Parramatta Road, within the existing road configuration. Additional development capacity has been identified in Leichhardt from 2026 dude to the impacts of Sydney Metro West on the rail network.

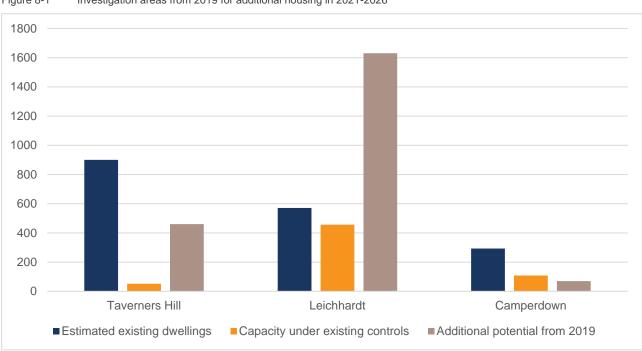
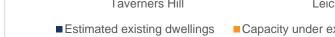



Figure 8-1 Investigation areas from 2019 for additional housing in 2021-2026

Source: Inner West Local Housing Strategy, Inner West Council, 2020

8.4 Employment & Retail Land Study, Inner West Council, 2020

The Employment & Retail Land Study (EaRLS) provides a review of employment and retail land uses and their future potential in the IWC. It aims to facilitate the management of the Inner West employment lands and commercial centres, prioritising actions for productive commercial and industrial land uses to drive job growth and thriving economies.

The review and analysis of PRCUTS impacted land identifies inaccuracies in PRCUTS dwelling and employment numbers and that without details of the method and assumptions used in the PRCUTS projects, an independent critical review is difficult.

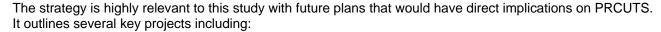
Council undertook and independent analysis of existing land use and floor space and has examined future land use scenarios based on strategic figures and what is likely to be feasible based on, existing planning controls, PRCUTS proposed planning controls and spatial analysis.

Key issues identified in the study relating to the PRC include:

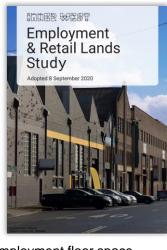
- > Loss of industrial and urban services land as well as flexible and affordable employment floor space under PRCUTS in all three precincts; and
- Serious Sydney Commission and Inner West Council policy positions have changed since the adoption of PRCUTS for the Camperdown precinct. Camperdown-Ultimo Collaboration Area Place Strategy (2019) recommends the following actions:
 - Safeguard business zoned lands from conversions which allow residential uses;
 - In support of establishing biotechnology hub in the triangles between Parramatta Road, Mallett Street and Pyrmont Bride Road; and
 - Safeguard existing and potential innovative and research activities from unrelated commercial activities until the master plan is produced for the precinct.

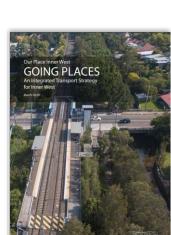
8.5 Inner West Integrated Transport Strategy, Cardno & Inner West Council, 2020

Going Places: An Integrated Transport Strategy for Inner West aims to address the transport challenges faced by the Inner West LGA and provides strategies and actions of integrated nature to support the Council in achieving its transport vision.


Going Places states the below vision for future transport which is focused on sustainable transport modes:

"Growing numbers of Inner West residents, workers and visitors prefer to walk, cycle and use public transport because it is safe, convenient, enjoyable and healthy.


Inner West transitions to environmentally sustainable transport.

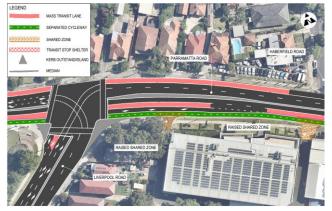

Everyone is connected to their community and local services, and can access educational, retail, cultural and recreational districts, as well as jobs and services across local and regional areas.

The transport network enhances local economic vitality, with freight and goods movements are separated from people by space and/or time."

- Parramatta Road Revitalisation;
- Plan and Build Inner West Pedestrian Network:
- > Plan and Build Inner West Cycle Network;
- > The GreenWay and The Green Grid;
- > Grid Bus Network;
- > Increased support for efficient goods delivery;
- > Innovative Mass Transit for Parramatta Road;

8.5.1 Parramatta Road revitalisation

IWC previously commissioned the *Parramatta Road Transport Opportunity Study*. This study outlined an opportunity for a road-based mass transit system with dedicated road space to provide a high quality, frequency and capacity service along the Parramatta Road corridor as a means to support a high capacity movement function for people instead of vehicles. The Inner West Integrated Transport Study provides further recommendations including:


- > 24-hour dedicated mass transit lane with additional space at stops for customers;
- > Plantings and car parking at mid-block locations; and
- > Separated cycle facilities and opportunities for site-specific footpath widening.

Concept layouts from west to east are shown in Figure 8-2.

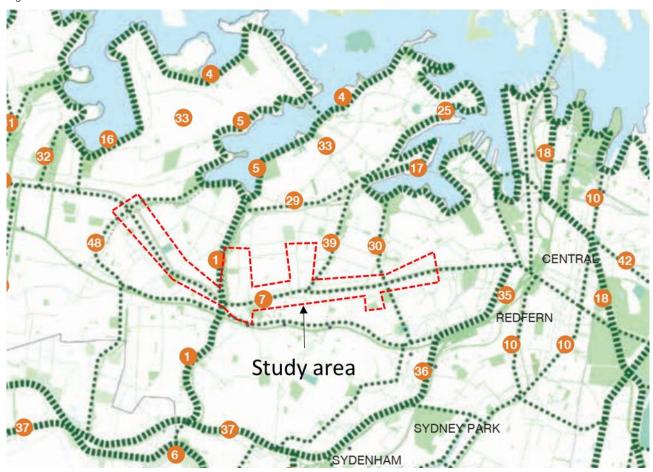
Figure 8-2 Parramatta Road concept layouts

Liverpool Road, Ashfield

Norton Street, Lechhardt

Crystal Street, Petersham

Pyrmont Bridge Road, Annandale


8.5.2 The GreenWay and The Green Grid

The Sydney Green Grid, which includes all of metropolitan Sydney, was developed in recognition of the importance of natural land uses the environment and people. Some Green Grid corridors also provide the opportunity to be part of and integrate with active transport links.

PRCUTS IWC precincts have several existing or proposed projects with active transport opportunities as numbered in **Figure 8-3**. These include:

- > 1 The Greenway and Hawthorn Canal;
- > 7 Parramatta Road Urban Renewal Corridor;
- > 30 Johnsons Creek and Harold Park;
- > 39 Whites Creek and Whites Creek Lane, Leichhardt; and
- > 48 Cooks River Secondary Green Links: Ashfield to Canterbury (from Iron Cove Creek).

Figure 8-3 Green Grid

Base image source: Central District, Sydney Green Grid Spatial Framework and Project Opportunities, Tyrrell Studio, 2017

8.5.3 Inner West Pedestrian Network and Cycle Network

The Inner West Strategic Pedestrian and Cycle Network identifies a priority mesh network that covers the entire IWC and connects people from where they live to places they need and want to be. The strategic pedestrian and cycling network was developed to align with the Green Grid and Greenways.

These priority networks have interfaces with the study area and will be used to align recommended actions.

A schedule of the strategic networks as they interface with PRCUTS Inner West precincts is outlined in **Table 8-2**. Map extracts of the strategic pedestrian and bicycle network are shown in **Figure 8-4** and **Figure 8-5**.

Table 8-2 Strategic pedestrian and bicycle network

Precinct	Location	Side of Parramatta Road	Strategic pedestrian network	Strategic bicycle network	
	Parramatta Road	Both	Yes	Proposed	
	Iron Cove Creek	North	Proposed	No	
	Wattle Street	North	Yes	Yes	
	Fedrick Street	South	Yes	Proposed	
	Bland Street	Both	No	Proposed	
Taverners Hill	Dalhousie Street	North	Yes	No	
	Liverpool Road	South	Yes	No	
	Sloane Street	Both	Yes	No	
	Greenway	North	Yes	Yes	
	Greenway	South	Proposed	Proposed	
	Flood Street	North	Yes	No	
Taverners Hill/ Leichhardt	West Street	South	Yes	No	
	Palace Street	South	Yes	No	
	Railway Street	South No		Proposed	
	Renwick Street	North No		Proposed	
	Norton Street	North Yes		Proposed	
	Balmain Road	North	th Yes		
Leichhardt	Catherine Street	North	Yes	No	
	Whites Creek Lane	North Proposed		Proposed	
	Percival Road	South	Yes	No	
	Annandale Street	North	Yes	Proposed	
Leichhardt/ Camperdown	Johnston Street	North	Yes	No	
	Nelson Street	North	Yes	Proposed	
Camperdown	Johnstons Creek	North	Proposed	Proposed	
Campordown	Denison Street	South	South Yes No		
	Booth Street	North	No	Proposed	

Curens road

Outens road

Outen

Figure 8-4 Strategic pedestrian network – existing and proposed

Base image source: Our Place Inner West Going Places, An Integrated Transport Strategy for Inner West, Inner West, 2020

Figure 8-5 Strategic bicycle network – existing and proposed

Base image source: Our Place Inner West Going Places, An Integrated Transport Strategy for Inner West, Inner West, 2020

8.5.4 Grid Bus Network

The existing bus network is complex due to the large number of routes traversing through the Inner West which reduces the convenience, propensity for a customer to use multiple services. This can also result in buses bunching on key corridors.

The Grid Bus Network proposes Transport for NSW simplify the bus network into a mesh/ grid system comprising of north-south and east-west routes. This would ideally serve higher capacity networks such as rail and an improved mass transit service on Parramatta Road.

For the PRCUTS IWC precincts, this would mean:

- Rationalisation of existing bus services along Parramatta Road replacing multiply routes with a single high capacity and frequency service and improved integration with Taverners Hill light rail stop;
- > A north south route linking the Balmain peninsula to Dulwich Hill via Lewisham train station;
- > A north south route linking Drummoyne to Hurlstone Park via Ashfield Station;

> A north south route linking Rozelle to Marrickville via Petersham train station.

The proposed grid bus network is shown in Figure 8-6.

Figure 8-6 Grid bus network

Base image source: Our Place Inner West Going Places, An Integrated Transport Strategy for Inner West, Inner West, 2020

8.5.5 Increase support for efficient goods delivery

Council recognises the economic benefits and needs for the movement of goods. With increased online shopping culture as well as business needs, space for deliveries provides a higher value benefit.

The project identifies a kerbside hierarchy which will apply to PRCUTS precincts. This has been identified by factors that support sustainability, the economy and the highest number of beneficiaries. This is outlined in **Table 8-3**.

Table 8-3 Kerbside space use hierarchy

Priority	Use	Rationale				
Higher	Bicycle and personal mobility devices	Space is made for sustainable transport device parking				
4 }	Public transport stops	A higher priority is given to the provision of public transport stops.				
	Service vehicle zones Mail zones Truck zones Loading zones	Provision of servicing space is given a high priority to support safe conditions for workers and supporting the economy.				
	Taxi/ rideshare zones	Space provided for safer pick up and drop off which supports people who do not own a private car.				
	Car share zones	Provide spaces to support residents without a car and workers who do not drive to work and may be required to undertake workday trips. Car share has many beneficiaries throughout the day and week.				
	Motorbike parking	Provides a benefit to more people per a given area.				
Lower	Private vehicle parking: Accessible parking Electric vehicle parking Non-electric vehicle parking	Private vehicle parking occupies a considerable space and benefits fewer people. Accessible parking takes highest priority in this category to support equity.				

8.5.7 Innovative Mass Transit for Parramatta Road.

The strategy examines potential options for mass transit along Parramatta Road including:

> High-Spec buses; > Guided Buses; > Trams or Light Rail Vehicles.

> Bus Rapid Transit; > Optically-Guided Trams; and

The strategy states service must have the following benefits:

- > Features to identify the service and attract passengers to use it;
- > High frequency and comfort; and
- > Easy to understand service.

Inner had previously undertaken a detailed mass transit study along Parramatta Road which is described in the next section.

8.6 Parramatta Road Transport Opportunities Study Summary, Inner West Council & City of Canada Bay Council, 2017

This study was developed in response to PRCUTS and the potential reduction of traffic on Parramatta Road due to WestConnex and the approval condition of WestConnex which is to convert two lanes on Parramatta Road between Burwood and Haberfield. The study was conducted to examine the existing carriageway of Parramatta Road and provide recommendations on the public transport opportunities on the Corridor.

The study examines various options and configuration of public transit options including light rail, bus rapid transit, guided electric transit system and bike sharing.

The study recommended Guided Electric Transit System (GETS) emerged as the preferred option for Parramatta Road, feasible for operation form 'Day-One 'of WestConnex Stage 3. It recommended centre-running dedicated lanes for the GETS which supports accessible transport and kerbside parking of other vehicles.

GETS is also scalability for a spine and spur network with first and last mile infrastructure in the future. The system can:

- > Be accommodated within the corridor between Strathfield and Sydney City;
- > Innovative image which can encourage confidence in developers and future residents and hence, promote revitalisation of the Corridor; and
- > Cost effective while providing sufficient capacity, frequency and flexibility.

9 Emerging travel trends and technology

Emerging travel trends and technology are likely to impact the need and the way people travel in future. New transport technologies and innovations provide an opportunity to improve the transport network by providing benefits through improving safety, accessibility, mobility, sustainability and productivity.

Consideration must be given to technologies that help to give effect to the vision of PRCUTS and being award of when and what technology may have negative impacts. The Inner West Council Transport Strategy outlines a number of initiatives. **Table 9-1** updates and summarises the emerging technology and megatrends as they could apply to PRCUTS IWC precincts.

Table 9-1 Emerging technologies and megatrends

Transport technology/ innovation	Source/ status & timing	Location	Key details	Implications PRCUTS IWC precincts
Mobility as a Service (MaaS)	Discussed in Future Transport 2056. No official policy as yet.	Global.	Application-based services would market and integrate transport modes including, rideshare, car share or public transport.	Easier to use transport network, reducing reliance on private vehicles within precincts.
E-bikes	Online	Global.	Bicycles with batteries and electric motors to assist when pedalling is not desirable.	Advances in technology are making these vehicles cheaper and more accessible to all. Additional bike volumes on the local transport network for local and through movements needs to be considered and accommodated for. This could have safety implications for pedestrians or users without the right support and application of safety and risk reduction initiatives. Additional parking opportunities will need to be
E-scooters	Online	Global.	Scooters with batteries and electric motors to assist when desirable.	provide in the public domain and new development. Currently illegal to ride on footpaths and roads in NSW. Nonetheless, a change in policy would allow E scooters to become a convenient tool for short local trips to shops and transit nodes. Scooters also take up less space than bicycles when parked on footpaths. Consideration of safety and parking opportunities as per bikes.

Transport technology/ innovation	Source/ status & timing	Location	Key details	Implications PRCUTS IWC precincts
Intelligent transport systems and infrastructure	Online/ Ongoing	Global.	Applying computing power and data to improve transport networks. Real-time vehicle position. Traffic management software and infrastructure. Integration of systems to support multi-modal systems.	Efficient management of transport through PRCUTS and providing customers timely information to inform optimal travel choices.
Track-free trams or Guided Electrical Transit System (GETS) ²	IWC – aspirational. No committed timeframe and dependent on State Government funding assistance.	Global Interest, already running in China and parts of Europe.	These vehicles look like a light rail vehicle but run on rubber tyres and are electrically powered. They can run autonomously with laser guided tracking along a set path on normal roads. Control can be assumed by human intervention if required, usually to help divert it from its normal passage during disruption. Vehicles are designed to run at 70 kilometres an hour, at high frequency. Capacity is dependent on configuration, with a typical unit able to accommodate 300 customers.	It has similar benefits to trams but far lower costs and time required for implementation. Potential as high capacity mass transit on Parramatta Road, providing opportunity for pedestrian friendly vibrant streets.
Electric buses	Online	Global. Transit System trial to begin mid 2019	Buses with electric motors, powered by batteries. Buses typically have capacity for 50 – 100 customers depending on configuration.	Quieter public transport movements with cleaner air and lower running costs on existing bus routes.
Smart shuttles	Trials underway by TfNSW at Sydney Olympic Park and regional NSW.	Global.	Vehicles carry up to 14 people and follow variable route corridors with the ability to react to customer needs.	Existing public transport service and coverage likely to negate the need for Smart Shuttles.
On demand public transport	Trials underway by TfNSW in the Northern Beaches, and The Hills Shire Council in Metro Station Precincts	Global.	Buses made available by online bookings, mostly to reach local transit nodes as a 'last mile' service. Generally used to fill in public transport service coverage gaps.	Existing public transport service and coverage likely to negate the need for On Demand buses.

 $^{^2\} https://the conversation.com/why-trackless-trams-are-ready-to-replace-light-rail-103690$

Transport technology/ innovation	Source/ status & timing	Location	Key details	Implications PRCUTS IWC precincts
Automated freight delivery methods	Connected and Automated Vehicles Plan 2019 by NSW Government	Global.	Artificial intelligence will drive vehicles for us, pre-empt changes in traffic, provide opportunity for centrally control traffic routing cognisant to the environment. More efficient use of road space and reduction in circulating vehicles if multiple deliveries are undertaken with one vehicle.	These have the potential to provide smaller sized deliveries to homes and businesses and could include read to eat food delivery. These may be undertaken on footpaths and would require standards to manage safety and space.
Rideshare	Implemented	Global	Rideshare technology has disrupted the taxi industry. It provides the convenience of users being able to request a point to point service from a mobile device.	Reduces the need to own and use a private vehicle, particularly for shorter trips. More kerbside space is required in conspicuous locations to support safe pick-up and drop-off access to services.
Electric vehicles (EV)	Electric and Hybrid Vehicle Plan (2019), NSW Government. Future Transport 2056. Initiatives for Investigation (0-10 years).	Global.	Embraces the growing availability of electric and hybrid vehicles. Roll-out of electric vehicle charge points as necessary to facilitate the future of electric vehicle use.	Opportunities to trial charging points in local centres and in new developments. New development should consider the need to easily add infrastructure to charge electrical vehicles.
Connected and autonomous vehicles (CAVs)	Connected and Automated Vehicles Plan 2019 by NSW Government	Global.	Artificial intelligence will drive vehicles for us, pre-empt changes in traffic and tune in to the movements of all around them. It is quite possible that private ownership of cars will become a thing of the past, replaced by rideshare fleet memberships. Shared CAVs would likely allow for a more efficient use of existing road space and parking spaces, reduce traffic volume, improve network efficiency and improve road safety by removing human error.	This could make some car parking redundant into the future. Consideration should be given providing less car parking and readapt able car parking space in development.

10 Land use – existing conditions

This section summarises existing land use characteristics in Taverners Hill, Leichhardt and Camperdown and discusses future plans in each precinct. Core and frame areas of each precinct are shown in **Figure 10-3**

10.1.1 Camperdown

The Camperdown Precinct spans across the Inner West and the City of Sydney LGA's. The Camperdown Core Precinct falls wholly in the Inner West.

10.1.1.1 Camperdown Core Precinct

The Camperdown Core Precinct is bounded by Johnston Creek, Mallet Street north of Parramatta Road and Australia Street, Cardigan Lane and Derby Street south of Parramatta Road. The Precinct is strategically located near the Sydney CBD, University of Sydney and Royal Prince Alfred Hospital.

The Camperdown core precinct comprises primarily of industrial areas to the north and south of Parramatta Road. A number of bulky goods are located on Pyrmont Bridge Road and a small number of high street retail front the southern side of Parramatta Road.

Proximity to the city and university, availability of light industrial spaces and good arterial road access has supported employment of researchers and creatives in businesses such as design studios and start-ups. A large proportion of industrial buildings located between Mallet Street, Pyrmont Bridge Road and Parramatta Road were demolished to accommodate the WestConnex construction.

Camperdown is shown in Figure 10-1 and Figure 10-2.

Figure 10-1 Camperdown Hotel

Figure 10-2 Parramatta Road, Camperdown

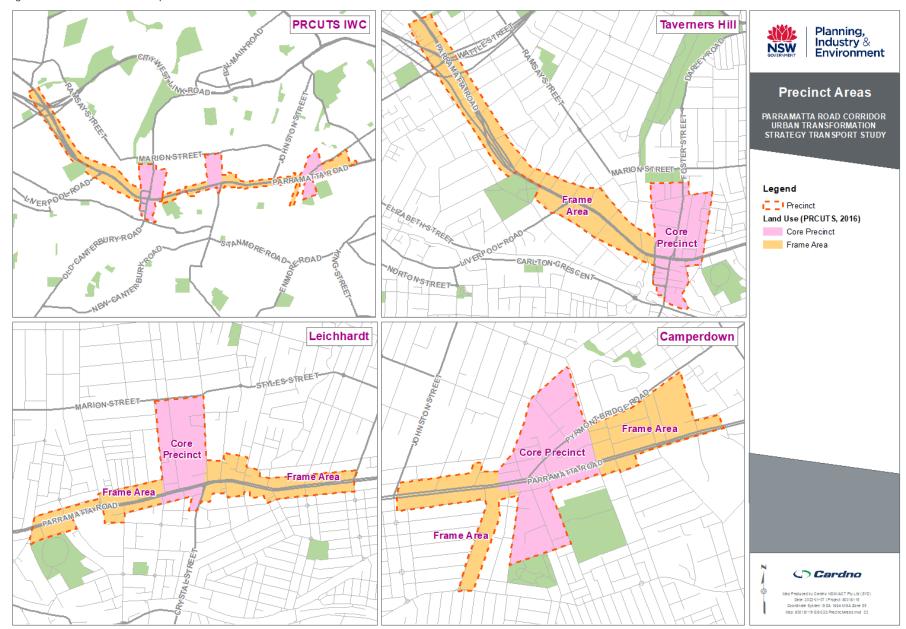
10.1.1.2 Camperdown Frame Area

The Camperdown Frame Area is an approximately 1.3-kilometre long corridor on Parramatta Road that connects between Johnston Street in the west and Missenden Road to the east. The frame areas support a variety of retail businesses including homeware stores, furniture shops, automotive shops, hardware stores and eateries.

10.1.1.3 PRCUTS planned future

PRCUTS and the Camperdown-Ultimo Collaboration Area Place Strategy (CUCAPS) are in alignment with developing Camperdown as a health, education and innovation precinct. Leveraging on Camperdown's proximity with the Sydney CBD, University of Sydney and Royal Prince Alfred Hospital, an opportunity exists to support tech start-ups, innovative and creative industries to expand the research and knowledge-based activities in the precinct. This includes a biotechnology hub in the 'Camperdown Triangle', which consists of land bound by Parramatta Road, Mallett Street and Pyrmont Bridge Road. The site is currently a WestConnex dive site.

The CUCAPS and the IWC Employment and Retail Land Study (EaRLS) are in support of safeguarding business zone lands from being converted into residential lands and safeguarding existing and potential innovative and research activities from unrelated commercial activities. This will be done through:


- > Maintaining existing light industrial zone to allow for affordable employment options; and
- A pilot project that introduces a minimum percentage requirement for affordable space in new developments to encourage innovative and creative industries.

A masterplan is planned to establish Camperdown as a health and education precinct. A \$750 million redevelopment of the Royal Prince Alfred Hospital was announced in 2019. The future redevelopment aims to increase jobs and improve health services in the local area. Relocation of the Faculty of Health Sciences, Faculty of Nursing and Midwifery and Central Clinical School at University of Sydney will reinforce the vision of Camperdown as a biotechnology and biomedical hub. The University of Sydney is set to become a more active and dynamic activity node with plans to open up the campuses to the broader community including the Chau Chak Wing Museum opened in November 2020 and a future new gateway to City road.

East of the Camperdown precinct, the Central Station Precinct development will accommodate more than 200,000 additional users within 20 years, and to the north, the Bays Precinct is set to be revitalised with the completion of the Sydney Metro West Station and surrounding development.

Figure 10-3 Core and frame precinct areas

10.1.2 Leichhardt

10.1.2.1 Existing conditions

Leichhardt is a local centre in the Inner West, providing access to essential goods and services near for local residents.

The Leichhardt Core Precinct as defined in PRCUTS is bounded by Renwick Street, Balmain Road, Parramatta Road and Marion Street in addition to a row of properties fronting Crystal Street. The precinct contains residential buildings, restaurant and retail outlets. The precinct's existing activity centre is concentrated on Norton Street, running north-south along the precinct. This is shown in **Figure 10-4** and **Figure 10-5**. Many restaurants and eateries are located along Norton Street and Parramatta Road. The precinct has a specialisation in wedding related retail services, with more than a dozen shops clustered along Parramatta Road.

Key destinations in Leichhardt Core Precinct are:

- > Leichhardt Public School;
- > Norton Plaza:
- > The Italian Forum (Leichhardt Library on the ground floor); and
- > Palace Norton Street (Cinema).

Leichhardt Town Hall is located north of the Precinct's northern boundary, Marion Street.

Figure 10-4 The Italian Forum

Figure 10-5 Norton Street

10.1.2.2 Leichhardt Frame Area

The Leichhardt Frame Area extends 1.8 kilometres along Parramatta Road between Flood Street in the west and Johnston Street in the east. On the western end, the Frame Precinct contains industrial warehouse buildings and modern showrooms. East of the Leichhardt Frame Precinct, there contains smaller sized employment centres with mixed urban services and retail. The eastern end also accommodates two council owned carparks: Hay Street car park with 61 spaces and Renwick Street Car Park with 10 spaces. The Italian Forum Car Park has 455 spaces. There is a notable amount of vacant floor spaces within this area. The Corridor also supports a high number of automotive businesses.

Petersham Park accessed via Park Street and West Street provides a public amenity in vicinity of the Frame Precinct. Fort Street High School on Parramatta Road is also a key attractor on the Corridor.

10.1.2.3 PRCUTS planned future

PRCUTS sets the vision for the Leichhardt Precinct to leverage on its existing strengths as a vibrant people orientated area with improved public amenity along Parramatta Road. Existing Improved amenity along PRC including the planned transport projects to improve pedestrian experience will allow for more opportunities in outdoor dining and footpath trading.

The E&RL Study forecasts that an additional 20,065 square metres of office floor space and 11,511 square metres of retail floor space by 2036 will be required on Norton Street. A minimum floor space ratio control for

non-residential uses and requirement for ground floor retail to support the forecasted increase in employment will be required.

Leichhardt's night time economy will grow. Markets and street festivals will attract visitors to the area along with the establishment of small bars and late night trading.

Existing light industrial and enterprise corridor zone lanes in Leichhardt will be preserved and protected from conversion to other uses.

The Leichhardt Frame Precinct will benefit from more flexible employment areas, particularly for tenants on ground level, which support a broader range of businesses. A planning response will be developed to achieve renewal of employment floor space while maintaining affordability and urban amenity.

A place-based study is planned to review planning controls for the Leichhardt Precinct in the context of PRCUTS and the former Leichhardt Urban Design and Heritage Studies (2016). As anecdotal evidence has shown that there is currently a low demand for mixed-use development, a feasibility study will be undertaken to ascertain what makes a mixed-use development viable.

10.1.3 Taverners Hill

10.1.3.1 Existing conditions

Taverners Hill is a local centre within the suburb of Leichhardt. The Taverners Hill Core Precinct is a mixed use area with dwellings in a range of densities focused nearer to Parramatta Road.

The precinct supports a range of businesses including car dealerships, offices, automotive repair stores, events specialists, artistic education centres, print shop, a gym and a meat wholesaler, concentrated along Parramatta Road. Residential land uses include apartments, terrace housing and workers cottages.

The active main streets Old Canterbury Road and Tebbutt Street provide north-south connection linking Lewisham Station to Marion Street. Adjacent to Lords Road is an industrial and urban services estate.

Key destinations in and in vicinity of Taverners Hill Core Precinct are:

- > Kegworth Public School;
- > Leichhardt Community Church;
- > Lambert Park Sportsfield; and
- > MarketPlace Leichhardt.

Some places in Taverners Hill are shown in Figure 10-6 and Figure 10-7.

Figure 10-6 MarketPlace Leichhardt

Figure 10-7 Parramatta Road, Taverners Hill

10.1.3.2 Taverners Hill Frame Area

The Taverners Hill Frame Area encompasses a 2.4 kilometre section of Parramatta Road between Iron Cove Creek and Hawthorne Canal. The Corridor supports a wide range of retail and services including car dealerships, automotive repair shops, homeware shops, motels and inns. Interchange of Parramatta Road and WestConnex is located west of the precinct.

Key destinations in and in vicinity of Taverners Hill Frame Precinct are:

- > NSW Ambulance Haberfield Superstation;
- > Uniting Church in Australia;
- > Bunnings Ashfield; and
- > The Willows Private Nursing Home Pty.

10.1.3.3 PRCUTS planned future

Within the Taverners Hill Precinct, employment land use is expected to be maintained on both sides of Parramatta Road, Tebbutt Street, Upward Street and George Street. Industrial and urban services land in Taverners Hill will also be retained and protected from conversion into residential uses to maintain employment opportunities.

To accommodate increase in population and employment in the future, adoption of increased height and floor space ratio controls along the northern side of Parramatta Road is proposed by IWC. Plans to undertake a detailed precinct planning for Taverners Hill to achieve improved urban design and support site specific redevelopment for employment purposes are underway.

11 Travel demand

The PRC contains some well-established transport networks including road, rail, bus and active transport provisions. The following sections detail the existing conditions and transport services available within the study area.

11.1 Mode share

The Household Travel Survey (HTS) collated by the Transport Performance and Analytics (TPA) division of Transport for NSW provides indicative travel behaviour information from dwellings across the Sydney Greater Metropolitan Area (GMA). Samples of residents provide detailed travel information over a typical weekday. The data is scaled up and uses data from three years of surveys to provide a snapshot of travel patterns of LGAs.

HTS mode estimations for IWC residents in years 2018 – 2019 indicate there were approximately 1,055,000 trips on a typical weekday. These trips are measured by mode, so one trip can be measured as several and this is generally captured by "Walk Linked" trips as part of a multi-modal journey.

A breakdown of the number of estimated trips on a typical weekday in 2018 – 2019 is shown in **Figure 11-1** and the percentage compared with Sydney GMA in **Figure 11-2**.

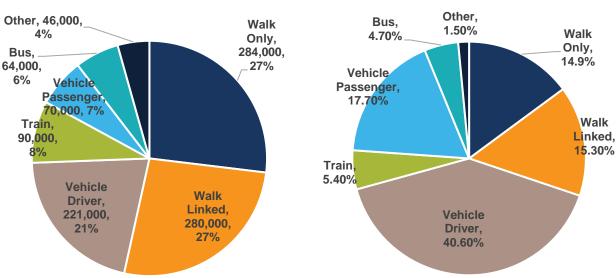



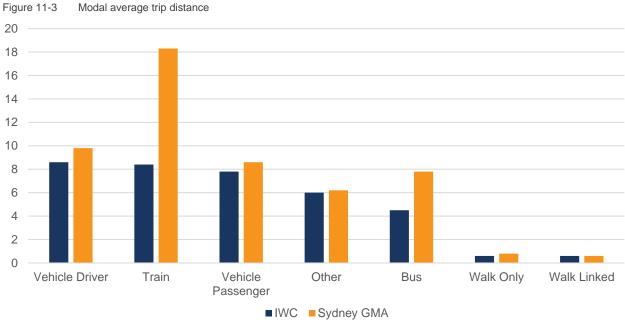
Figure 11-2 Sydney GMA average percentage of trips/ day

Data source: Household Travel Survey 2008/09 - 2018/19 - Data by LGA, TPA, 2021

Figure 11-1 shows that over half of the trips involve walking and this highlights the importance of supporting pedestrians with safe and high quality facilities. A "Walk Linked" trip indicates walking to another mode, i.e. the public transport stop/ station.

Approximately 154,000 public transport (train + bus) trips on a typical weekday, with a portion of the 46,000 trips categorised as "other" likely to be attributed to light rail. This shows that car use (vehicle driver and vehicle passenger) represents the highest portion of motorised travel with just under 300,000 trips.

It is understood that "Other" trips includes cycling trips. It can be anticipated that cycling trips could represent at least 1 per cent of all trips, which would be over 10,000 trips per day.


Comparisons to the Sydney GMA shows that the Inner West has higher rates of walking and sustainable transport use.

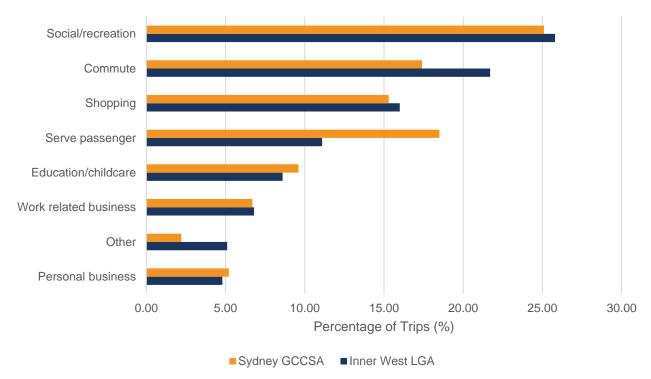
This information suggests it is important to provide and maintain a high quality walking network to support people within and passing through PRCUTS precincts.

11.2 Average trip distance

Average trip distance for each mode is shown in **Figure 11-3**. This shows the longest average trips for Inner West residents occur in cars and on trains. "Other" trips average six kilometres which aligns with the assumption that many of these represent light rail and bicycle trips. On average, Inner West residents have shorter public transport trips, reflective the location in Sydney. Walking trips represent the shortest trips at approximately 600 metres each.

Data source: Household Travel Survey 2008/09 – 2018/19 – Data by LGA, TPA, 2021

The data indicates that on average, IWC residents travel shorter distances which is indicative that the daily needs of people can be met closer to home. Maintaining land use diversity will continue to support shorter trips, improving liveability for residents.


11.3 Trip purpose

Trip purpose is a subset and aggregate of mode share trips. One trip purpose can utilise multiple modes of travel, as such there are only 722,000 trips identified on a typical weekday. Based on the estimated population of 199,000, each resident makes approximately 3.6 trips per typical weekday.

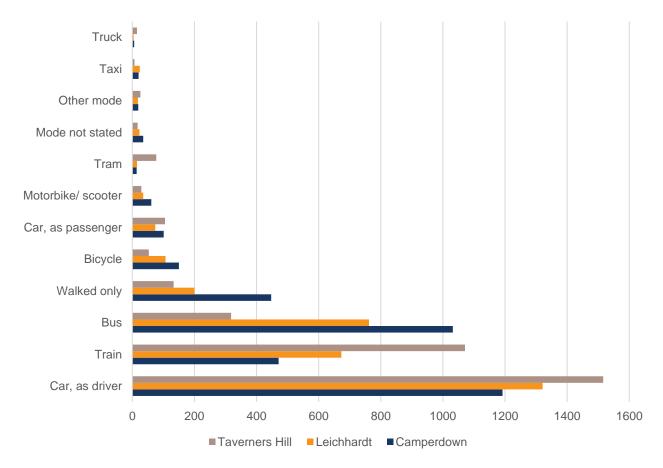
There are eight trip purpose categories in the data. A comparison on Inner West trip purpose percentage split against the Sydney Metropolitan area is shown in **Figure 11-4**.

Figure 11-4 Trip purpose portion

Data source: Household Travel Survey 2008/09 - 2018/19 - Data by LGA, TPA, 2021

The data shows the most occurring trip purpose is for social/ recreation purposes followed by commuting and shopping. Trip purposes are generally consistent with Greater Sydney. Inner West has a smaller "serve passenger" trip share less people being driven around by others which could be a result of improved public transport and ride share availability.

Commuting accounts for approximately 22 per cent of all trips. Due typical business hours and the common times people commute, commuting trips create weekday AM and PM peak periods. Commute trips are discussed in the next section.


PRCUTS transport recommendations must support all trip types, recognising that trips happen throughout the day and despite the network peaks, commute trips represent only 22 per cent of daily trip purposes.

11.4 **Journey to work**

Journey to work data from Census 2016 has been collated from statistical Area 1 (SA1) geographies selected that best align to the study area. The data indicates that approximately 10,200 commuters commuted from PRCUTS IWC precincts. Public transport combined (train + bus + tram) represents approximately 44 per cent of mode chose which is greater than Car as driver and Car as passenger which represents 42 per cent. This has been graphed in **Figure 11-5**.

Figure 11-5 Journey to work 2016 mode share

Data source: Census, ABS, 2016

Figure 11-5 show that car as driver is the highest mode share from all precincts. The public transport mode share is reflective of the difference in accessibility in each precinct. Train mode share is high in Taverners Hill and lower in Camperdown. Bus use is high in Camperdown and low in Taverners Hill. Most light rail passenger are from Taverners Hill. Bicycles represent 3 per cent and motorcycle and scooters represent 1 per cent of Journey to Work trips. This should be considered and accommodated with on-site provisions for new land uses.

The data demonstrates that active transport links to nearby train stations are important for all precincts and improvements to public transport should be provided to help lower car mode share.

The Transport Plan will use the transport modelling and transformational planning informed by the PRCUTS vision to establish a mode shift target for reduced private car dependency.

12 Transport network – existing conditions

12.1 Connectivity and major movement

The PRC has high capacity east-west connectivity with multiple transport modes available. East-west connectivity is available on either side of Parramatta Road although it is limited within close proximity to the study area. North-south connectivity is limited in capacity and efficiency.

The major east-west movement corridors in and surrounding the PRC are:

- > Parramatta Road;
- > Marion Street/ Style Street/ Collins Street;
- > Main Suburban railway line;
- > City-West Link Road;
- > Douglas Street/ Salisbury Road;
- Carlton Crescent/ Longport Street/ Railway Terrace/ Trafalgar Street; and
- > New Canterbury Road/ Stanmore Road.

The major north-south movement corridors in and surrounding the PRC are:

- > L1 Inner West Light Rail.
- > Frederick Street/ Wattle Street;
- > Dalhousie Street;
- > Liverpool Road (Hume Highway);
- > Tebbutt Street/ Old Canterbury Road;
- Norton Street;
- > Balmain Road,
- > Crystal Street,
- > Johnston Street;
- > Pyrmont Bridge Road;
- > Livingstone Road; and
- > King Street.

12.2 Active transport

12.2.1 Pedestrian network

Footpaths are generally provided on both sides of the road within most built-up or residential areas. Footpaths provided along Parramatta Road are generally wide (generally between two and four metres in Leichhardt and Camperdown, and between one and three metres in Taverners Hill) and configured in a paved kerb to property line format. Footpath width is generally narrower in laneways. Footpath widths are shown in **Figure 12-1**.

Most of the network contains kerb ramps at intersections, however many of these are misaligned with the kerb ramp on the opposite side of the road.

Shared paths are generally provided as recreational paths. The main shared paths servicing the study area are located along the Hawthorne Canal and around Petersham Park.

12.2.2 Pedestrian walking experience

High traffic volumes and speed along Parramatta Road, as well as obstacles created by utilities and lack of shade contribute to low amenity and pedestrian comfort. Parramatta Road is a major impediment in the pedestrian network, where pedestrian crossing wait times can be longer than one minute and distances between formal crossings are large, shown in **Figure 12-2**. This issue creates a physical barrier that lowers attractiveness for use by foot. Land uses along Parramatta Road are not conducive to creating walking trips, being predominantly retail with several boarded-up frontages. High traffic volumes and speeds also produce noise and air pollution that reduces pedestrian comfort and amenity.

Local roads other than Parramatta Road generally provide a comfortable walking experience. These roads have lower traffic volumes and offer a high level of amenity; separation from traffic, via street parking and landscaping, and trees for shade. Most side streets have a maximum speed limit of 40-50 kilometres per hour.

Figure 12-1 Footpath widths

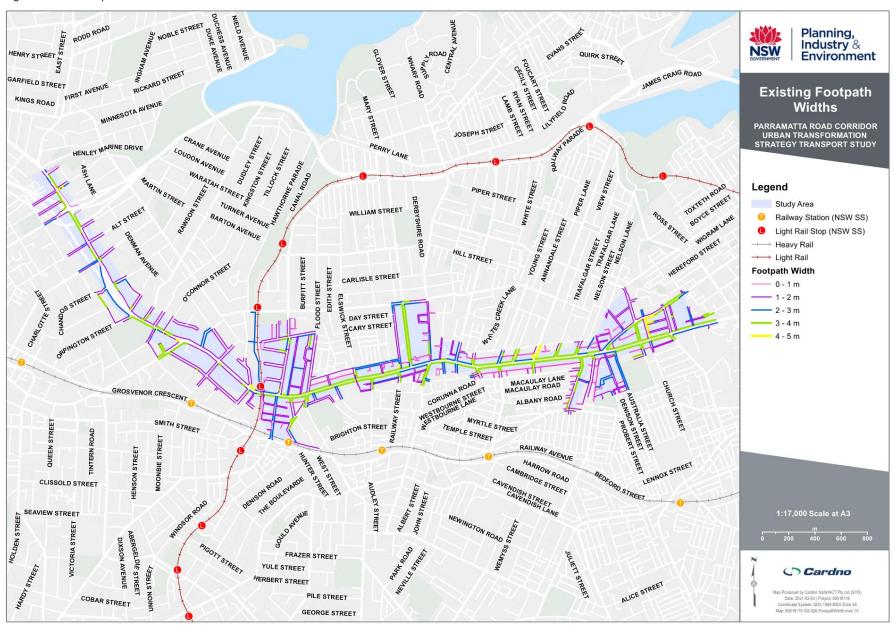
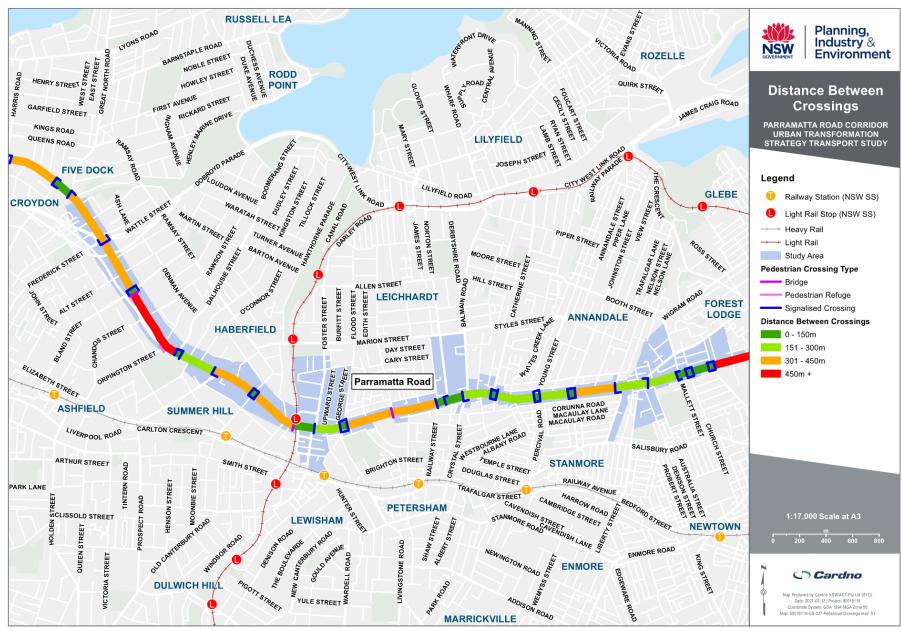



Figure 12-2 Distance between formal pedestrian crossings along Parramatta Road

Taverners Hill precinct

The Taverners Hill precinct includes, and is surrounded by, a number of pedestrian generating land uses including:

- > In the north: MarketPlace Leichhardt, Marion Street shops and restaurants, Lambert Park, Kegworth Public School and high-density residential apartments.
- > Around Parramatta Road: Taverners Hill light rail stop, Parramatta Road bus stops, the Louis Hotel and SBG Martial Arts & Fitness.
- > In the south: Lewisham Train Station, retirement homes, churches, schools, and Petersham Park.

Key roads in the precinct have footpaths on each side, with the exception of the Brown Street bridge at Taverners Hill, which has a footpath on the east side only. The GreenWay along the precinct's western boundary provides regional walking and cycling connections and provides access to open space north of the precinct. In addition, an east-west active transport link across The GreenWay and light rail line connects Lords Road and Kegworth Street with Hawthorn Parade.

Two mid-block links between Upward Street and George Street are provided as part of the apartment development between these roads.

Leichhardt precinct

Leichhardt is a local centre that attracts high pedestrian numbers and offers high walkability. The Leichhardt precinct consists of a variety of pedestrian generating land uses, supporting a high place function across the road network. These land uses include:

- > In the North: parks, playground, churches, medical centres and day care centres.
- > Along Norton Street: Leichhardt Library, cafes, restaurants and shops, Leichhardt Public School, Leichhardt Town Hall, The Norton Plaza and The Italian Forum.
- > Around Parramatta Road: restaurants, pubs, retailers, gyms and bakeries.
- South of Parramatta Road: Fort Street High School, TAFE NSW Petersham and low density residential housing.

The key roads within the Leichhardt precinct provide footpaths on both sides. The footpath network provides many opportunities for north-south movement within the precinct, however block lengths of up to 450 metres along key streets restrict east-west connectivity.

Camperdown precinct

The Camperdown precinct comprises of pedestrian generating land uses surrounding the Parramatta Road corridor. The key locations include:

- > In the north: schools, playgrounds, reserves and medium density residential apartments.
- > Around Parramatta Road: University of Sydney, gyms, restaurants and shops.
- > In the south: University of Sydney School of Nursing, Camperdown Park and Courts, Royal Prince Alfred Hospital and high density residential housing.

The Camperdown precinct provides effective pedestrian accessibility and manoeuvrability with footpaths on both sides of all key roads. Walking and cycling pathways connecting The Crescent, Minogue Street and Nelson Street link provide a link to streets that are separated by parkland and Johnstons Creek. An additional through-reserve route connects Taylor Street to Chester Street over Johnstons Creek.

There are four signalised intersections with pedestrian crossings provided to cross Parramatta Road. The crossings are separated by irregular intervals, separated by a walking distance of up to 300 metres in some areas of the precinct.

12.2.3 Cycling network

The cycling network consists of mixed traffic routes of varying difficulty and shared paths. Infrastructure on these routes typically includes bicycle road markings and wayfinding signage. The bicycle network is shown in **Figure 12-3**. There are no formal provisions for cycling on Parramatta Road except for a 180metre shared path at Ashfield Park.

12.2.4 Cycling experience

Cycling is popular in the Inner West. Local roads provide safe, comfortable and low speed environments, whereas infrastructure is often disconnected in higher speed environments such as on Parramatta Road. While major roads are often the most direct routes through the study area, they don't provide cycling infrastructure, reducing cyclist safety and amenity in high speed, high volume environments. As such Parramatta Road is currently not suitable for beginner cyclists as a mixed traffic cycling route.

The majority of the cycling network within the three precincts are on-road mixed traffic routes, which does not represent an attractive mode choice for low confidence or beginner cyclists.

Taverners Hill precinct

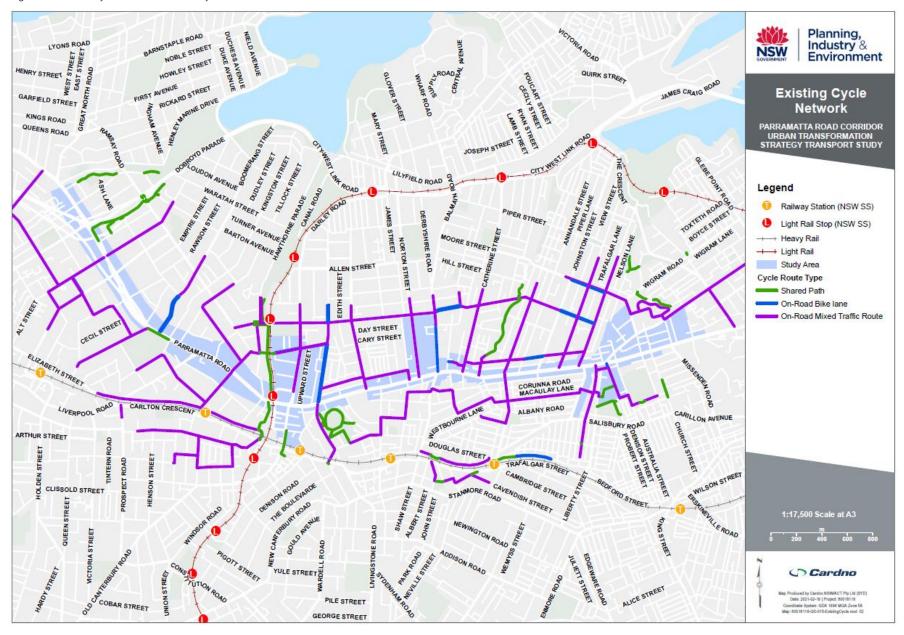
The Taverners Hill precinct provides a network of on-road and off-road cycling routes. The GreenWay shared path runs along the Hawthorne Canal at the precinct's western boundary. This regional route supports north-south movement through the precinct linking Taverners Hill with Drummoyne to the north and Summer Hill to the south. Flood Street and Foster Street provide an on-road corridor for north-south movement. Flood Street functions as a mixed-traffic cycling route from Marion Street to Lords Road. The remainder of Flood Street provides dedicated cycle lanes, turn markings at intersections and bicycle road markings at regular intervals. This street connects the northern border of the precinct to Parramatta Road. Foster Street runs parallel to Flood Street, offering an alternative north-south mixed-traffic route. South of Parramatta Road, Thomas Street provides a mixed-traffic cycling route from the residential areas near Lewisham train station.

Marion Street and Lords Road function as the precinct's key east-west cycling corridors. Marion Street provides a mixed-traffic route connecting local businesses with Marion light rail stop. The street also includes a bridge providing connection to Haberfield. Lords Road provides a second corridor for east-west movement. This route includes a dedicated bicycle lane, bicycle road markings at regular intervals and an underpass linking Taverners Hill and Haberfield.

Leichhardt precinct

The Leichhardt precinct contains on-road cycling routes. Norton Street currently functions as the precinct's key north-south cycling corridor. This mixed traffic cycling environment connects businesses to Parramatta Road and the precinct's northern border. Balmain Road, which is a one way road, provides a bicycle lane supporting northbound cycling movements parallel to Norton Street. The route offers an alternative link from Parramatta Road into the Leichhardt precinct.

Marion Street provides the key east-west cycle path for the Leichhardt precinct. This mixed-traffic route connects key cycle routes such as Norton Street and Balmain Street, as well as the neighbouring suburbs of Haberfield and Annandale. An additional east-west route is planned for Leichhardt along Dot Lane between Norton Street and Hay Street.


Camperdown precinct

Camperdown has a network of on-road and off-road cycling routes. South of Parramatta Road, Bridge Road and Mallett Street serve as key north-south movement corridors in addition to Nelson Street and Young Street to the north. The mixed-traffic cycling routes connect Parramatta Road to the residential areas within the Camperdown precinct. Additionally, the planned Johnstons Creek shared path will facilitate north-south movement between Wigram Road and Chester Street. This new regional route will connect the Camperdown precinct with the surrounding suburbs of Annandale and Forest Lodge. Although Johnston Street provides no cycling infrastructure, it remains the most popular north-south route according to Strava's heatmap. This informal route will continue to have an increasing importance as Rozelle Railyards Park, The Bays Metro Station, The Bays Precinct and CUCP develop.

Moore Street/ Booth Street provides the key east-west cycling route through the Camperdown precinct. This route provides on-road cycling lanes and sections with mixed traffic. Pyrmont Bridge Road functions as the precinct's key east-west route from Parramatta Road to Glebe and Pyrmont. Currently no cycling infrastructure is provided along the route although a dedicated cycle path is planned between Parramatta Road and Mallett Street.

Figure 12-3 Bicycle network in and adjacent to PRCUTS

12.2.5 Supporting PRCUTS population and employment growth

The active transport network in the IWC PRCUTS precincts is well developed and should be further enhanced to assist in catering for the projected future growth. There is a lack of dedicated separated cycleways which should be provided to increase safety and connectivity and further increase the update of active transport in the Inner West community. The network provides good coverage and is currently not near capacity. Any improvements to the network and supporting infrastructure will enhance the user experience and improve the safety, comfort and attractiveness of active travel. New routes will also provide increased efficiency, reducing travel times. This is important for encouraging a mode shift from private vehicles to active travel into the future as travel demand increases with future development, especially for short trips.

12.3 Public transport

The study area is serviced by heavy rail, light rail and bus. Bus services were commonly full during peak hours prior to the Covid-19 pandemic, with passengers often having to wait long periods before the next service. Further investigation is required by TfNSW in collaboration with Council to understand the impacts of Covid-19 on transport movements, specifically public transport demand, with the aim to agree future planning scenarios for Parramatta Road. The public transport networks in the study area are shown in **0**.

12.3.1 Suburban rail

The study area is serviced by the T2 Inner West and Leppington Line, providing connection east to Sydney CBD and west to Strathfield, Lidcombe, Parramatta and Liverpool. A summary of services is shown below in **Table 12-1**.

Table 12-1 Rail services summary

Station	Precinct	Services per peak hour (7:30am to 8:30am) - eastbound	Services per peak hour (7:30am to 8:30am) - westbound	Services per midday hour (12:00pm to 1:00pm) – each direction	Typical travel time to Central Station (minutes)	Walking distance to Parramatta Road (metres)
Newtown	Camperdown	14	10	8	7	1,300
Stanmore	Laiabhardt	11	5	4	10	700
Petersham	Leichhardt	10	5	4	12	650
Lewisham		10	5	4	14	400
Summer Hill	Taverners Hill	10	5	4	16	400
Ashfield		15	13	8	14-18	1,000

Source: T2 Inner West & Leppington Line Timetable, TfNSW, accessed 30/03/2021

Ashfield and Newtown are the only stations listed above that accommodate limited stops services.

12.3.2 Light rail

The Taverners Hill Precinct is serviced by the L1 Dulwich Hill Light Rail Line, providing connection south to Dulwich Hill and northeast to Glebe, Pyrmont and Central Station. A light rail stop at Taverners Hill directly services the study area while Lewisham West and Marion are within walking distance from the Taverners Hill precinct. These stops provide a typical travel time of just over 30 minutes to Central Station.

The conversion of the T3 Bankstown Line to Metro will increase the importance of light rail as an access mode to the Metro. There are currently infrastructure limitations that limit the ability to increase light rail frequency to/ from Dulwich Hill. It is understood the DDA compliant interchange will be provided with the introduction of Sydney Metro.

Pedestrian access to the Taverners Hill Light Rail and Marion light rail stops is limited to the western side of the light rail line, where customers must use the stairs provided or use the lift. Passengers alighting and boarding on the Dulwich Hill bound platform must cross over the light rail line from the Central bound platforms.

At Taverners Hill, customer access from the north via Brown Street must cross to the southern side of Parramatta Road via the overpass before crossing back to the northern side via the stairs or lift. A view of the stop from Brown Street is shown in **Figure 12-4**.

Figure 12-4 Taverners Hill light rail stop from Brown Street

Service information for the light rail line is shown below in Table 12-2.

Table 12-2 L1 Dulwich Hill Line weekday service information

Direction	Peak frequency	Off-peak frequency	Peak times	Service times
Dulwich Hill to Central	8 minutes	10-15 minutes	6:30AM – 8:53AM	5:50AM – 12:08AM
Central to Dulwich Hill	8 minutes	10-15 minutes	2:25PM – 7:20PM	6:00AM – 12:00AM

Source: L1 Dulwich Hill Line Timetable, TfNSW, accessed 01/02/2021

12.3.3 Bus

The bus network provides good coverage of the study area which is serviced by 15 bus routes, including two express routes and two nightrider routes.

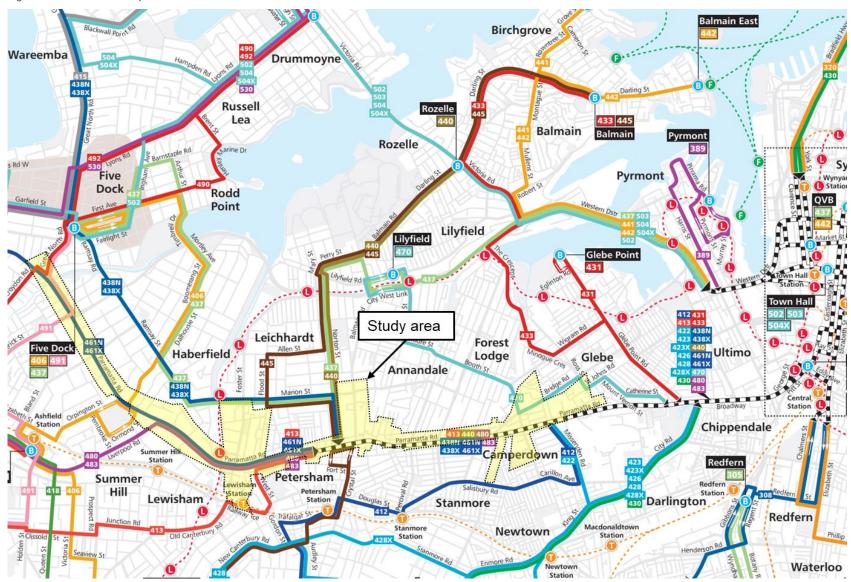
The bus network is Sydney City centric with 11 of the 15 routes commencing and ending in the Sydney CBD. This results in a skewing towards a high number of east-west routes.

Parramatta Road is a major bus corridor in Sydney, and this is particularly the case east of Norton Street. Bus routes servicing Parramatta Road are shown in **Table 12-3** with details listed for eastbound services.

12.3.3.1 Bus stops

Bus stops are provided at all train stations for interchange with the rail network. They are also provided within close proximity to the light rail stops servicing the Taverners Hill precinct.

In total, there are 60 bus stops located within and just outside of the PRCUTS precincts study area. Generally, they are in good condition however approximately 50 per cent do not provide all of sufficient shelter, seating, signage and tactile indicators and require improvements. The majority of bus stops that do not provide seating or shelter are located on the western end of the PRC in IWC.


Table 12-3 PRCUTS IWC bus routes

Route	Description	Deviates from Parramatta Road at	Precincts Served Taverners Hill (TH), Leichhardt (L), and Camperdown (C)			Frequency (indicative)		Approximate weekday operating period
			тн	L	С	Peak period	Non-peak period	period
370	Leichardt Marketplace to Coogee	Glebe Point Road, Glebe		Y		8-10 minutes	20 – 30 minutes	5:00AM – 1:00AM
406	Five Dock to Hurlstone Park	Dalhousie Street and Orpington Street	Y			30 minutes	60 – 75 minutes	6:30AM – 12:30AM
412	Campsie to City (Martin Place) via Earlwood and Dulwich Hill	Missenden Road, Camperdown			Y	10-15 minutes	20-30 minutes	5:15AM – 11:45PM
413	Campsie to Central (Pitt Street)	West Street, Lewisham	Υ	Υ	Υ	10-15 minutes	20-30 minutes	5:30AM – 11:30PM
422	Kogarah to Central (Pitt Street)	Missenden Road, Camperdown			Υ	10-20 minutes	20-30 minutes	5:30AM – 11:45PM
437	Five Dock to City QVB via City West Link	-	Y			15 minutes	15 minutes	6:00AM – 23:15PM
438X	Abbottsford to City (Martin Place) [Express Service]	Norton Street, Leichhardt		Y	Y	2-5 minutes	10-15 minutes	5:45AM – 9:30PM
438N	Abbottsford to City (Martin Place) [Night Service]	Norton Street, Leichhardt		Y	Y	15 minutes	30-60 minutes	10:00PM – 5:30AM
440	Bondi Junction to Rozelle	Norton Street, Leichhardt		Υ	Υ	3-8 minutes	10-15 minutes	4:30AM – 1:00AM
445	Campsie to Balmain via Leichhardt Marketplace	Norton Street, Leichhardt and Crystal Street, Petersham.	Y	Y		15 minutes	30 minutes	5:00AM – 12:00AM
461X	Burwood to City (Domain) [Express Service]	Burwood Road, Burwood	Y	Y	Υ	6-10 minutes	15-20 minutes	6:00AM – 10:00PM
461N	Burwood to City (Hyde Park) [Night Service]	Burwood Road, Burwood	Y	Y	Y	30 minutes	3 hours	10:30PM – 5:30AM
470	Lilyfield to Martin Place	Derwent Street, Glebe.			Υ	10 – 15 minutes	20-30 minutes	5:00AM – 1:00AM
480	Strathfield to Central (Pitt Street) via Homebush Road	Liverpool Road, Ashfield	Υ	Y	Υ	15-25 minutes	30-60 minutes	5:15AM – 7:00PM
483	Strathfield to Central (Pitt Street) via South Strathfield	Liverpool Road, Ashfield	Y	Y	Y	20 minutes	30-60 minutes	5:45AM – 1:00AM
491	Hurstville to Five Dock	Great North Road and Frederick Street	Υ			30 minutes	30 minutes	6:00AM – 21:45PM

Source: Sydney Bus Network timetables, TfNSW, accessed 01/02/2021 and incorporated in the traffic model developed for the project

Figure 12-5 Public transport network

Base image source: https://transportnsw.info/travel-info/ways-to-get-around/bus/bus-operator-maps, accessed 09/02/2021

12.3.4 Community buses

The Leichhardt Local Link is a free community bus connecting between local services such as Leichhardt Park Aquatic Centre, health services, transport services, community facilities, hopping precincts and high streets. The bus runs between 8:30am and 2:45pm on Mondays and Thursdays.

Figure 12-6 Leichhardt Local Link bus route

Source: Leichhardt Local Link, Inner West Council, accessed 01/02/2021

12.3.5 High frequency public transport

High frequency public transport consists of public transport with a waiting time of 15 minutes or less in between services. As shown in **Table 12-3**, not all services include high frequency servicing during peak periods and generally wait times tend to increase to 30minutes on average for most services outside of the peak periods.

The high frequency public transport servicing the study area was analysed for 12-1PM and 9-10PM on a typical weekday. The study area is serviced by nine high frequency bus routes during the 12-1PM period and four high frequency bus routes during the 9-10PM period. Leichhardt and Camperdown precinct are well serviced by high frequency buses, particularly along Norton Street and Parramatta Road. Taverners Hill precinct is mainly serviced by the high frequency light rail and train services.

Figure 12-7 Midday high frequency public transport services 12:00PM – 1:00PM

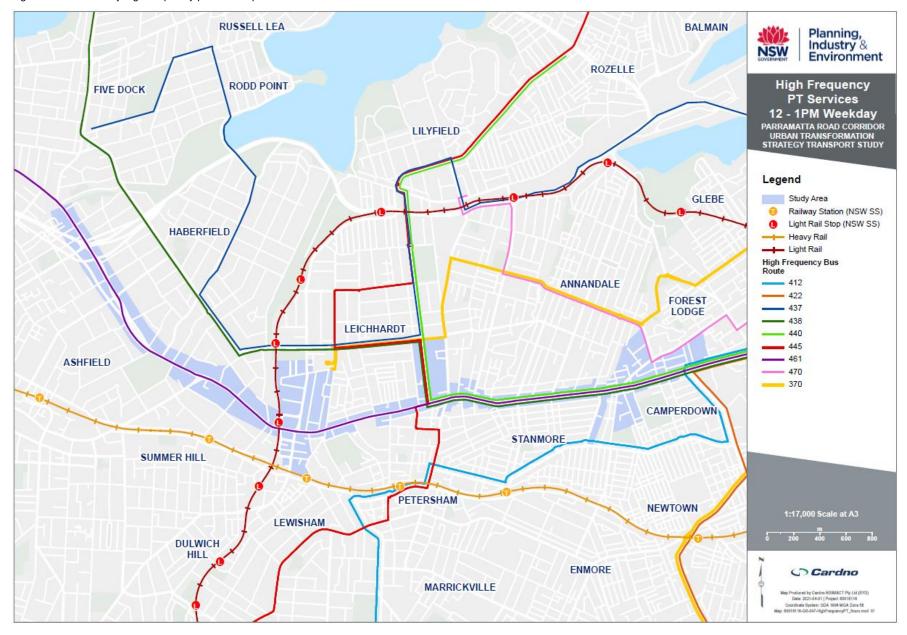
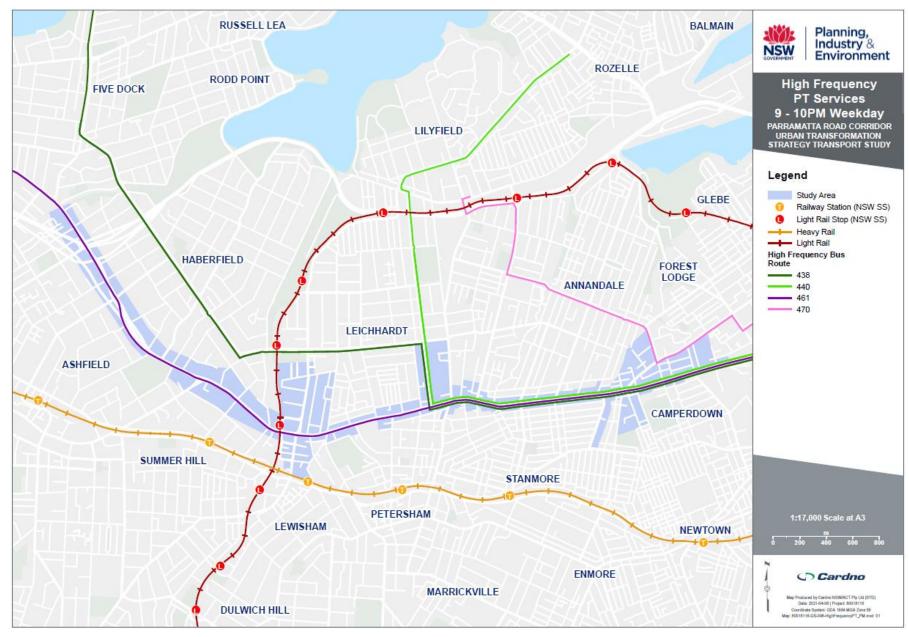



Figure 12-8 Evening high frequency public transport services 9:00PM – 10:00PM

12.3.6 Supporting PRCUTS population and employment growth

The public transport network consisting of heavy rail, light rail and buses provides good connectivity for long-distance trips outside the area east to Sydney CBD, west to Burwood, Strathfield and Parramatta and to other locations within the LGA. Access to heavy rail services is hindered by distance to the PRC. East-west connectivity is strong, however north-south connectivity could be improved to facilitate interchange between public transport services. The interface between the three public transport modes is currently weak. There is potential for bus services to provide a solid link between heavy rail, light rail and Parramatta Road.

Due to the constrained nature of existing road network, as well as the vision of providing a revitalised corridor, public transport services will continue to be crucial in the movement of people in and through the area however some network constraints may also limit the ability of existing public transport services to improve sufficiently to cater for the anticipated increased travel demand. Consequently, infrastructure and services should be enhanced to support higher volumes of patrons and routes will need to be rationalised to provide services where they are most required.

High frequency public transport is becoming increasingly important as lifestyles continue to change. COVID-19 has seen more people working from home, creating a more even spread of travel demand throughout the day as opposed to the traditionally concentrated morning and evening peaks. Rapid transit along Parramatta Road would assist in reducing private vehicles trips through traffic evaporation, discussed further in **Section 13.1.1**.

12.4 Road network

The road network generally accommodates multiple modes including pedestrians, cyclists, public transport, freight/ delivery, private vehicles and parking. The road network serves various movement and place functions throughout the study area, accommodating heavy vehicle through movements on arterial corridors such as Parramatta Road, while providing places for people to rest, eat and dwell.

Key characteristics of Parramatta Road and each precinct's road network are described in the following sections, with details of key roads listed in **Section 12.4.6**.

Google Typical Traffic is shown for the typical peak periods of a weekday (Thursday) at 8:00am and 5:00pm, and Saturday 12:00pm in **Figure 12-9**, **Figure 12-10** and **Figure 12-11** respectively.

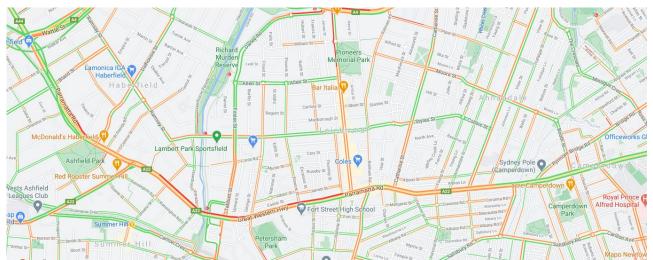
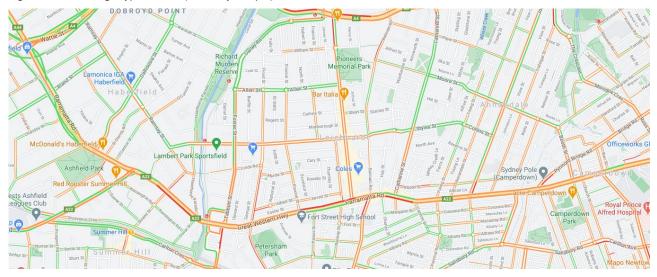



Figure 12-9 Google typical traffic (Thursday 8:00am)

Source: Google typical traffic, accessed 12/02/2021

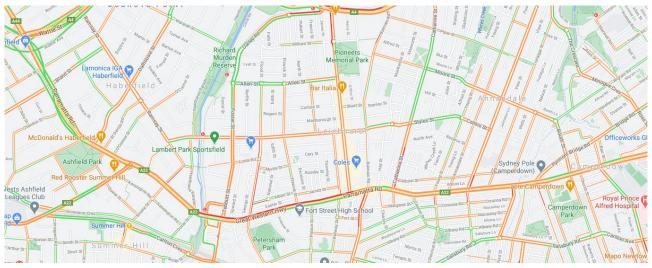


Figure 12-10 Google typical traffic (Thursday 5:00pm)

Source: Google typical traffic, accessed 12/02/2021

Figure 12-11 Google typical traffic (Saturday 12:00pm)

Source: Google typical traffic, accessed 12/02/2021

All three peak periods exhibit delays on all major roads. The weekday morning peak exhibits delays eastbound along Parramatta Road between Trafalgar Street and Bland Street, with slow vehicle speeds on intersecting streets to the north. The weekday evening peak exhibits delays westbound along Parramatta Road between Sydney CBD and Crystal Street as well as Palace Street and Orpington Street, with slow vehicle speeds on intersecting streets to the north and south. Delays are also experienced eastbound along Parramatta Road during the weekday evening peak. Slow vehicle speeds are seen throughout the network during the weekend peak period with delays on all streets intersecting with Parramatta Road.

12.4.2 Parramatta Road

Parramatta Road, is a one of Sydney's busiest roads for public and private transport, providing an east-west connection between Parramatta and the Sydney CBD, through the centre of the Inner West. Within the Inner West, there are generally three lanes in each direction, including 1.9 kilometres of bus lane in the eastbound direction and 1.3 kilometres in the westbound direction, which accommodates a number bus routes. As a divided road with high traffic volumes and narrow lanes (often less than three metres), the 60 kilometres per hour speed limit is consistent with the current speed limit guidelines.

Current land use along the Parramatta Road corridor includes vehicle-accessed commercial buildings such as showrooms and auto shops, small-scale retail and speciality shops. A high number of driveways in the western section of the Inner West affects amenity for pedestrians and cyclists.

Figure 12-12 Parramatta Road

12.4.3 Taverners Hill precinct road network

The Taverners Hill road network supports regional east-west and north-south trips, as well as access to local destinations and residential areas. Parramatta Road provides the only regional east-west connection through the precinct. The Dulwich Hill Light Rail Line and GreenWay corridor run north-south along the precinct's western boundary, limiting opportunities for additional east-west links to the north until Marion Street. Parramatta Road limits some vehicle movements to and from the precinct as vehicles travelling from the south cannot turn right onto Parramatta Road and vehicles travelling west along Parramatta Road cannot turn right to enter the northern parts of the precinct.

Brown Street includes a bridge providing connection over and across Parramatta Road. The route utilising Foster Street/ Tebbutt Street, Hathern Street, Brown Street, Cook Street/ Barker Street and Old Canterbury Road provides an important north-south connection between City-West Link Road and suburbs south of Parramatta Road such as Lewisham, Dulwich Hill and Marrickville.

Parramatta Road at Taverners Hill is shown in Figure 12-13.

Figure 12-13 Parramatta Road at Taverners Hill

The key roads in the Taverners Hill precinct are detailed in Table 12-4.

12.4.4 Leichhardt precinct road network

The Leichhardt precinct road network allows regional east-west trips and north-south trips. Marion Street/ Styles Street and Parramatta Road provide east-west connections along the upper and lower boundaries of the precinct. The only locations to turn right into Parramatta Road for vehicles travelling from either the north or south regions of the precinct are at Norton Street (from the north) and Crystal Street (from the south).

Norton Street allows north-south movement between Parramatta Road and City-West Link Road. Balmain Road and Renwick Street provide alternative north-south routes to Marion Street, with Balmain Road/ Derbyshire Road providing a second connection to City-West Link Road and Lilyfield. To the south of the precinct, Crystal Street connects Parramatta Road to New Canterbury Road. Parramatta Road separates the northern and central areas of the precinct from the south. Therefore, north-south movement through the precinct is restricted due to the absence of overpass/underpass infrastructure across Parramatta Road such as Brown Street in the Taverners Hill precinct.

Marion Street intersects Norton Street at the northern boundary of the precinct. These two roads provide links to medical facilities, the local library, public school and local shops. The surrounding roads provide access to residential areas as well as local parks and reserves. Although Norton Street provides a vital north-south route through the precinct, the 470 metre block length along this street restricts local east-west movement. Norton Street is shown in **Figure 12-14**.

Figure 12-14 Norton Street, Leichhardt

The key roads in the Leichhardt precinct are detailed in **Table 12-4**.

12.4.5 Camperdown precinct road network

The Camperdown precinct has a well-connected road network allowing regional east-west trips and north-south trips. Pyrmont Bridge Road/ Bridge Road and Parramatta Road deliver effective east west navigation through the precinct.

Parramatta Road provides limited opportunities to enter the Camperdown precinct. Vehicles travelling eastbound are only able to enter the southern region of the precinct via a right turn at Bridge Street and Missenden Road. Westbound travel on Parramatta Road is more restrictive with the only right turn opportunity at Johnston Street.

Booth Street/ Mallet Street serves as the precinct's key north-south movement corridor. Booth Street joins Moore Street and Catherine Street, providing a vital connection between City-West Link Road and Parramatta Road. Denison Street and Australia Street are key roads providing north-south movement south of Parramatta Road. Both streets allow thoroughfare between Parramatta Road and Salisbury Road. These roads connect a park, playground, childcare and restaurants with medium density housing. The surrounding streets function as low to medium density residential areas, separated by appropriate block sizes permitting efficient movement within the precinct.

Parramatta Road in Camperdown is shown in Figure 12-15.

Figure 12-15 Parramatta Road, Camperdown

The key roads of the Camperdown precinct are detailed in **Table 12-4**.

12.4.6 Key roads

The PRC generally accommodates multiple modes including pedestrians, cyclists, buses, freight / delivery, private vehicles and parking.

Roads are managed by an administrative framework of state, regional and local road categories. Classification is based on each road's connectivity and importance to the broader road network. State roads are managed and funded by Transport for NSW, and regional / local roads are managed and funded by councils. Roads that have a high freight task are generally assigned a state road classification. Regional roads perform an intermediate function and due to their network significance, Transport for NSW provides financial assistance to councils for the management of their regional roads.

Key roads within the study area are listed in Table 12-4.

Table 12-4 Key roads

Area	Road name	Road classification and number	Managing authority	Speed limit	Description and configuration	Freight network delegation
All	Parramatta Road	State, Highway, 2, Route A22	TfNSW	60km/h	Two to three travel lanes in each direction with a peak hour bus lane and a travel lane converted to parking lane during off peak periods. Right turns are only provided as dedicated turning lanes. A median strip separates traffic for the length of the road.	Primary freight route west of Old Canterbury Road and tertiary freight route to the east.
	Frederick Street	 Regional, Secondary Road, 2064, SR2014 	Inner West Council	One travel lane in each direction, widening to two lanes at intersections. Unrestricted on street parking available away from intersections and bus stops. One bus service shares road with general traffic.		Tertiary freight route.
	Dalhousie Street	 Local Road 	Inner West Council	50km/h	One travel lane and one parking lane in each direction. Lanes widened at intersections. Bus services share road with general traffic.	-
≣	Liverpool Road	State, Highway, 2, Route A22	TfNSW	60km/h -	Generally, two travel lanes in each direction with clearways during peak hour periods. Limited parking is available where road crosses through business precincts.	Tertiary freight route.
Taverners	Ramsay Street	State, Main Road, 649Regional, Secondary Road, 2013	TfNSW/ Inner West Council	60km/h	Generally, one travel lane in each direction with a dedicated parking lane throughout. Bus services share road with general traffic.	-
	Tebbutt Street/ Foster Street	 State, Main Road, 652 	TfNSW	50km/h	One travel lane and one parking lane in each direction.	Tertiary freight route.
	Old Canterbury Road	State, Main Road, 652, 664Regional, Secondary Road, 2028	TfNSW/ Inner West Council	50km/h	One travel lane and one parking lane in each direction. One bus service shares road with general traffic.	Primary freight route north of train line and tertiary route south of train line.

Area	Road name	Road classification and number	Managing authority	Speed limit	Description and configuration	Freight network delegation
	Crystal Street	 Regional, Secondary Road, 2007 	Inner West Council	50km/h	Two travel lanes in each direction with second travel lane used as parking lane during off peak periods. One bus service shares road with general traffic.	-
	Norton Street	Norton Street Local Road Inner West Council One travel lane in each direction with additional parking lanes. Frequent bus services share roadway with general traffic.			-	
Leichhardt	Marion Street/ Collins Street/ Styles Street	 Regional, Secondary Road, 2013 	Inner West Council	50km/h	One travel lane and one parking lane in each direction. Frequent bus services share road with general traffic.	-
Leic	Catherine Street	 Local Road 	Inner West Council	50km/h	One travel land and one parking lane in each direction. Angle parking replaces parking lane in some areas. One bus service sharing roadway with general traffic.	-
	Johnston Street	State, Main Road 655, 666Regional, Secondary Road 2013	TfNSW/ Inner West Council	50km/h	Two lanes of travel and one parking lane in each direction. Angled parking included in place of parking lane in some areas. Dedicated right turn lanes and medians strips provided at intersections.	-
	Moore Street/ Booth Street/ Mallet Street	 Unclassified, Regional, 7314 	Inner West Council	50km/h	One lane of travel and one parking lane in each direction. Bus services sharing roadway with general traffic.	-
lown	Douglas Street, Percival Road, Salisbury Road, Carillon Avenue	 Unclassified, Regional, 7085 	Inner West Council	50km/h	One lane of travel and one parking lane in each direction.	-
Camperdown	Bridge Street	 Local Road 	Inner West Council	50km/h	One lane of travel and one parking lane in each direction.	-
Ö	Missenden Road	Unclassified, Regional, 7094	Inner West Council	50km/h	One lane of travel in each direction with one parking lane provided in some areas Bus services share roadway with general traffic.	-
	Pyrmont Bridge Road/ Bridge Road	 State, Main Road, 523 	TfNSW	60km/h	Two lanes of travel in each direction with one lane functioning as parking lane during off peak periods. Two lanes of traffic merges to one at Bridge Road. One bus service shares roadway with general traffic.	-

12.4.7 Supporting PRCUTS population and employment growth

The road network along the IWC PRC precincts is congested for long periods during the weekday and weekend peaks, especially along Parramatta Road and intersecting arterial roads. High population and employment growth cannot be supported with existing mode share due to lack of capacity and inconsistency with place-making and sustainability objectives. Mode shift towards sustainable modes through provision of sustainable transport infrastructure and prioritisation is essential to reduce demand on the road network and improve network performance.

There is currently very low excess capacity on the road network during peak periods. Additional travel demand generated by future developments will need to be supported primarily by public transport and active transport. Options for the future of Parramatta Road are considered in **Section 6.1**.

12.5 Freight network

The freight network in and surrounding the study area consists of primary, secondary and tertiary routes. The Metropolitan Road Freight Hierarchy on the State Road Network document describes the routes as the following³:

- > Primary freight routes serve the needs of freight for access interstate and to strategically important ports, airports, industrial areas, freight terminals, intermodal terminals and hubs within Sydney. These roads carry typically high volumes of heavy freight vehicles (>4,000 heavy vehicle AADT).
- > Secondary freight routes provide links within regions for significant flows of freight. These roads can carry medium volumes of heavy vehicles (1,000 5,000 AADT).
- Tertiary freight routes provide connections from the local road network, serving numerous major business and freight origins and destinations. These roads carry lower volumes of heavy vehicles (<2,000 heavy vehicle AADT).

Parramatta Road is listed as a primary freight route west of Old Canterbury Road and a tertiary freight route to the east. Other tertiary freight routes close to the study area include Frederick Street/ City West Link, Foster Street/ Old Canterbury Road and Liverpool Road as shown in **Figure 12-16**. WestConnex will perform a high freight function and act to redirect through-traffic from Parramatta Road.

Key freight origins, destinations are:

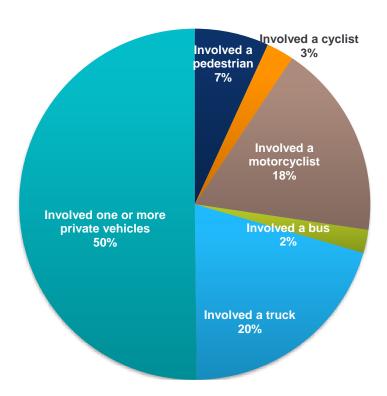
- > WestConnex M4 Motorway;
- > Bankstown industrial area; and
- > Intermodal terminals at Enfield, St Peters, Port Botany.

-

³ Metropolitan Road Freight Hierarchy on the State Road Network Practice Note, NSW Government, 2011

Figure 12-16 Freight routes

12.6 Crash history


Crash data is reliant on incidents being reported to the NSW police, either through police attendance at a crash scene or reporting by involved parties. It is generally understood that minor collisions without injuries are not reported. As such, analysis of all crashes is not possible. Notwithstanding, crash data does include more serious incidents. This allows analysis to identify trends in accidents and location issues / crash clusters.

Crash data was analysed in the development of the IWC ITS, for the five year period between January 2013 and November 2017. During this period, 513 crashes occurred within 10 metres of the precinct boundaries, including 390 crashes located on Parramatta Road. There was one fatality, 341 injuries and 171 non-casualties.

12.6.1 Crashes by road user and location

The breakdown of crashes by road user are shown in Figure 12-17.

Figure 12-17 Crashes within precincts (2013 – 2017)

Pedestrian and cyclist crashes made up 10 per cent of the crashes during this period. The locations of these crashes is shown in **Figure 12-18**.

Within the Inner West LGA, there were six major crash cluster locations along the PRC, ranked in **Table 12-5** and shown in **Figure 12-19**.

Table 12-5 Crash cluster locations

General area	Crash count (2013 – 2017)
Parramatta Road between Wolseley Street and Wattle Street.	65
Parramatta Road between Norton Street and Macquarie Street, and Crystal Street between Parramatta Road and Elswick Street.	64
Parramatta Road between Australia Street and Bridge Road.	40
Parramatta Road between Brown Street and Flood Street.	23
The intersection of Parramatta Road, Northumberland Avenue and Johnston Street.	23
Parramatta Road between Liverpool Road and Dalhousie Street.	22

Figure 12-18 Pedestrian and cyclist crash locations (2013 – 2017)

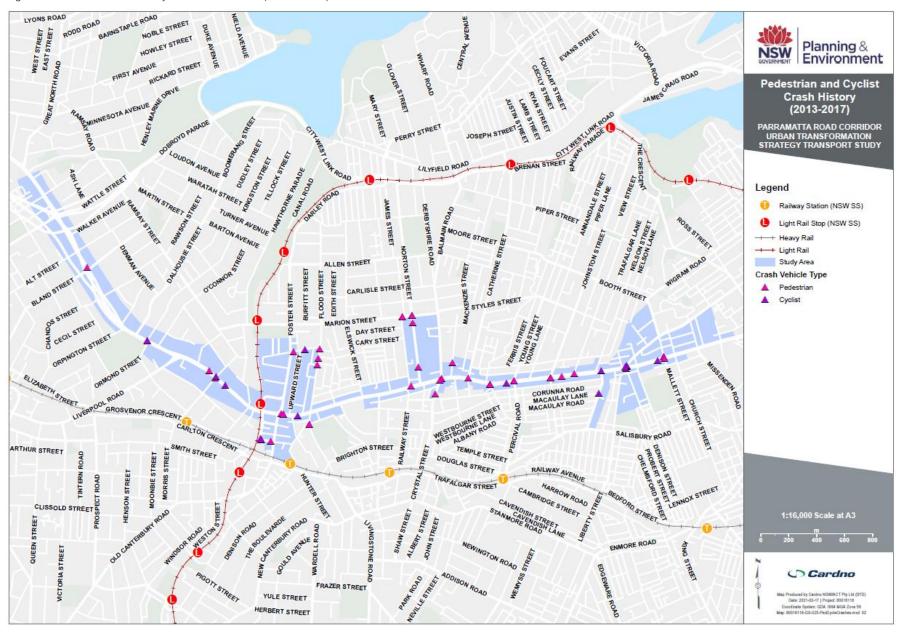
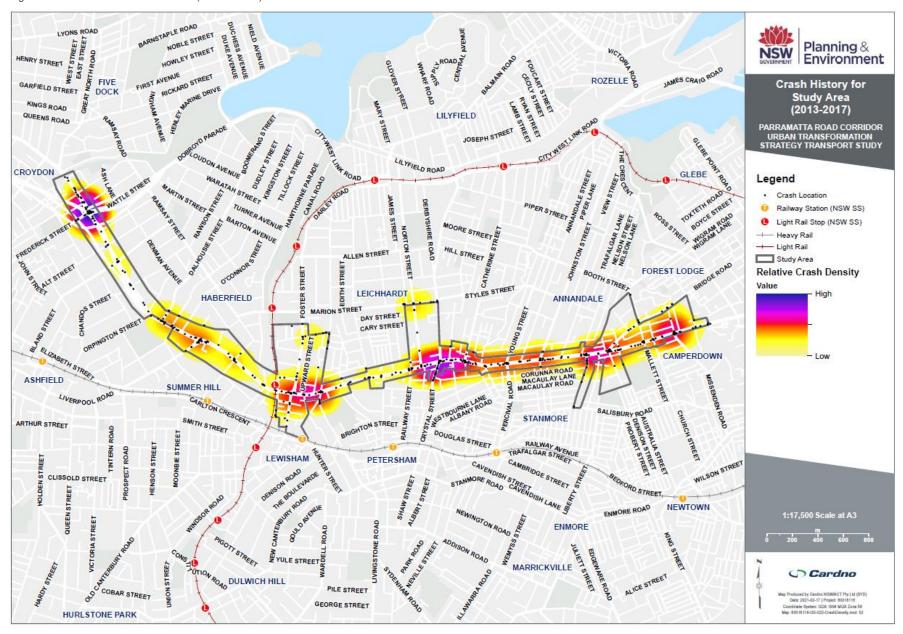
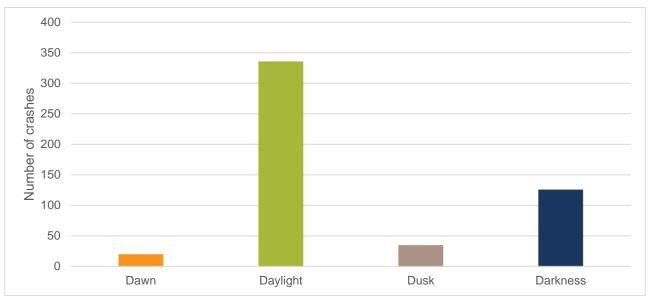



Figure 12-19 Crash cluster locations (2013 – 2017)

12.6.2 Crash type

Each crash type is categorised using a Road User movement (RUM) code from TfNSW. Rear ends were the most common crash type, all of which occurred on Parramatta Road. The top four crash types were:

Table 12-6 Top four crash types by RUM code (2013 – 2017)


RUM code	RUM description	Number of crashes
30	Rear end	184
21	Right through	40
71	Left off road into object	30
39	Same direction - other	23

The high number of rear end crashes is typical of high traffic volume and congested networks and speed limit arterial roads in an urban environment with a high number of conflict points and signalised intersections.

12.6.3 Weather and natural light conditions

A total of 59 crashes (11 per cent) occurred during periods of wet weather, and 178 crashes (34 per cent) occurred during hours of dawn, dusk or night. The natural light conditions of crashes based on the time of day are displayed in **Figure 12-20**.

Figure 12-20 Natural light conditions of crashes (2013 – 2017)

The findings of **Figure 12-20** show that adverse light conditions generally are not contributors to crashes. The highest volume of traffic is during daylight hours, reflective of when crashes occur.

12.7 Parking

A separate car parking paper has been prepared to discuss conditions, issues and opportunities for car parking in detail.

General principles regarding car parking are:

- > Car parking takes up space and this needs to be considered against the opportunity cost for other uses of the space.
- > Car parking increases the cost of development. In multi-deck car parks, one car parking space can easily cost \$50,000 and this cost must be borne by the users a given site/ locality through the purchase price or lease costs.
- > The amount and availability of car parking has a relationship to traffic generation.

The parking 'system' is defined to be all public and private parking, designed for the use of employees, residents or visitors and located on-street or off-street. Through a range of mechanisms, Council has direct control or influence on all aspects of this system.

Public on-street and off-street parking is provided by Council for the benefit of the community, and managed to support specific land uses or functions. The form of management used includes supply restrictions by time, duration or type, as well as demand reduction measures such as paid parking.

Private parking provision is governed by the Council's statutory parking policies. These regulate the supply of parking to meet the broader land use and transport goals for individual precincts and areas.

12.7.1 On-street parking

Publicly accessible on-street car parking is provided throughout the study area. On some key roads, parking is restricted at peak times through clearway management to facilitate additional traffic capacity. Outside of these key corridors, on-street parking is either uncontrolled or managed through short-stay duration restrictions during business hours.

On-street paid parking has been implemented along Norton Street in the Leichhardt precinct to assist with parking demand management. In other areas, parking is managed exclusively through timing and duration restrictions.

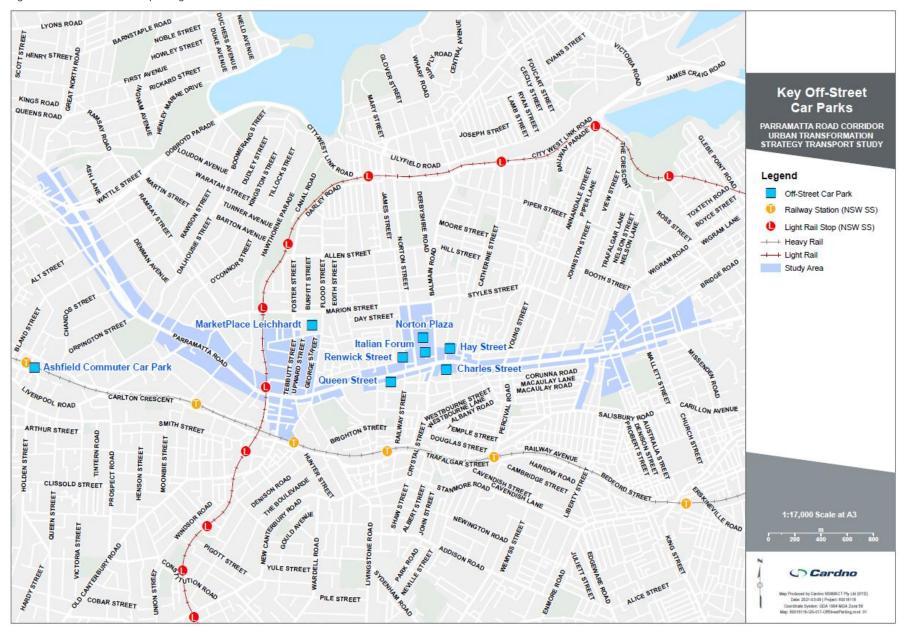
12.7.1.1 Permit parking

The Inner West Council Residential Parking Scheme allows residents priority for on-street parking, reflecting concessions towards heritage dwellings constructed without on-site car parking. Parking permits are provided to eligible residents free of charge and is provided to protect parking encroachment from surrounding land uses. This scheme applies in parts of the study area identified in **Table 12-7**.

Table 12-7 Residential Parking Scheme areas

Precinct	Parking Scheme area	Streets with applicable areas
	Ashfield Area 9	Sloane Street, Hawthorne Parade
Taverners Hill	Leichhardt L1	Benson Street
	Marrickville M16	Carrington Street, Thomas Street, Barker Street, Station Street
	Leichhardt L1	Renwick Street
Leichhardt	Leichhardt L2	Renwick Street, Balmain Road
Leichhardt	Leichhardt L3	Norton Street
	Marrickville M5	Queen Street, Charles Street, Phillip Street
Campardown	Leichhardt A1	Taylor Street, Chester Street, Water Street, Cahill Street, Gordon Street
Camperdown	Marrickville M1	Cardigan Street, Cardigan Lane

Source: https://www.innerwest.nsw.gov.au/ArticleDocuments/978/Map%20Leichhardt%20Parking%20areas.pdf.aspx, Inner West Council, accessed 02/02/2021


12.7.2 Off-street parking

Inner West Council owns and manages off-street parking across the LGA, supported by the provision of exclusive and publicly available private parking associated with commercial land uses, in accordance with statutory parking policies.

Public off-street car parks are shown in Figure 12-21.

Figure 12-21 Off-street car parking

13 Road space reallocation case studies

Historically, major road projects that bypass existing roads in Sydney have been leveraged to improve urban amenities for the community.

Proposals to reduce space for vehicles are often accompanied by alarmist media reports and opposition by motorists. Reallocating road space requires planners to be courageous in decisions to implement this and withstand initial criticism while people change their travel behaviour.

After implementation, these schemes are often celebrated because of the urban environment improvements they bring.

13.1.1 Induced demand versus traffic evaporation

Induced demand is the phenomenon whereby an increase in road capacity generates additional traffic demand. In rapidly growing areas where roads were not designed for the current population, there may be a large amount of latent demand for new road capacity. Once new lanes are opened, new drivers immediately take to the road, quickly clogging them up again. The induced demand is a result of a changed travel choice and can represent mode shift away from alternative modes of transport.

The inverse of this effect is known as traffic evaporation, which results from the strategic removal of road space previously dedicated to motor vehicles. A reduction in road capacity does not completely displace traffic onto alternative routes. It encourages a mode shift to alternate modes of transport which are often more sustainable. Walking or cycling is the usual substitute for shorter journeys, with public transport taking up those travelling longer distances.

The concept of traffic evaporation is relevant to the PRC and its challenges. Issues of congestion may be solved by a reduction in road capacity for motor vehicles, rather than an increase and would need to be supported by improving conditions for alternative modes. This would encourage a mode shift to sustainable transport modes such as walking, cycling, buses, light rail and heavy rail. It also provides an opportunity for road space to be reallocated to support active and public transport modes. Benefits of a reduction in car traffic include reduced street pollution and noise in the short term and safer and cleaner streets in the long term.

13.1.2 Case study: Eastern Distributor

The Eastern Distributor is a six-kilometre motorway which links the Cahill Expressway to Southern Cross Drive. Vehicle drivers had to drive through the residential streets of Darlinghurst and Woolloomooloo on their journey between Cahill Expressway and Southern Cross Drive prior to the completion of the tunnel in 1999.

The opening of the tunnel resulted in a number of changes to the surface streets in the East Sydney/Darlinghurst Area. These changes discouraged through traffic on the surface and improved the accessibility and safety of pedestrian and cyclists by transforming these streets into low speed streets. These changes included:

- > Conversion of Crown Street (formerly one-way northbound) to two-way traffic;
- > Conversion of Palmer Street (formerly one-way southbound) to two-way traffic;
- > Conversion of Bourke Street to two-way traffic; and
- > Creation of pedestrian malls through closure of vehicle access from Bourke Street to Oxford Street/ Flinders Street at Taylors Square.

The project resulted in diversion of through traffic onto the Easter Distributor and other routes and the streets have returned to a local access/ residential street function.

A historic photo of Crown Street, Darlinghurst with a one-way traffic condition is shown in **Figure 13-1** and how it looks in 2021 is shown in **Figure 13-2**.

Figure 13-1 Traffic congestion on Crown Street, Darlinghurst in the 1970s

Source: https://www.ozroads.com.au/NSW/Freeways/F7/history.htm, viewed 02/02/2021

Figure 13-2 Crown Street 2021

Source: Google Streetview, viewed 08/03/2021

Several years after the opening, a separated cycleway and further streetscape and amenity improvements were provided on Bourke Street (shown in **Figure 13-3** and **Figure 13-4**), which would not have been possible under its previous role in Sydney's road network.

Figure 13-3 Bourke Street cycleway

Source: Google Streetview, viewed 08/03/2021

Figure 13-4 Taylors Square from Bourke Street

Source: Google Streetview, viewed 08/03/2021

13.1.3 Case study: Lane Cove Tunnel

The Lane Cove Tunnel is a 3.6-kilometre twin tunnel, opened in 2007, which links the Warringah Freeway to the M2 Motorway at Lane Cove River.

Prior to this, Epping Road was the key link between the two roads and accommodated approximately 90,000 vehicle movements per day. Epping Road was generally configured with six-lanes, with the outer lanes being bus lanes and four-lanes for general traffic. The Lane Cove Tunnel project provided the opportunity for space reallocation and amenity improvements to Epping Road in Lane Cove including:

- > A new bus interchange on the corner of Longueville Road and Parklands Avenue;
- > A new pedestrian bridge across Longueville Road;
- > 24-hour bus lanes provided in each direction between Mowbray Road West and Longueville Road;
- > A new cycleway and pedestrian pathway was also constructed between Mowbray Road and Pacific Highway;
- > Improved street ambience and amenity through tree plantings and new landscaping along Epping Road;
- > Reinstatement of right-turn lanes at various intersections.

The Transport for NSW traffic volume viewer indicates that average daily traffic volumes in 2019 where approximately 41,000 vehicles per day, showing a reduction in traffic by more than half. This case shows the benefits and opportunities of a bypassing motorway project on returning streets back to the community.

A typical section of Epping Road is shown aerially in **Figure 13-5** and in **Figure 13-6**. This shows the bus lanes in red and the separated cycleway in (faded) green.

Figure 13-5 Epping Road aerial photograph

Source: Nearmap, viewed 02/02/2021

Figure 13-6 Epping Road

Source: Google Streeview, viewed 02/02/2021

13.1.4 Case study: Champs-Élysées, Paris, France

The Champs-Élysées is a two-kilometre road in central Paris that accommodates eight lanes of traffic including on-street parking, and a separated cycleway on either side of the road. Land uses along the road include restaurants, cafés, luxury retail stores and hotels. The road experiences significant traffic congestion due to being a major tourist attractor.

Plans have been approved to reduce road space for vehicles by half and reallocate it to create an urban garden. This will include a removal of the outer lanes to create wider footpaths and dedicated cycleways as well as the planting of trees and greenery. The changes have been successfully modelled to improve air quality and make the space more people-centred.

Figure 13-7 Champs-Élysées 2021

Figure 13-8 Concept plans for Champs-Élysées

Source: Google Streetview, viewed 09/03/2021

Source: PCA-Stream, 2021

13.1.5 **Summary**

The case studies for Sydney demonstrate road space reallocation has already occurred successfully in Sydney. Internationally, city leaders are implementing bolder schemes to reduce vehicle traffic on city streets to give the space back to people to use and enjoy.

With the support of alternative transport networks including road or public transport initiatives, road space and functions can be changed to better serve the needs and values of a community.

APPENDIX

PRCUTS LAND USE REVIEW

PRCUTS Land Use Review

31/05/21

© SGS Economics and Planning Pty Ltd 2021

This report has been prepared for DPIE and IWC. SGS Economics and Planning has taken all due care in the preparation of this report. However, SGS and its associated consultants are not liable to any person or entity for any damage or loss that has occurred, or may occur, in relation to that person or entity taking or not taking action in respect of any representation, statement, opinion or advice referred to herein.

SGS Economics and Planning Pty Ltd ACN 007 437 729 www.sgsep.com.au

Offices in Canberra, Hobart, Melbourne, and Sydney, on Ngunnawal, muwinina, Wurundjeri, and Gadigal Country

Background and scope

The Department of Planning, Industry and Environment (DPIE) and Inner West Council (IWC) are working to progress traffic modelling for the Parramatta Road Corridor Urban Transformation Strategy (PRCUTS).

To inform that broader work program SGS have been engaged to:

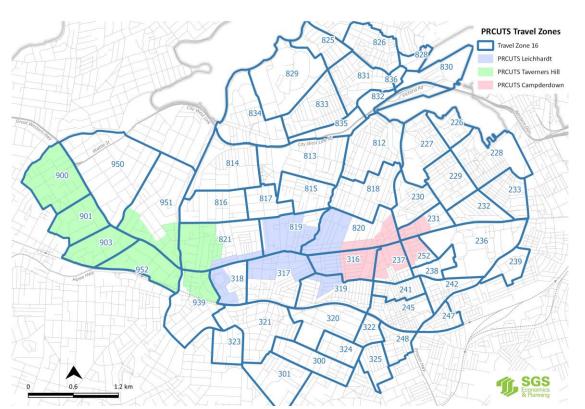
- Rapidly review land use projections and development capacity for the PRCUTS study area and surrounds, and
- from this rapid review and the latest available data, SGS has estimated three revised land use scenarios at a fine grain spatial scale for dwellings, population and employment

Scope limitations

For this rapid review, SGS has relied on existing capacity and development information provided by DPIE, IWC or from other readily available sources. No primarily analysis of capacity was within scope. Where data was not available, assumptions have been made to fill gaps.

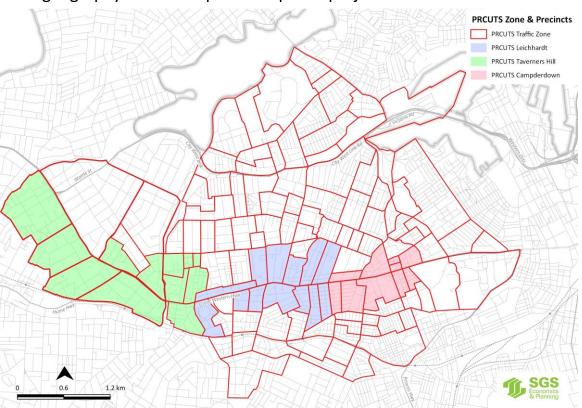
Project study area

The project study area is presented in Figure to the right.



Project geographies

The following key zone geographies were used in the study.


Travel Zones (TZ) (blue)

2016 Travel Zones (TZ) developed by Department of Transport

PRCUTS traffic zones (PTZ) (red)

PTZ geography and base spatial output of project

Land use data variables

The following data variables have been produced:

- Geography:
 - PRCUTS Traffic Zones (PTZ)
- Time periods
 - 2026
 - 2036
 - The analysis base year is 2016 to align with TZP16 v1.5. An interim base year of 2021 has also been defined to align with current 'additional' capacity data.

- Data variables
 - Residents (count of)
 - Dwellings
 - Population
 - Employment (count of jobs and GFA)
 - Industrial
 - Office
 - Retail
 - Hospital (and hospital beds)
 - Other (i.e. Construction, Arts and Recreation)
 - Schools (count of)
 - Primary students
 - Secondary students
 - TAFE student
 - University students

Data variable definitions

Dwellings and population attributes

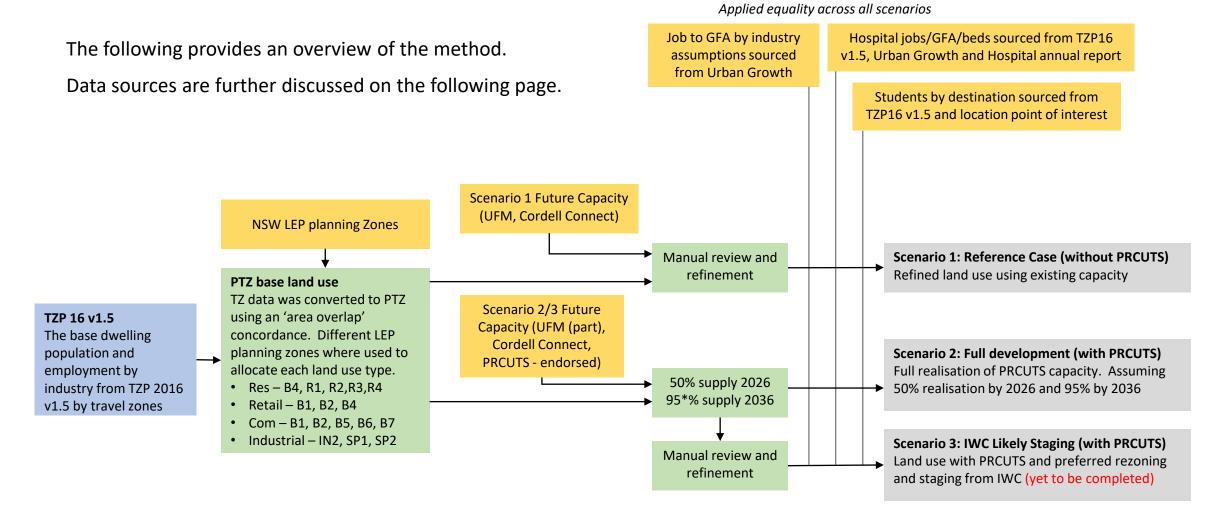
Dwellings

- = Structural Private Dwellings (SPD)
- = Occupied and Unoccupied Dwellings

(Note typically 95 per cent of dwellings are occupied)

Population

= People in Occupied Private Dwellings (POPD)


This excludes people in non-private dwellings, such as; people in aged care, hospitals, university dorm, corrections facilities

Broad employment categories

ANZSIC06 Industry	Broad Industry
Agriculture, Forestry and Fishing	Industrial
Mining	Industrial
Manufacturing	Industrial
Electricity, Gas, Water and Waste Services	Industrial
Construction	Other
Wholesale Trade	Industrial
Retail Trade	Retail
Accommodation and Food Services	Retail
Transport, Postal and Warehousing	Industrial
Information Media and Telecommunications	Office
Financial and Insurance Services	Office
Rental, Hiring and Real Estate Services	Office
Professional, Scientific and Technical Services	Office
Administrative and Support Services	Office
Public Administration and Safety	Office
Education and Training	Schools
Health Care and Social Assistance	Hospitals*
Arts and Recreation Services	Other
Other Services	Office

^{*} Adjustment has been made to include education and professionals services employment in the hospital PTZ

Method

^{*} Full development was assumed to be 95% of supply. While any one site could achieve 100% of the capacity it is unrealistic to assume every single property across the entire study area could be built out to their maximum potential within a 20 year horizon or ever. There are a range of development, market, behavioural and other factors which means this is never possible.

Global conversation assumptions

LEP zones have been used to disaggregate dwellings and employment by type from Travel zones to PTZ.

Employment to space assumptions

Residential	Industrial	Office	Retail
B4	IN2	B5	B4
R1	SP1	В6	B1
R2	SP2	В7	B2
R3			
R4			
B4			

* Schools and hospitals were manually identified and aligned to a PTZ

	Gross Floor Area (GFA) per work ratios	Efficiency rate to estimates Gross Leasable Floor Area (GLFA)
Retail	45 sqm	75%
Industrial	100 sqm	-
Office	20 sqm	-
Other		-

Source: Landcom, NSW

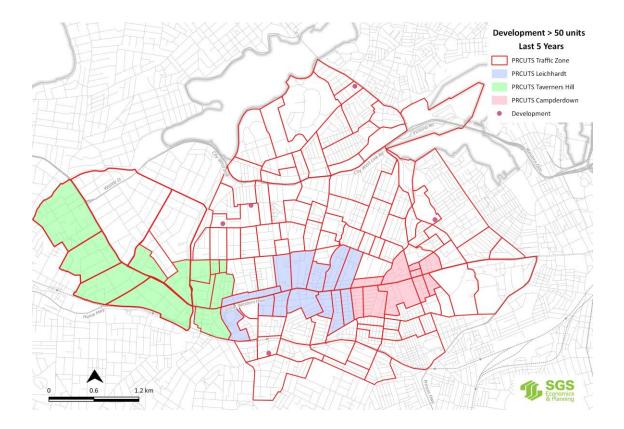
https://www.landcom.com.au/approach/sustainability/productive-places/#element-accordion-510

Overview of data sources

The following data inputs where used:

Source	Geographic coverage	Variables	Time	Key figures	Comments
Travel Zone Projections 2016 v1.5 (TZP16 v1.5), DOT	TZ for entire study area	All (SPD, ERP and emp by Ind)	2016, 2020, 2026, 2036	SPD – 44,750 (2036) ERP – 100,600 (2036) Emp – 47,495 (2036)	TZP16 v1.5 growth from 2016 to 2020 used to fill development gap in capacity data. Translated to PTZ using LEP based area overlap
Urban Feasibility Model (UFM), DPIE	PTZ for entire study area	SPD	March 2020 Extract of Feasible Future Capacity under Current LEP	SPD - 3,792 (FD)	Translated to PTZ using LEP based area overlap
Local Environment Plan (LEP) Planning Zones, DPIE	Aligned to PTZ and TZ	-	-	-	
PRCUTS 2016 – Endorsed	Aggregate figures for Taverners Hill precinct Leichhardt precinct Camperdown precinct	SPD, ERP, Emp	Additional from 2020 by 2050	SPD – 1,300 (TH), 1,100 (L), 700 (CD) ERP – 3,300 (TH), 2,100 (L), 1,400 (CD) Emp – 4,100 (TH), 3,250 (L), 2,300 (CD)	Used TZP16 v1.5 and LEP data to spatial distribute precinct totals and employment by industry
Cordell Connect	Entire study area	Capacity	Additional from March 1st 2020 until 2036 (no developments noted completing after 2026)	SPD - 1,490	

Assumed recent development

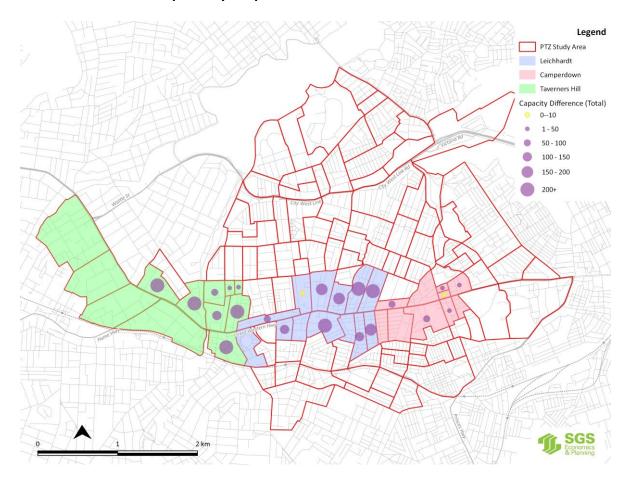

TZP16 v1.5 has been used to estimate recent development since 2016 up to when future capacity/development sources (Cordell/UFM) provide information on <u>additional</u> development

SPD	2016	2020	2016-20
TZP16 v1.5			
Leichhardt	3,687	3,821	135
Camperdown	2,768	2,933	164
Taverners Hill	7,660	8,080	420
Remainder	29,588	30,797	1,209
Total (Entire Study Area)	43,704	45,632	1,928
Total (Traffic Model Area)	37,616	39,483	1,867

Employment	2016	2020	2016-20
TZP16 v1.5			
Leichhardt	2,766	2,926	160
Camperdown	3,354	3,593	239
Taverners Hill	4,705	5,097	391
Remainder	12,294	13,880	1,586
Total (Entire Study Area)	23,119	25,496	2,377
Total (Traffic Model Area)	19,755	21,863	2,107

Some major recent developments during 2016 to 2020 include:

- 4 developments above 50 units over the last 5 years. Combined they represent 925 new dwellings (see map below)
- A further 1,488 units across 34 developments

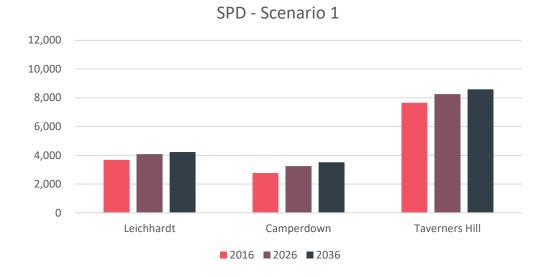

Combined development capacity Inputs

A range of development capacity inputs have been combined:

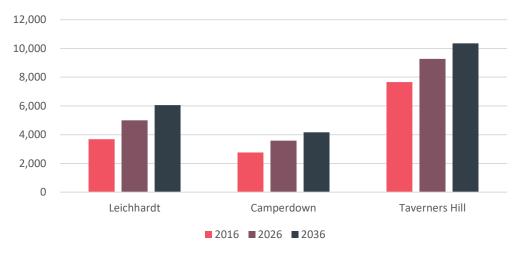
- S1: Cordell Connect and UFM(under current planning controls)
- S2: Cordell Connect, UFM (under current planning controls outside PRCUTS precincts) and UFM (PRCUTS 'as corrected')

SPD	2020-26	2026-36	Total additional from 2020
Scenario 1: Reference Ca	se (without PRCUTS)		
Camperdown	225	189	413
Leichhardt	260	150	410
Taverners Hill	73	73	145
Remainder	2,186	1,137	3,322
Total (Traffic Model Area)	2,743	1,548	4,290
Scenario 2: Full developn	nent (with PRCUTS)		
Camperdown	565	496	1,061
Leichhardt	1,180	1,052	2,232
Taverners Hill	813	731	1,544
Remainder	2,202	1,150	3,352
Total (Traffic Model Area)	4,759	3,429	8,188

Difference in capacity inputs between S1 and S2

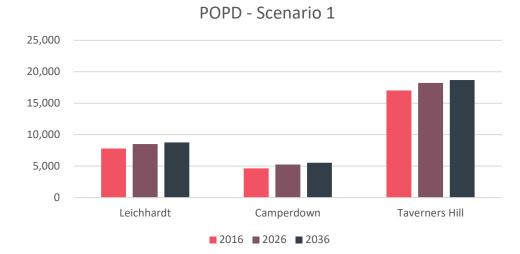


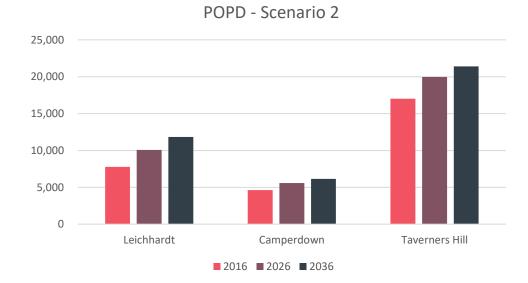
Land use review results


Dwelling scenario overview

SPD	2016	2026	2036	2016-26	2016-36
Scenario 1: Reference Case (without PRCUTS)					
Leichhardt	3,687	4,081	4,231	395	545
Camperdown	2,768	3,245	3,521	476	752
Taverners Hill	7,660	8,257	8,591	597	931
Remainder	29,588	32,883	33,920	3,294	4,332
Total (Entire Study Area)	43,704	48,466	50,263	4,762	6,560
Total (Traffic Model Area)	37,616	42,226	43,773	4,610	6,157
Scenario 2: Full development (with PRCUTS)					
Leichhardt	3,687	5,001	6,053	1,315	2,366
Camperdown	2,768	3,585	4,168	817	1,400
Taverners Hill	7,660	9,275	10,350	1,615	2,690
Remainder	29,588	32,867	33,888	3,279	4,300
Total (Entire Study Area)	43,704	50,728	54,460	7,025	10,756
Total (Traffic Model Area)	37,616	44,227	47,640	6,611	10,024
TZP16 v1.5* (unaltered - for reference)					
Leichhardt	3,687	4,024	4,123	337	436
Camperdown	2,400	2,740	3,226	340	826
Taverners Hill	8,600	9,651	10,007	1,051	1,407
Remainder	29,017	32,109	36,454	3,092	7,437
Total (Entire Study Area)	43,704	48,524	53,809	4,820	10,106
Total (Traffic Model Area)	37,616	42,284	47,319	4,668	9,703

^{*} Unaltered TZP16 v1.5 data has been spatially disaggregated and aligned to the study precincts for reference.





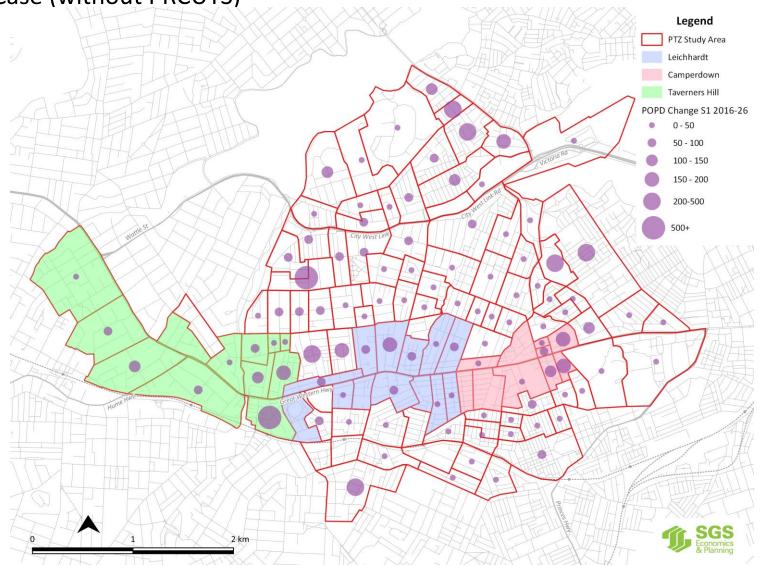
Population scenario overview

POPD	2016	2026	2036	2016-26	2016-36
Scenario 1: Reference Case (without PRCUTS)					
Leichhardt	7,786	8,519	8,769	732	983
Camperdown	4,637	5,247	5,533	611	897
Taverners Hill	17,018	18,211	18,679	1,193	1,661
Remainder	62,459	68,116	69,437	5,657	6,978
Total (Entire Study Area)	91,900	100,093	102,419	8,193	10,519
Total (Traffic Model Area)	78,130	86,041	88,014	7,912	9,885
Scenario 2: Full development (with PRCUTS)					
Leichhardt	7,786	10,075	11,834	2,289	4,048
Camperdown	4,637	5,589	6,159	953	1,523
Taverners Hill	17,018	19,964	21,409	2,946	4,391
Remainder	62,459	68,093	69,416	5,634	6,957
Total (Entire Study Area)	91,900	103,721	108,818	11,821	16,919
Total (Traffic Model Area)	78,130	89,226	93,913	11,097	15,784
TZP16 v1.5* (unaltered - for reference)					
Leichhardt	7,786	8,356	8,522	570	736
Camperdown	4,177	4,519	4,968	342	791
Taverners Hill	19,402	21,232	21,719	1,830	2,317
Remainder	60,534	65,148	70,682	4,613	10,148
Total (Entire Study Area)	91,900	99,255	105,892	7,355	13,992
Total (Traffic Model Area)	78,130	85,315	91,653	7,185	13,523

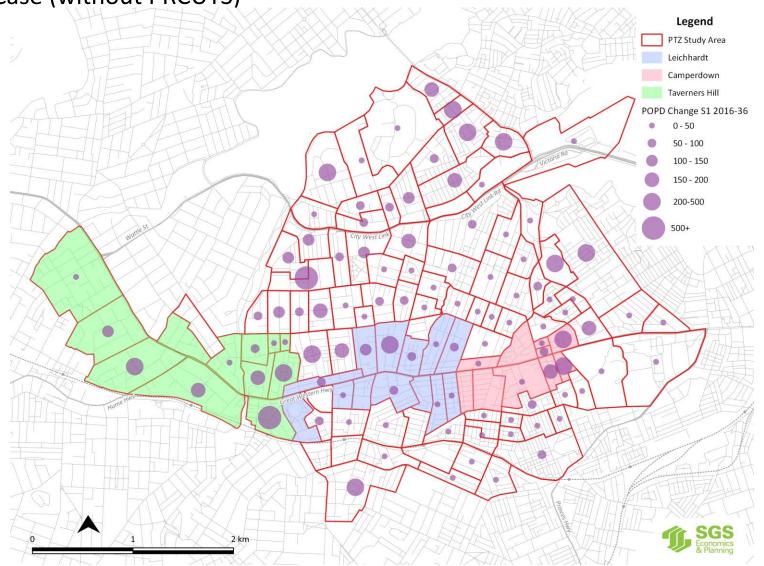
^{*} Unaltered TZP16 v1.5 data has been spatially disaggregated and aligned to the study precincts for reference.

Persons per Dwelling

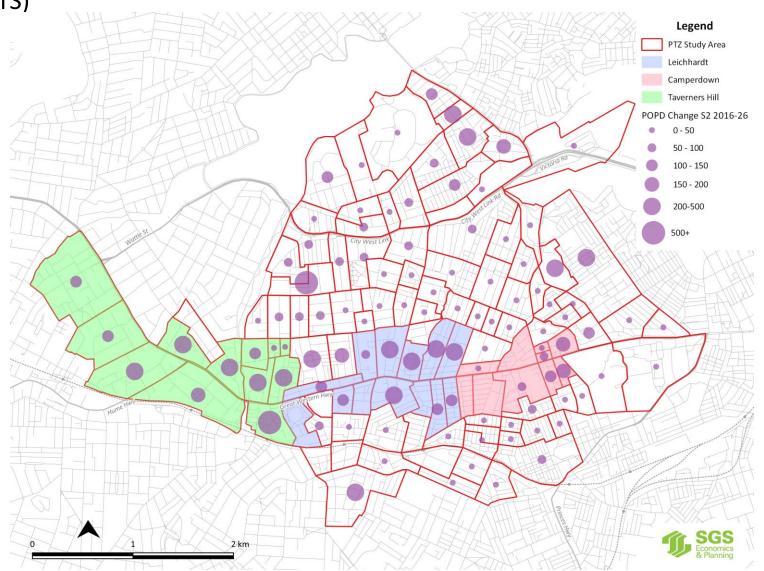
POPD per SPD	2016	2026	2036	2016-26	2016-36
Scenario 1: Reference Case (without PRCUTS)					
Leichhardt	2.1	2.1	2.1	1.9	1.7
Camperdown	1.7	1.6	1.6	1.3	1.0
Taverners Hill	2.2	2.2	2.2	2.0	1.4
Remainder	2.1	2.1	2.0	1.7	1.3
Total (Entire Study Area)	2.1	2.1	2.0	1.7	1.3
Total (Traffic Model Area)	2.1	2.0	2.0	1.7	1.3
Scenario 2: Full development (with PRCUTS)					
Leichhardt	2.1	2.0	2.0	1.7	1.7
Camperdown	1.7	1.6	1.5	1.2	1.0
Taverners Hill	2.2	2.2	2.1	1.8	1.3
Remainder	2.1	2.1	2.0	1.7	1.3
Total (Entire Study Area)	2.1	2.0	2.0	1.7	1.4
Total (Traffic Model Area)	2.1	2.0	2.0	1.7	1.4
TZP16 v1.5* (unaltered - for reference)					
Leichhardt	2.1	2.1	2.1	1.7	1.7
Camperdown	1.7	1.6	1.5	1.0	0.9
Taverners Hill	2.3	2.2	2.2	1.7	1.4
Remainder	2.1	2.0	1.9	1.5	1.3
Total (Entire Study Area)	2.1	2.0	2.0	1.5	1.3
Total (Traffic Model Area)	2.1	2.0	1.9	1.5	1.3
* Unabased T704C v4. E data has been proteinly discourage and aligned to the chief, and in a figure of the chief.					

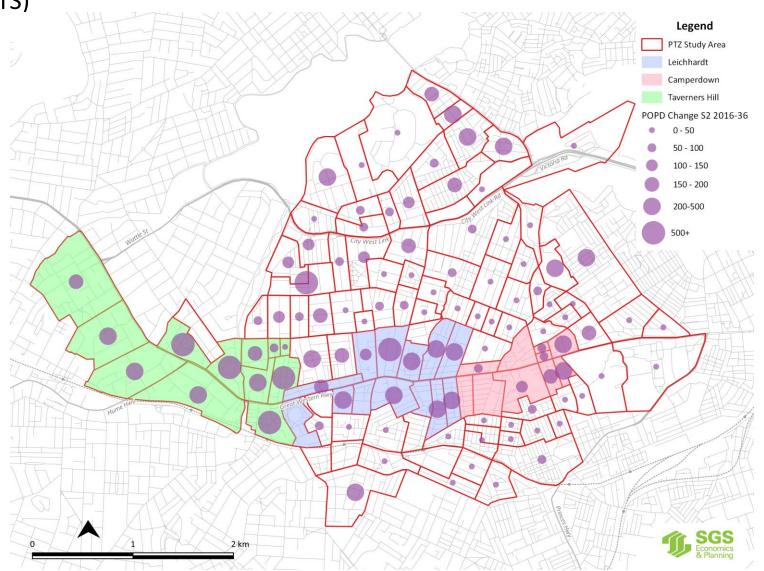

Assumptions:
New dwellings in PCRUTS
precincts follow pre-set Persons
Per dwellings:

	2026	2036
Leichhardt	1.9	1.9
Camperdown	2.0	2.0
Taverners Hill	2.5	2.5

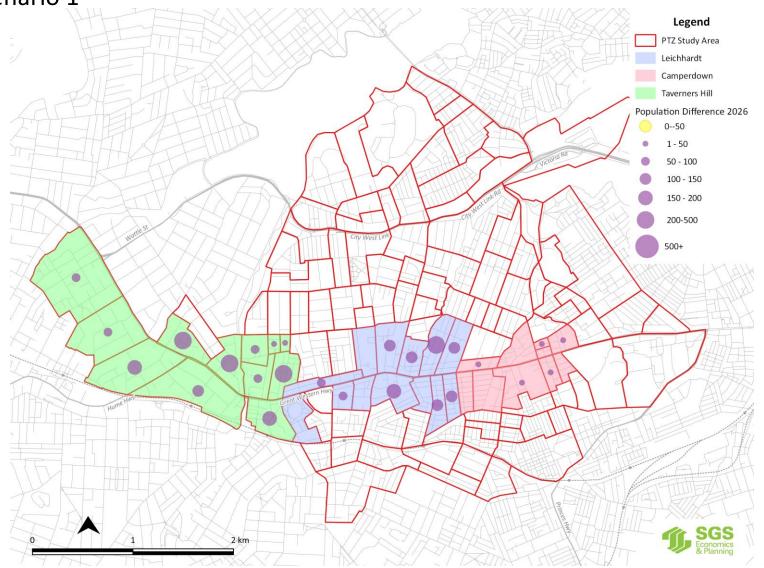

For PTZ's outside these areas the Persons per Dwelling defaults to the TZ_16 Trend

st Unaltered TZP16 v1.5 data has been spatially disaggregated and aligned to the study precincts for reference.

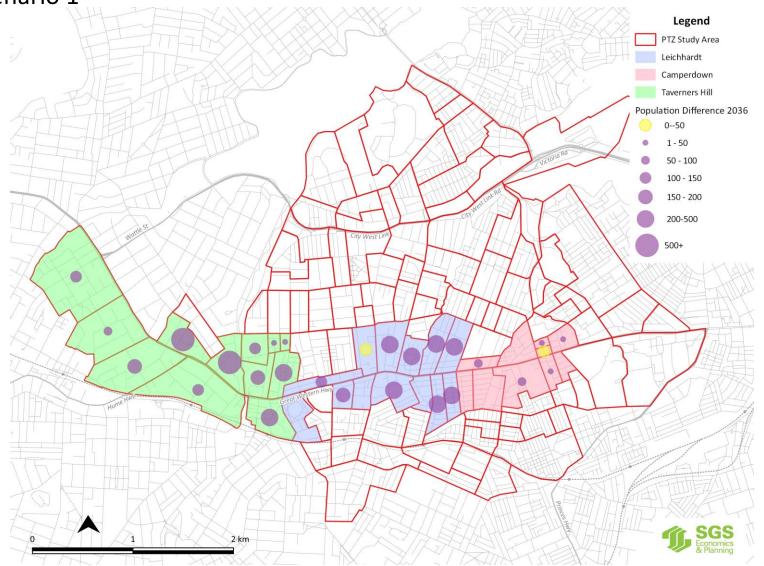

2016 to 2026 - Scenario 1: Reference Case (without PRCUTS)


2016 to 2036 - Scenario 1: Reference Case (without PRCUTS)

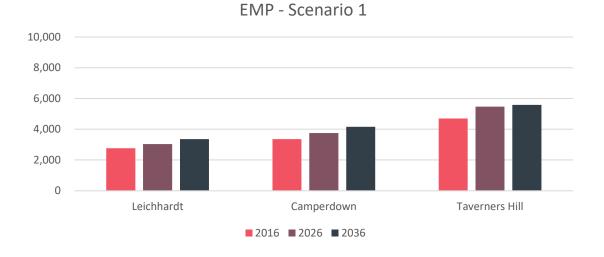
2016 to 2026 - Scenario 2 (With PRCUTS)

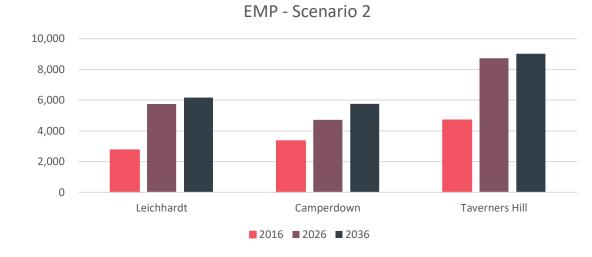


2016 to 2036 - Scenario 2 (With PRCUTS)


Scenario Population Difference

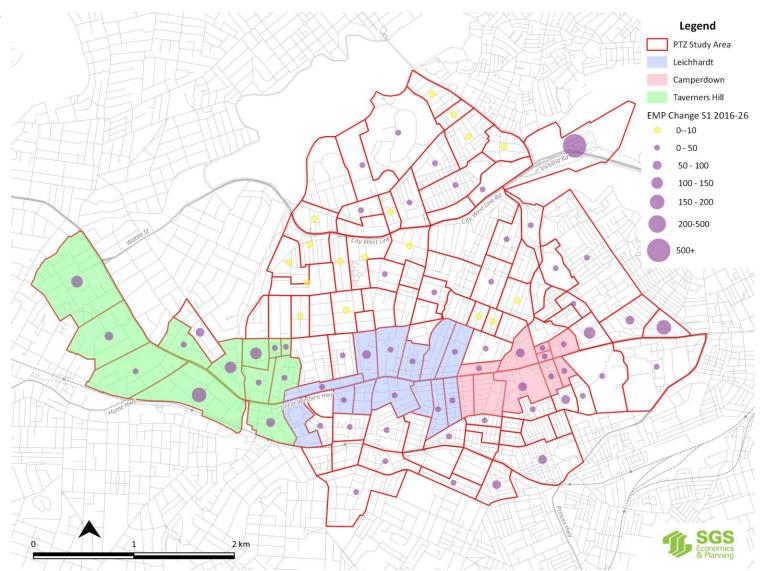
2026 - Scenario 2 (With PRCUTS) - Scenario 1

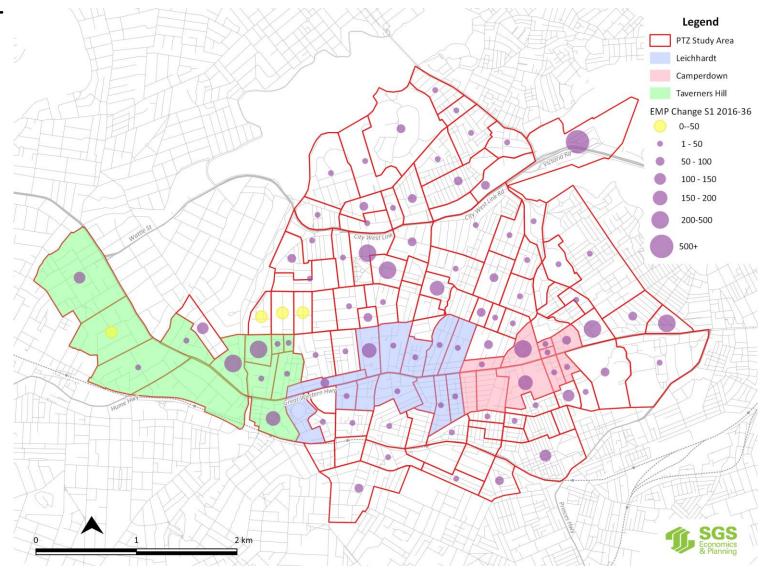

Scenario Population Difference


2036 - Scenario 2 (With PRCUTS) - Scenario 1

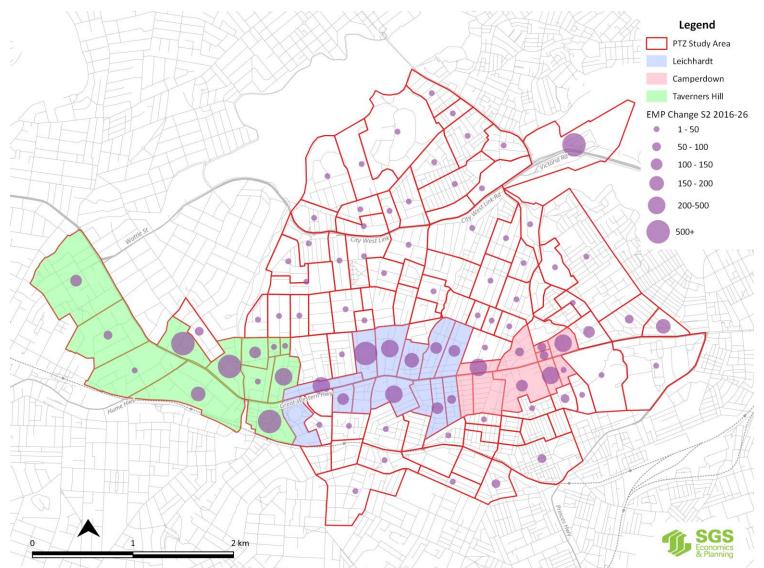
Employment overview

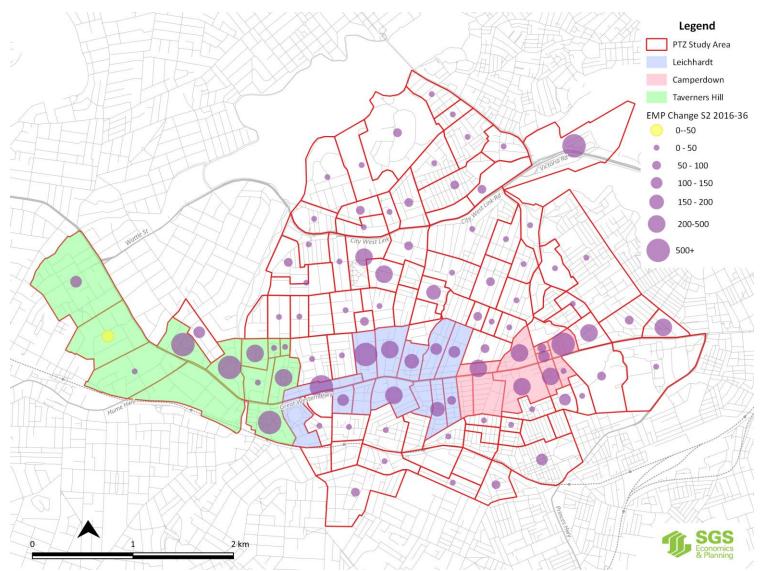
EMP	2016	2026	2036	2016-26	2016-36
Scenario 1: Reference Case (without PRCUT	rs)				
Leichhardt	2,766	3,033	3,363	267	597
Camperdown	3,354	3,752	4,162	398	808
Taverners Hill	4,705	5,471	5,590	765	884
Remainder	12,294	14,978	19,804	2,685	7,510
Total (Entire Study Area)	23,119	27,234	32,918	4,115	9,799
Total (Traffic Model Area)	19,755	23,268	29,299	3,512	9,543
Scenario 2: Full development (with PRCUTS)				
Leichhardt	2,766	5,748	6,172	2,983	3,406
Camperdown	3,354	4,716	5,767	1,362	2,413
Taverners Hill	4,705	8,732	9,025	4,026	4,319
Remainder	12,294	15,131	19,965	2,838	7,672
Total (Entire Study Area)	23,119	34,327	40,929	11,208	17,811
Total (Traffic Model Area)	19,755	30,361	37,310	10,606	17,555

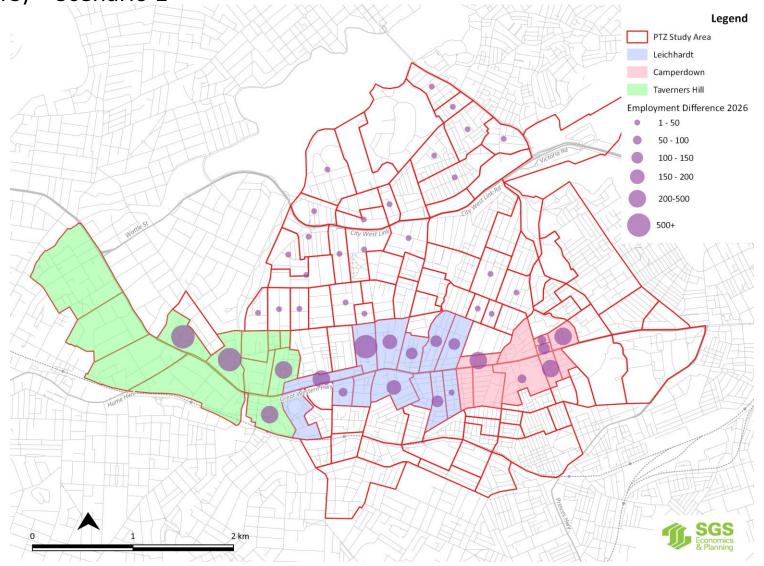


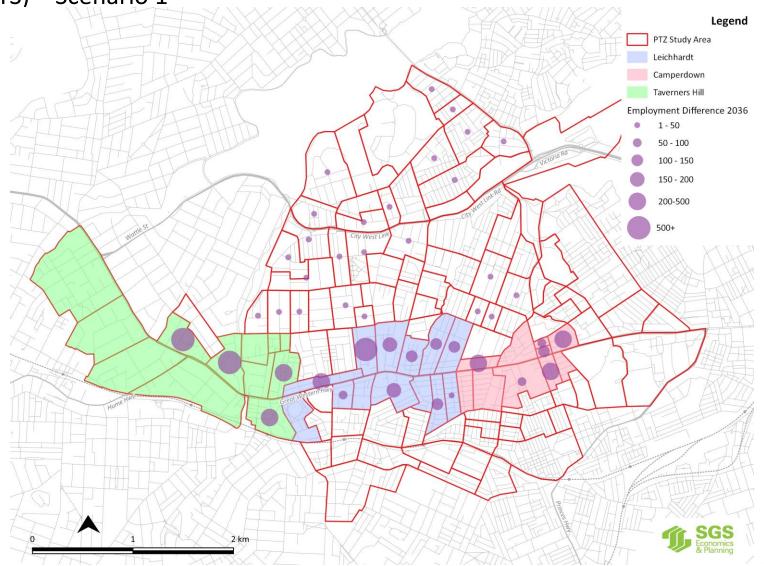

Employment overview

			Retail	Office		Commercial		Commercial	Other (inc. Hospital)		nc. Hospital)	
ЕМР	2016	2036	2016-36	2016	2036	2016-36	2016	2036	2016-36	2016	2036	2016-36
Scenario 1: Reference Case (without PRCUTS)												
Leichhardt	1,351	1,569	218	2	3	1	337	444	107	759	880	121
Camperdown	803	997	194	1,068	1,384	316	461	573	112	951	1,105	154
Taverners Hill	1,080	1,236	156	1,420	1,891	471	476	701	225	270	343	73
Remainder	3,546	4,228	682	1,843	3,351	1,509	1,697	5,119	3,422	2,633	3,092	458
Total (Entire Study Area)	6,780	8,030	1,249	4,333	6,629	2,296	2,970	6,836	3,866	4,614	5,420	806
Total (Traffic Model Area)	6,049	6,582	533	3,741	5,055	1,314	2,783	6,594	3,811	4,271	4,953	682
Scenario 2: Full development (with PRCUTS)												
Leichhardt	1,351	2,932	1,580	2	4	2	337	824	487	759	1,675	916
Camperdown	803	1,700	898	1,068	1,384	316	461	699	239	951	1,878	926
Taverners Hill	1,080	1,520	441	1,420	4,294	2,874	476	1,366	890	270	425	155
Remainder	3,546	4,331	784	1,843	3,351	1,509	1,697	5,148	3,451	2,633	3,121	488
Total (Entire Study Area)	6,780	10,483	3,703	4,333	9,033	4,701	2,970	8,038	5,067	4,614	7,099	2,486
Total (Traffic Model Area)	6,049	9,590	3,541	3,741	8,252	4,511	2,783	7,795	5,013	4,271	6,632	2,361


• 2016 to 2026 - Scenario 1


• 2016 to 2036 - Scenario 1


• 2016 to 2026 - Scenario 2


• 2016 to 2036 - Scenario 2

2016 to 2026 - Scenario 2 (With PRCUTS) - Scenario 1

2016 to 2036 - Scenario 2 (With PRCUTS) - Scenario 1

Canberra

P: +61 2 6257 4525

E: sgsact@sgsep.com.au

Hobart

P: +61 3 6264 3116

E: sgstas@sgsep.com.au

Melbourne

P: +61 3 8616 0331

E: sgsvic@sgsep.com.au

Sydney

P: +61 2 8307 0121

E: sgsnsw@sgsep.com.au

Future Modelling Report

Inner West Sydney Suburbs including Parramatta Road Corridor Urban Transformation Strategy

80018116

Prepared for Department of Planning, Industry and Environment in collaboration with Inner West Council

10 March 2022

Document Information

Contact Information

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035	Prepared for	Department of Planning, Industry and Environment in collaboration with Inner West Council
Level 9 - The Forum 203 Pacific Highway	Project Name	Inner West Sydney Suburbs including Parramatta Road Corridor Urban
St Leonards NSW 2065 Australia		Transformation Strategy

www.cardno.com

Phone +61 2 9496 7700 Jol

Fax +61 2 9439 5170

File Reference 80018116_Future Modelling

Report.docx

Job Reference 80018116

Date 10 March 2022

Version Number 4

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	26/07/2021	Draft	Stephen Payne	Siavash Shahsavaripour
2	6/09/2021	Draft	Stephen Payne	Siavash Shahsavaripour
3	18/02/2022	Final	Stephen Payne Siavash Shahsavaripour	Ivo Pais
4	10/03/2022	Final Rev2	Ivo Pais Siavash Shahsavaripour	Ivo Pais

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introd	uction	1	
	1.1	Project background	1	
	1.2	Project objectives	1	
	1.3	Scope of works	2	
	1.4	Study area	3	
	1.5	Stakeholders	5	
	1.6	Report outline	5	
2	Option	ns testing	6	
	2.1	Future infrastructure	6	
	2.2	Assessment scenarios	18	
	2.3	Assessment years and time periods	18	
3	Assun	nptions	19	
	3.1	Future Model assumptions	19	
	3.2	Performance metrics	20	
4	Future	e demand development	23	
	4.1	PTPM growth estimation	24	
	4.2	Incremental growth application	25	
	4.3	Comparison of network capacity VKT to PPM penalty scenarios	26	
	4.4	STFM demand estimation	27	
5	Base	Model operational results	32	
	5.1	Data inputs	32	
	5.2	Model specifications and assumptions	32	
	5.3	Existing network performance	33	
	5.4	Existing travel times	34	
	5.5	Existing intersection performance	36	
	5.6	Existing network plots	43	
6	Do Mi	nimum operational results	47	
	6.1	Do Minimum network performance	47	
	6.2	Do Minimum travel times	52	
	6.3	Do Minimum intersection performance	56	
	6.4	Do Minimum network plots	63	
7	With U	Jpgrades operational results	67	
	7.1	With Upgrades network performance	67	
	7.2	With Upgrades travel times	72	
	7.3	With Upgrades intersection performance	76	
	7.4	With Upgrades network plots	83	
8	Conclusion			

Appendices

Appendix A	Base Model Development Report			
Appendix B	Base Model Peer Review (Arup, March 2020)			
Appendix C	Fransport Projects for Modelling			
Appendix D	Strategic Transport Modelling Interface Methodology (VIAE Consulting, October 2020)			
Appendix E	PRCUTS Transport Model Update Recommendations Action Plan (PwC, June 2021)			
Appendix F	PTPM Cordons			
Appendix G	STFM Cordons			
Appendix H	Intersection Performance			

Tables

Table 2-1	List of upgrades	6
Table 2-2	Do Minimum infrastructure layouts	7
Table 2-3	List of upgrades	11
Table 2-4	With Upgrades infrastructure layouts	12
Table 2-5	Scenarios assessed	18
Table 3-1	Network performance metrics	20
Table 3-2	Assumed vehicle occupancies	21
Table 3-3	Speed ratio colour code	21
Table 3-4	Level of service criteria for intersections	22
Table 4-1	STFM growth summary	29
Table 4-2	ODs with negative trips in the Aimsun traffic demand	30
Table 4-3	Aimsun traffic demand	31
Table 5-1	Network performance results – Base Model	33
Table 5-2	Network statistics by person – Base Model	33
Table 5-3	Travel times on key routes – Base Model	34
Table 5-4	Precinct travel times – Base Model	34
Table 5-5	Intersection performance results – Base Model (AM Peak)	38
Table 5-6	Intersection performance results – Base Model (PM Peak)	39
Table 5-7	Maximum queue length at major intersections in the PRCUTS precincts – Base Model	42
Table 6-1	Network performance results – Do Minimum	48
Table 6-2	Network statistics by person – Do Minimum	49
Table 6-3	Travel times on key routes – Do Minimum	53
Table 6-4	Precinct travel times – Do Minimum	54
Table 6-5	Intersection performance results – Do Minimum (AM Peak)	58
Table 6-6	Intersection performance results – Do Minimum (PM Peak)	59
Table 6-7	Maximum queue length at major intersections in the PRCUTS precincts – Do Minimum	62
Table 7-1	Network performance results – With Upgrades	68

69

Table 7-2

Network statistics by person – With Upgrades

Table 7-3	Travel times on key routes – With Upgrades	73
Table 7-4	Precinct travel times – With Upgrades	74
Table 7-5	Intersection performance results – With Upgrades (AM Peak)	78
Table 7-6	Intersection performance results – With Upgrades (PM Peak)	79
Table 7-7	Maximum queue length at major intersections in the PRCUTS precincts – With Upgrades	82
Figures		
Figure 1-1	Regional context	1
Figure 1-2	Study area	4
Figure 4-1	Incremental growth application results	25
Figure 4-2	Comparison of Aimsun and PTPM VKT changes between scenarios	26
Figure 4-3	STFM WestConnex-only trips	27
Figure 4-4	STFM trip distribution	28
Figure 4-5	STFM demand in each future year	29
Figure 5-1	Travel times between precincts (eastbound) –Base Model	35
Figure 5-2	Travel times between precincts (westbound) -Base Model	35
Figure 5-3	Intersection level of service – Base Model (AM Peak)	40
Figure 5-4	Intersection level of service – 2018 Base Model (PM Peak)	41
Figure 5-5	Simulated density – Base Model (AM Peak)	44
Figure 5-6	Simulated density – Base Model (PM Peak)	44
Figure 5-7	Speed ratio – Base Model (AM Peak)	45
Figure 5-8	Speed ratio – Base Model (PM Peak)	45
Figure 5-9	Heavy vehicle proportions – Base Model (AM Peak)	46
Figure 5-10	Heavy vehicle proportions – Base Model (PM Peak)	46
Figure 6-1	Unreleased demand – 2026 Do Minimum (AM Peak)	51
Figure 6-2	Unreleased demand – 2026 Do Minimum (PM Peak)	51
Figure 6-3	Unreleased demand – 2036 Do Minimum (AM Peak)	51
Figure 6-4	Unreleased demand – 2036 Do Minimum (PM Peak)	51
Figure 6-5	Travel times between precincts (eastbound) – Do Minimum	55
Figure 6-6	Travel times between precincts (westbound) – Do Minimum	55
Figure 6-7	Intersection level of service – Do Minimum (AM Peak)	60
Figure 6-8	Intersection level of service – Do Minimum (PM Peak)	61
Figure 6-9	Simulated density – 2026 Do Minimum (AM Peak)	64
Figure 6-10	Simulated density – 2026 Do Minimum (PM Peak)	64
Figure 6-11	Simulated density – 2036 Do Minimum (AM Peak)	64
Figure 6-12	Simulated density – 2036 Do Minimum (PM Peak)	64
Figure 6-13	Speed ratio – 2026 Do Minimum (AM Peak)	65
Figure 6-14	Speed ratio – 2026 Do Minimum (PM Peak)	65

Figure 6-15	Speed ratio – 2036 Do Minimum (AM Peak)	65
Figure 6-16	Speed ratio – 2036 Do Minimum (PM Peak)	65
Figure 6-17	Heavy vehicle proportions – 2026 Do Minimum (AM Peak)	66
Figure 6-18	Heavy vehicle proportions – 2026 Do Minimum (PM Peak)	66
Figure 6-19	Heavy vehicle proportions – 2036 Do Minimum (AM Peak)	66
Figure 6-20	Heavy vehicle proportions – 2036 Do Minimum (PM Peak)	66
Figure 7-1	Unreleased demand – 2026 With Upgrades (AM Peak)	71
Figure 7-2	Unreleased demand – 2026 With Upgrades (PM Peak)	71
Figure 7-3	Unreleased demand – 2036 With Upgrades (AM Peak)	71
Figure 7-4	Unreleased demand – 2036 With Upgrades (PM Peak)	71
Figure 7-5	Travel times between precincts (eastbound) –With Upgrades	75
Figure 7-6	Travel times between precincts (westbound) – With Upgrades	75
Figure 7-7	Intersection level of service – With Upgrades (AM Peak)	80
Figure 7-8	Intersection level of service – With Upgrades (PM Peak)	81
Figure 7-9	Simulated density – 2026 With Upgrades (AM Peak)	84
Figure 7-10	Simulated density – 2026 With Upgrades (PM Peak)	84
Figure 7-11	Simulated density – 2036 With Upgrades (AM Peak)	84
Figure 7-12	Simulated density – 2036 With Upgrades (PM Peak)	84
Figure 7-13	Speed ratio – 2026 With Upgrades (AM Peak)	85
Figure 7-14	Speed ratio – 2026 With Upgrades (PM Peak)	85
Figure 7-15	Speed ratio – 2036 With Upgrades (AM Peak)	85
Figure 7-16	Speed ratio – 2036 With Upgrades (PM Peak)	85
Figure 7-17	Heavy vehicle proportions – 2026 With Upgrades (AM Peak)	86
Figure 7-18	Heavy vehicle proportions – 2026 With Upgrades (PM Peak)	86
Figure 7-19	Heavy vehicle proportions – 2036 With Upgrades (AM Peak)	86
Figure 7-20	Heavy vehicle proportions – 2036 With Upgrades (PM Peak)	86

Glossary

Abbreviation	Description
Aimsun	Traffic modelling software used for the hybrid mesoscopic/microscopic traffic model
CBD	Central Business District
DPIE	Department of Planning, Industry and Environment
DUE	Dynamic user equilibrium
HV	Heavy vehicle
IWC	Inner West Council
LCV	Light commercial vehicle
LOS	Level of service
LV	Light vehicle
M4	M4 Motorway
M5	M5 Motorway
M8	M8 Motorway
NSW	New South Wales
OD	Origin-destination pair
PPM	Parking Precinct Module
PRCUTS	Parramatta Road Corridor Urban Transformation Study
PTPM	Public Transport Project Model
PwC	Pricewaterhouse Coopers
SGS	SGS Economics & Planning
SRC	Stochastic route choice
STFM	Sydney Traffic Forecasting Model
VHT	Vehicle hours travelled
VKT	Vehicle kilometres travelled
WCX	WestConnex

1 Introduction

1.1 Project background

Cardno was engaged by Department of Planning, Industry and Environment (DPIE) in close collaboration with Inner West Council (IWC) to investigate the traffic network along the Parramatta Road corridor within the IWC local government area. The study involves the development of a hybrid (microscopic/mesoscopic) traffic simulation model using Aimsun. The purpose of the study is to better inform future traffic and safety works, and ensure that future development in the corridor can be sustained with existing and proposed infrastructure upgrades.

Figure 1-1 shows the regional context of the study area. The study area is located in the Inner West suburbs of Sydney, approximately five kilometres south-west of the CBD. Parramatta Road is a key arterial road corridor connecting the Sydney CBD to the metropolitan centre of Parramatta, as well as other major destinations in the Inner West. The boundary of the Parramatta Road corridor traffic model, the software platform and the model inputs have been endorsed by IWC, DPIE and Transport for NSW.

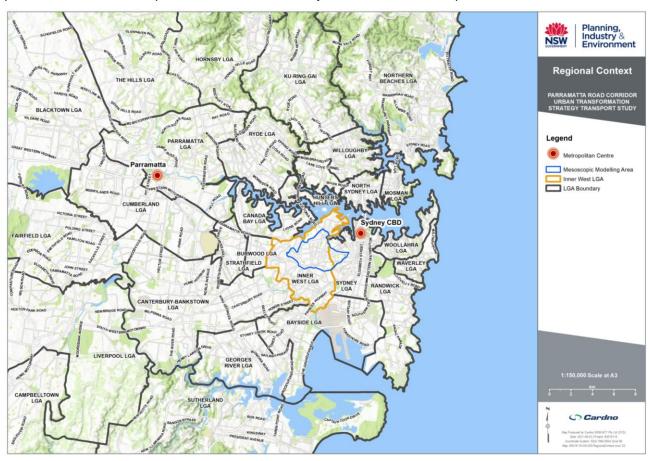


Figure 1-1 Regional context

1.2 Project objectives

The traffic modelling objectives of the Parramatta Road Corridor Urban Transformation Study (PRCUTS) are:

- > Evaluate the impacts of future infrastructure upgrades and trip reassignment in the PRCUTS study area and other corridors within the inner western suburbs
- > Assess the maximum network capacity and recommend public transport shift
- > Analyse the impact of projected employment and population growth on the transport network
- > Test and refine relevant items in the PRCUTS Infrastructure List.

1.3 Scope of works

The scope of works for the traffic modelling component of the study is:

- > Review existing relevant works, previous traffic studies and development patterns along the Parramatta Road corridor
- > Conduct traffic surveys and undertake analysis of the historical trends and existing traffic conditions
- > Use existing strategic models to estimate current and future demands
- > Develop, calibrate and validate a Base Model to capture existing conditions on a typical weekday to establish a reliable and robust platform for future-year testing, in accordance with the following guidelines:
 - Traffic Modelling Guidelines (Roads and Maritime Services, 2013)
 - Technical Direction TTD 2018/002: Traffic signals in microsimulation modelling (Roads and Maritime Services, 2018)
 - Technical Direction TTD 2017/001: Operational modelling reporting structure (Roads and Maritime Services, 2017)
- > Develop scenarios to assess the future operation of Parramatta Road.

1.3.1 Previous reporting

Model Scoping Report (Cardno, 18 April 2018)

This document introduced the project and outlined the methodology for the traffic modelling, including:

> Defining the study area

- > Modelling methodology and assumptions
- Outlining the survey data, strategic traffic demand sources and signal data
- > Inception Meeting outcomes.

The modelling methodology was endorsed by all parties.

Base Model Development Report (Cardno, 29 October 2020)

This documented the development, calibration and validation of the Aimsun Base Model in accordance with the relevant guidelines including:

- > Traffic Modelling Guidelines (Roads and Maritime Services, 2017)
- > Operational Modelling Reporting Structure (Roads and Maritime Services, 2017)
- > Traffic Signals in Microsimulation Modelling (Roads and Maritime Services, 2018).

The report included:

- > Description and summary of the traffic data inputs including classified intersection counts
- > Analysis of existing conditions and congestion hotspot locations
- Explanation of the study methodology and assumptions
- > Statistical analysis of the stability of the Base Model
- > Summary of the Base Model calibration and validation results
- > Discussion of limitations and conclusions.

The Base Model Development Report (Cardno, October 2020) is attached to this report as Appendix A.

The Base Model was reviewed by Arup on behalf of DPIE and Transport for NSW and the findings are summarised in *Base Model Peer Review* (Arup, March 2020) which is attached to this report as **Appendix B**. The model and report were refined based on Arup's comments and resubmitted to Arup for independent review. The model was subsequently endorsed as fit for purpose by Arup.

For the future modelling stage, PwC were commissioned by DPIE to apply the PTPM growth to the STFM using a methodology designed in consultation with DPIE. The corresponding traffic growth was subsequently applied to the operational model in Aimsun.

1.3.2 This report

This report documents the Future Model development process, including modelling assumptions and demand estimation, and includes an operational performance assessment of the Base Model and Future Models. It is intended to be read in conjunction with previous reporting for the study.

1.4 Study area

The study area encompasses the precincts of Taverners Hill, Leichhardt and Camperdown which are all within the IWC local government area (except part of Camperdown precinct which is in the City of Sydney). **Figure 1-2** shows these precincts along Parramatta Road. The study is reviewing the traffic generation from the suburbs of inner west Sydney and includes the uplift proposed in these suburbs as well as that proposed by PRCUTS.

The study area includes the key links discussed below.

- Parramatta Road (Great Western Highway) between Haberfield and Ultimo including key intersections with Liverpool Road (Hume Highway), Pyrmont Bridge Road and City Road (Princes Highway). Parramatta Road is a major east-west route connecting the Sydney CBD to the Inner West, Strathfield, Lidcombe and Parramatta. At the western extent of the study area, Parramatta Road connects to the M4 East, twin tunnels between Haberfield and Homebush. On the calibration date (17 October 2018), the M4 East was under construction. It was subsequently opened on 13 July 2019.
- City-West Link Road between the Anzac Bridge in Rozelle and Dobroyd Point. This road forms part of the Western Distributor, a key link connecting North Sydney (via the Harbour Bridge) to Western Sydney. To the west of the study area, City-West Link Road connects to Parramatta Road and the M4 East.
- > Victoria Road between City-West Link Road and Parramatta River. Victoria Road is a major north-south arterial road that connects the Western Distributor to Balmain, Rozelle, Drummoyne, Lane Cove and Ryde.
- > Stanmore Road runs east-west along the southern edge of the study area. Stanmore Road connects to Enmore Road and King Street (Princes Highway) to the east of the study area and links Inner West suburbs Newtown, Petersham, Lewisham and Dulwich Hill to Old Canterbury Road.

The study area includes key trip generators (origins) and trip attractors (destinations) within the Inner West including three railway stations, seven light rail stops, commercial centres Leichhardt, Rozelle and Camperdown, the University of Sydney, Princes Alfred Hospital, numerous schools, parks, sports fields and light industries. Residential areas are generally low to medium density across the study area, with some high-density apartment complexes in Glebe, Lewisham and around the University of Sydney.

Figure 1-2 shows the study area.

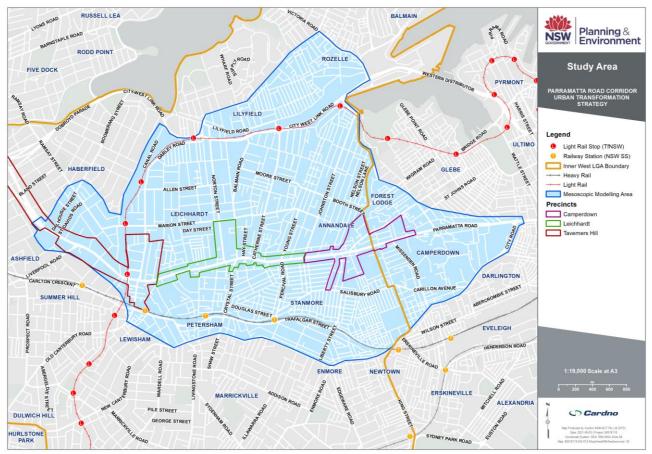


Figure 1-2 Study area

1.5 Stakeholders

The key stakeholders for this project are:

- Department of Planning, Industry and Environment (DPIE)¹
- > Inner West Council (IWC)
- > Transport for NSW².

1.6 Report outline

This report follows the *Operational Modelling Reporting Structure* (Roads and Maritime Services, 2017). The structure of this report is outlined below:

- > Section 1 Introduction: Summarises the project objectives and reporting structure
- > Section 2 Options testing: Outlines the future years and scenarios assessed in the study
- > Section 3 Assumptions: Discusses the assumptions underlying the future models
- Section 4 Future demand development: Outlines the methodology used to develop the future-year demands
- Section 5 Base Model operational results: Summarises the network and intersection performance results for the Base Model
- > Section 6 Do Minimum operational results: Summarises the network and intersection performance results for the Do Minimum scenario
- > **Section 7 With Upgrades operational results**: Summarises the network and intersection performance results for the With Upgrades scenario.
- > Section 8 Conclusions.

¹ Formerly Department of Planning and Environment until 1 July 2018.

² Roads and Maritime Services existed as a separate agency until it was dissolved and functions transferred to Transport for NSW on 1 December 2018.

2 Options testing

This section outlines the infrastructure changes included in the future models, the scenarios assessed and the assessment years and time periods modelled.

2.1 Future infrastructure

DPIE provided a schedule of 10 infrastructure improvements in the area for consideration in the modelling. Cardno assessed each upgrade and determined that five upgrades would be included in the models. The remaining upgrades did not alter the road network (eg Sydney Metro West) or were outside the study area. The list of upgrades is included in **Appendix C**.

The future modelling included two infrastructure scenarios:

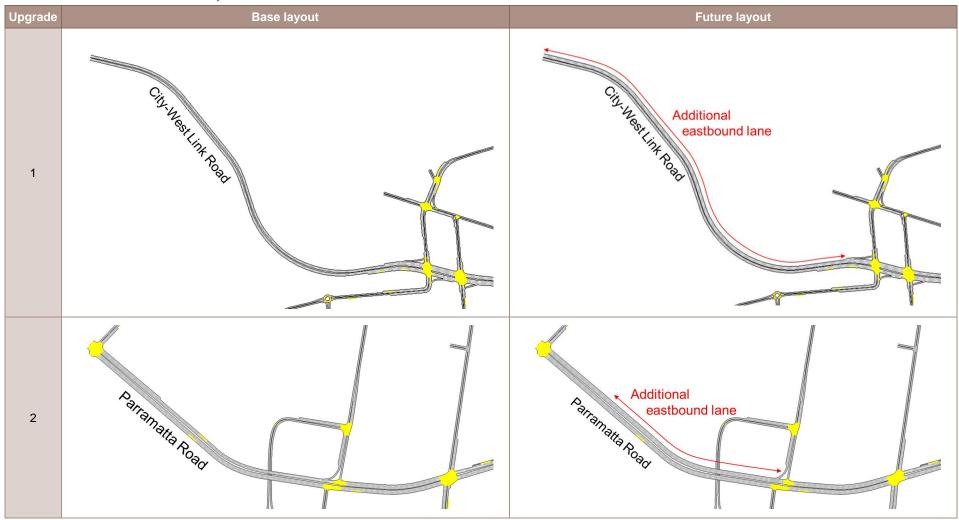
- > **Do Minimum**: Includes all upgrades implemented between 2018 (the Base Model calibration year) and 2021, as well as the WestConnex Rozelle Interchange
- With Upgrades: Includes all upgrades from the Future Base, as well as localised intersection upgrades along Parramatta Road and at key intersections in the study area. More detailed investigations and consultation would need be carried out prior to any designs being prepared. The quantum of lost car parking spaces depends on road design requirements which would be determined during concept or detailed design stages.

The infrastructure upgrades included in each scenario are described in the following sections.

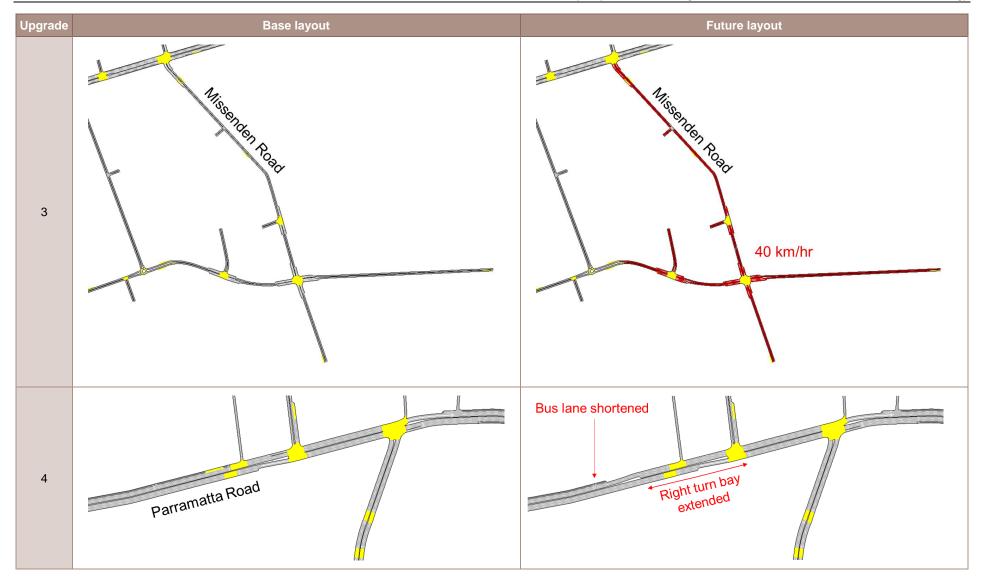
2.1.1 Do Minimum

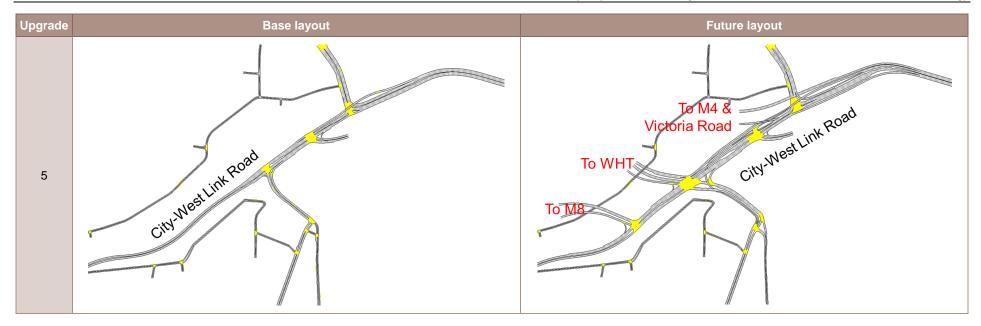
Based on consultation with IWC, DPIE and Transport for NSW, five future upgrades were considered in the Do Minimum scenario. Four of these have already been implemented (as of July 2021) since the Base Model.

Table 2-1 describes the upgrades that were included in the Do Minimum scenario.


Table 2-1 List of upgrades

#	Upgrade location	Description of upgrade	Year implemented
1	City-West Link Road	Addition of third eastbound lane between Waratah Street and James Street	Late 2018
2	Parramatta Road / West Street	Extension of right turn bay and third lane on Parramatta Road eastbound from Tebbutt Street to 7/Eleven Haberfield	2018
3	Missenden Road	Reduction of speed limit from 50 to 40 kilometres per hour	2018
4	Parramatta Road / Crystal Street	Extension of right turn bay on Parramatta Road eastbound from Norton Street to west of Railway Street	2020
5	WestConnex Rozelle Interchange	Underground interchange between M4 Motorway, M8 Motorway, Victoria Road, City-West Link Road and Western Harbour Tunnel	Expected to open in 2023


Table 2-2 shows the layout for each upgrade outlined above.


Table 2-2 Do Minimum infrastructure layouts

2.1.2 With Upgrades

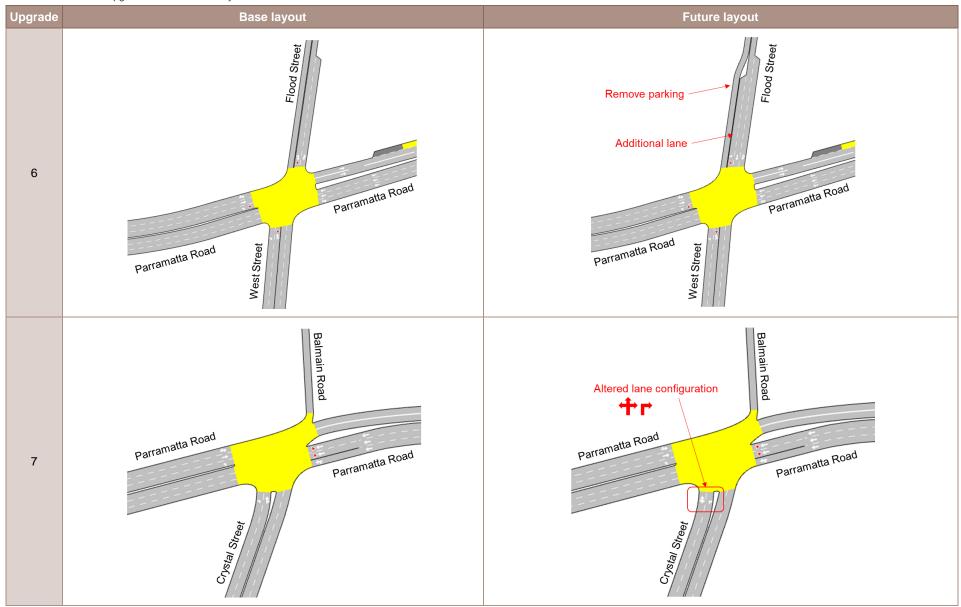
The With Upgrades scenario included localised upgrades proposed along Parramatta Road and at key locations across the study area. These suggestions were put forward by Cardno based on model results and observations and aim to improve traffic network performance. These upgrades have not been endorsed by Council, DPIE, Transport for NSW or any other stakeholders. Further traffic modelling is suggested during the Concept and Detailed Design stages to assess the viability of these upgrades in more detail as well as potential impact to other modes and place function.

The purpose of the upgrades was to alleviate queueing and congestion, and reduce the network average delay time. To avoid proposing unrealistic upgrades, the suggested improvements were chosen so that, if possible, they would:

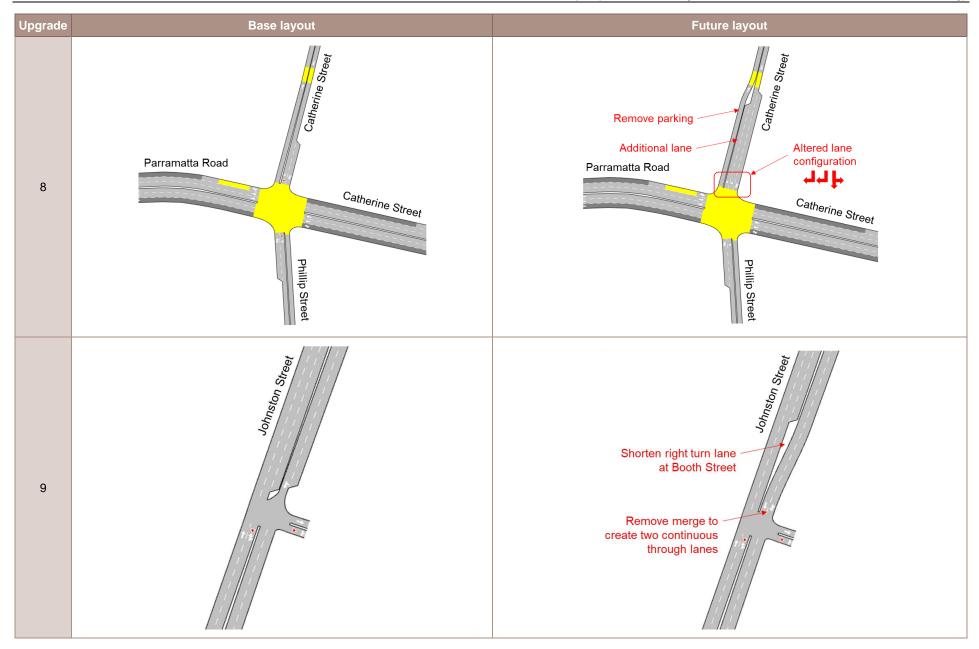
- > Fit within the existing road corridor
- > Not require significant changes to bus stops or bus lanes
- > Not require changes to approved heavy vehicle routes
- > Retain the existing road hierarchy
- > Require limited signal plan changes (such as introducing a right turn phase or split phase)
- > Minimise the loss of on-street parking
- > Not require tidal flow or contraflow lanes (excluding existing configuration on Victoria Road)
- > Retain signalised pedestrian crossings at all current locations including midblock crossings, and no changes to pedestrian green times or late starts at intersections.

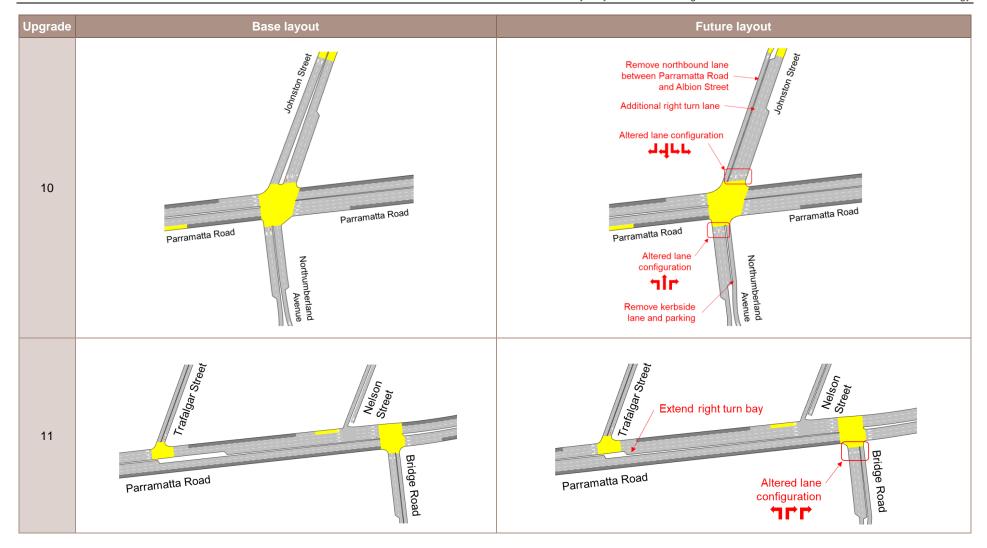
Consideration of vehicle swept paths has not been included.

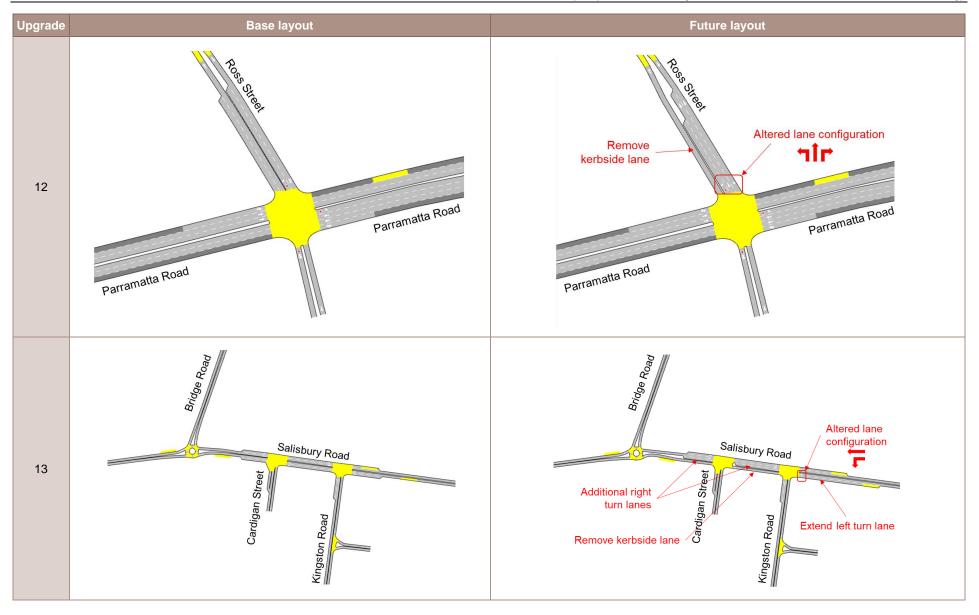
Table 2-3 describes the upgrades that were included in the With Upgrades models.

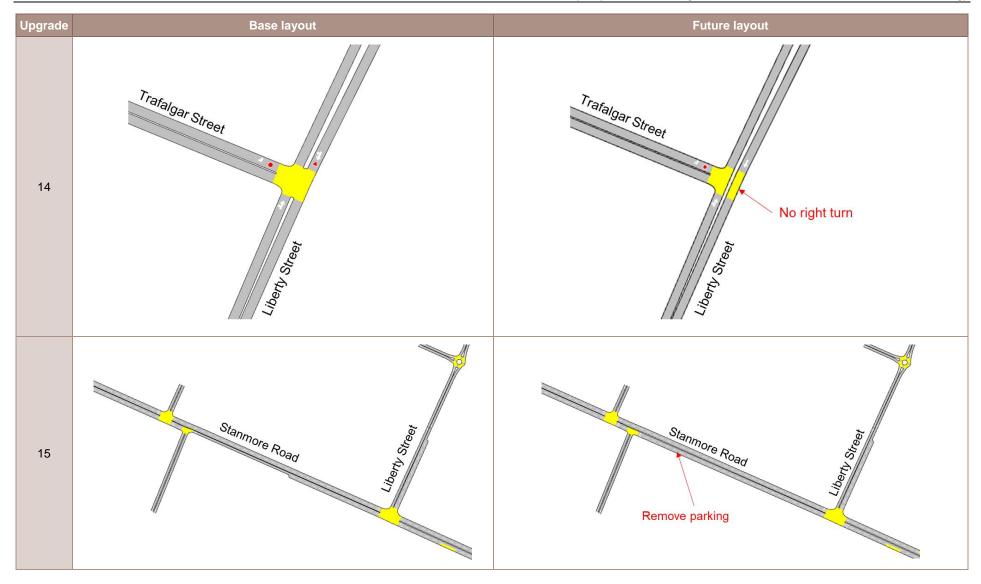

Table 2-3 List of upgrades

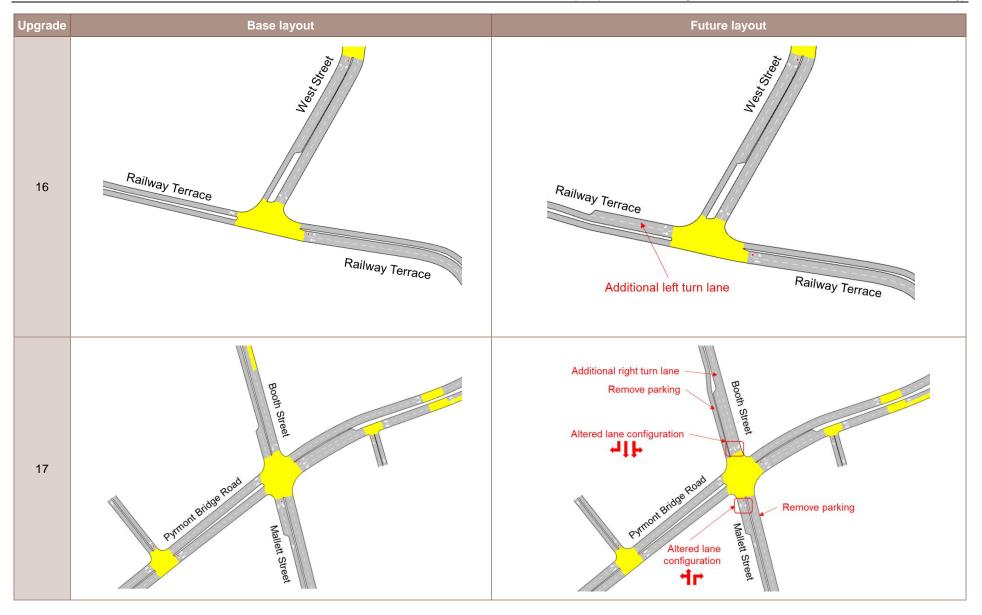
#	Upgrade location	Description of upgrade
6	Parramatta Road / West Street	Flood Street – removal of parking/kerbside lane in northbound direction to provide space for dedicated right turn lane in southbound direction
7	Parramatta Road / Crystal Street	Crystal Street – altered lane configuration to provide dedicated right turn lane and combined left/through/right lane
8	Parramatta Road / Catherine Street	Catherine Street (north) – removal of parking/kerbside lane in northbound direction to provide space for additional right turn lane in southbound direction Catherine Street (north) – altered lane configuration to provide dual right turn lanes and combined left/through lane
9	Johnston Street	Shorten right turn lane on Johnston Street (northbound) at Booth Street to provide space to remove the southbound merge on Johnston Street and allow two continuous through lanes
		Johnston Street (north) – removal of parking/kerbside lane in northbound direction to provide space for additional right turn lane in southbound direction
10	Parramatta Road / Johnston Street	Johnston Street (north) – altered lane configuration to provide dedicated right turn lane, combined through/right and dual left turn lanes
		Johnston Street (south) – removal of parking/kerbside lane in southbound direction to provide space for dedicated right turn lane in northbound direction
11	Parramatta Road / Bridge Road	Parramatta Road (west) – extend right turn bay using available space Bridge Road – altered lane configuration to provide dual right turn lanes and dedicated left turn lane
12	Parramatta Road / Ross Street	Ross Street – removal of parking/kerbside lane in northbound direction to provide space for dedicated left turn lane in southbound direction
13	Salisbury Road	Salisbury Road – removal of westbound kerbside lane between Kingston Road and Cardigan Street Salisbury Road – provide right turn bays at Cardigan Street and Kingston Road Salisbury Road – extend left turn lane leading to Kingston Road
14	Liberty Street / Trafalgar Street	Liberty Street (north) – ban right turn into Trafalgar Street
15	Stanmore Road	Stanmore Road – remove parking between Liberty Street and Wemyss Street to provide two continuous westbound lanes
16	Railway Terrace / West Street	Railway Terrace (west) – provide left turn bay
17	Pyrmont Bridge Road / Mallett Street / Booth Street	Booth Street - removal of parking/kerbside lane in northbound direction to provide space for additional right turn lane in southbound direction Booth Street – altered lane configuration to provide dedicated right turn lane, through lane and combined left/through lane Mallett Street – remove timed parking on Mallett Street southbound Mallett Street – Altered lane configuration to provide dedicated right turn lane and combined left/through lane


Table 2-4 shows the layout for each upgrade outlined above.


Table 2-4 With Upgrades infrastructure layouts







2.2 Assessment scenarios

Cardno assessed the following scenarios:

- > Base Model
- > Network Capacity Model
- > Do Minimum
- > With Upgrades.

Each of these scenarios is described below.

2.2.1 Base Model

The Base Model was previously developed, calibrated and validated for the study area. This was documented in *Base Model Development Report* (Cardno, 2020), attached to this report as **Appendix A**. The Base Model network and intersection performance results are contained within this report.

A Future Base ("Do Nothing") scenario was not assessed for future years given that some of the infrastructure upgrades have already been implemented, are under construction or are committed.

2.2.2 Network Capacity Model

The Network Capacity Model was used to determine the maximum capacity of the network in 2036 by applying incremental proportions of the traffic growth from the PTPM. The purpose of the Network Capacity Model was to determine the necessary penalty for private vehicle mode to ensure adequate capacity within the network up to 2036. This scenario was only used in the future demand development procedure and does not represent an actual projected future year scenario, so no results other than VKT for comparison to the PTPM scenarios have been included in this report.

The Network Capacity Model included the Do Minimum infrastructure.

2.2.3 Do Minimum

The Do Minimum scenario uses traffic growth from the STFM to predict the future network state and identify network deficiencies in 2026 and 2036 assuming a private vehicle mode penalty to shift some users to other modes. The Do Minimum scenario includes all upgrades implemented since the Base Model calibration date (2018), and the WestConnex Rozelle Interchange.

2.2.4 With Upgrades

The With Upgrades scenario included localised upgrades along Parramatta Road and at key locations across the study area. The purpose of the upgrades was to alleviate queueing and congestion, and reduce the network average delay time. The With Upgrades scenario includes the Do Minimum infrastructure upgrades and the additional upgrades listed in **Table 2-3**.

2.3 Assessment years and time periods

Table 2-5 summarises the scenarios and years assessed. Each scenario was assessed for two peaks consistent with the Base Model:

- > 7:15AM 9:15AM
- > 4:30PM 6:30PM.

Table 2-5 Scenarios assessed

Scenario	2018		2026		2036	
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Do Nothing (Base)	✓	✓	-	-	-	-
Network Capacity Model	-	-	-	-	✓	✓
Do Minimum	-	-	✓	✓	✓	✓
With Upgrades	-	-	✓	✓	✓	✓

3 Assumptions

This section outlines the assumptions underlying the Future Models and the metrics for assessing network and intersection performance.

3.1 Future Model assumptions

This section outlines the assumptions adopted in the development of the Future Models:

- > All bus routes and timetables were assumed to remain the same as in the Base Model.
- > The peak hours were assumed to remain consistent with the Base Model for each peak.
- > The traffic profile for each future peak was assumed to remain consistent with the Base Models.
- > Adjustments were made to some signal phase times to balance flows caused by future growth and traffic reassignment. Cycle times were assumed to remain consistent with the Base Model.
- > Pedestrian phases at signalised intersections were assumed to remain consistent with the Base Model as no future pedestrian modelling was available.
- > Assessment of intersections that were not calibrated in the Base Model is not recommended.
- > Assessment of travel time on routes that were not calibrated in the Base Model is not recommended.
- > The model only considers road vehicles (cars, trucks and buses), so does not include any improvements to public transport, walking or cycling infrastructure.

3.2 Performance metrics

This section outlines the performance metrics used for assessing the Base and Future Models.

3.2.1 Network performance metrics

Model operation is quantified based on a number of statistical outputs. **Table 3-1** provides a summary of the network performance statistics reported for this study.

Table 3-1 Network performance metrics

Metric	Unit	Description
Total traffic demand	veh	> The total number of trips that enter the network during the modelled hour
Total vehicles arrived	veh	The total number of vehicles that arrive at their destination during the modelled peak hour The total vehicles arrived includes vehicles generated during the warm-up period that arrive during the simulated period, so may be higher than the total traffic demand
Vehicle kilometres travelled (VKT)	km	The distance travelled by all vehicles in the network Useful for identifying savings in road user and external costs
Vehicle hours travelled (VHT)	hrs	The total travel time of all vehicles across the network Useful for identifying network efficiency and performance, possible congestion issues and future travel time savings
Total number of stops	stops	> The number of times a vehicle stops, summed across all vehicles in the network
Average vehicle kilometres travelled	km	> Average number of kilometres travelled by vehicles all vehicles in the network
Average time travelled in network	sec	> Average time spent in the network across all vehicles
Average number of stops	stops	> Average number of stops per vehicle
Average speed	km/hr	Average speed for all vehicles in the network Equivalent to VKT divided by VHT
Average delay	sec	Average delay time for all vehicles in the network Delay time is the difference between the experienced travel time on a route, and the travel time on that route under free-flow conditions Useful for assessing the impacts of each scenario on road users
Unreleased demand	veh	The number of vehicles that were unable to enter the modelled network during the modelled period Unreleased demand is caused by queueing that extends to the edge of the modelled network
Deleted vehicles	veh	The microscopic/mesoscopic network checker removes vehicles that are stationary in the model for too long This is designed to prevent unrealistic gridlocks, such as at roundabouts, where vehicles in the real world are capable of manoeuvring to avoid each other

DPIE requested Cardno to provide key network performance statistics per person. **Table 3-2** shows the assumed vehicle occupancies for each vehicle type. The following network statistics were provided by person in the study area:

- > Total persons arrived
- > Total person-kilometres travelled
- > Total person-travel time
- > Average speed
- > Average delay.

Table 3-2 Assumed vehicle occupancies

	Vehicle type					
	Light vehicles	Buses				
Assumed occupancy (persons)	1.11	1.00	30.00			

3.2.2 Travel time

Travel time data was used to validate the Base Model. It provides an indication of congestion hotspots along a particular route within a network and can be used to compare the future network performance. Travel times along five key routes were compared between scenarios. Average speed along each route is also provided. Cardno has adopted a colour code based on the speed ratio along the length of the route. Speed ratio is simulated speed divided by the posted speed limit. **Table 3-3** shows the colour code used throughout this report.

Table 3-3 Speed ratio colour code

Cardno also extracted travel times on Parramatta Road between the PRCUTS precincts.

3.2.3 Intersection performance metrics

The following performance metrics were used in the analysis of intersections:

- > **Delay time**: Average delay experienced by all vehicles at the intersection
- > Level of service (LOS): An intersection performance measure that is based on delay per vehicle
- > Queue length³: Maximum queue length by approach.

Table 3-4 shows the level of service categories for intersections in NSW from *Guide to Traffic Generating Developments* (Roads and Traffic Authority, 2002).

For signalised intersections, level of service is based on the weighted average delay of all approaches. For unsignalised intersections (priority intersections and roundabouts), level of service is based on the maximum delay of all approaches.

Intersections operating at LOS C or better are considered satisfactory. LOS D indicates that the intersection is approaching capacity and an accident study may be required. LOS E indicates that the intersection is at capacity, and this level of service is generally unsuitable for unsignalised intersections. LOS F indicates that the intersection is failing and requires additional capacity.

-

³ Intersections in the PRCUTS precincts only.

Table 3-4 Level of service criteria for intersections

Level of service	Description	Delay
Α	Good operation	Less than 14 seconds
В	Good operation, with acceptable delays and spare capacity	15 – 28 seconds
С	Satisfactory operation	29 – 42 seconds
D	Near capacity	43 – 56 seconds
E	At capacity	57 – 70 seconds
F	Capacity exceeded	More than 70 seconds

Source: Guide to Traffic Generating Developments (Roads and Traffic Authority, 2002)

The average delay on each approach is measured from the preceding intersection. Consequently, if the queue from one intersection spills back to the preceding intersection, this delay is captured at the second intersection and not the first. Where intersections are closely spaced, this may result in the intersection that is causing the delay appearing to perform better than other intersections nearby.

3.2.4 Network plots

DPIE requested the following network plots:

- > Traffic density: Simulated vehicles per lane per kilometre over the modelled period
- > **Speed ratio**: Simulated average speed over the modelled period for each section divided by the posted speed limit for that section
- > Heavy vehicle proportions on each link.

4 Future demand development

This section provides an overview of the process used for deriving the future traffic demand. The methodology is outlined below. The numbered steps were completed by Cardno.

The Public Transport Project Model (PTPM) was run by TfNSW with the latest land-use and travel demand assumptions from STM. The specifics of these assumptions were documented in *Strategic Transport Modelling Interface Methodology* (VIAE Consulting, October 2020). This report is provided in **Appendix D**. The PTPM was run with the Precinct Parking Module (PPM) which applies additional travel costs to the private vehicle mode to reduce its utility and reflect capacity constraints not otherwise accounted for. The PTPM matrices with PPM penalties were provided to Cardno to complete Steps 1 to 3.

Steps 1 to 3 are based on the methodology outlined in *Strategic Transport Modelling Interface Methodology* (VIAE Consulting, October 2020).

- 1. Estimation of future growth using the PTPM 2018 and 2036 demand matrices (refer to **Section 4.1**).
- 2. Incremental application of the future growth to the Base Model demand to determine the point at which the network capacity is reached (refer to **Section 4.2**).
- 3. Comparison of the network-wide vehicle kilometres travelled (VKT) between the Network Capacity Model (Step 2) and the future demand scenarios from PTPM using the PPM penalties (refer to **Section 4.3**).

SGS Economics & Planning (SGS) were commissioned by DPIE to review and update the land-use projections within the study area. The updated land-use was supplied to Transport for NSW to run the STM, PTPM and PPM. PwC were commissioned by DPIE to apply the PTPM growth to the STFM using a modified methodology designed to account for negative growth in the PTPM. The methodology for this assessment was outlined in *PRCUTS Transport Model Update Recommendations Action Plan, updated based on comments from TfNSW* (PwC, June 2021). This report has been provided in **Appendix E**. The STFM matrices from the PwC update were provided to Cardno to complete Step 4.

4. Estimation of the future traffic demand using the outputs from the STFM (refer to **Section 4.4**).

This methodology has been endorsed by Transport for NSW and DPIE for use in this project. The assumptions and limitations of the methodology are explained in **Appendix D** and have been acknowledged by both agencies.

The following sections describe the methodology, assumptions and results of each stage.

4.1 PTPM growth estimation

This section outlines the methodology used to extract the future growth from the PTPM and summarises the results. The PTPM only includes the AM Peak.

The PTPM demands for the 2018 base-year scenario and 2036 high-growth scenario were extracted. The PTPM cordon provided included 119 centroids, consisting of:

- > 65 external gates representing origins/destinations outside the study area
- > 15 additional gates representing the approaches to the future WestConnex (WCX) Rozelle Interchange (not present in the 2018 base-year scenario cordon)
- > 27 internal zones representing origins/destinations inside the study area
- > Three zones representing train stations
- > Seven zones representing light rail stops
- > Two zones representing other destinations (Glebe Island Container Terminal and Glebe Point Ferry).

Appendix F shows the PTPM cordon and zoning for 2018 and 2036.

Only the entrance and exit points to the WestConnex Rozelle Interchange on City-West Link Road were included in the model. Consequently, any trips between the following centroids do not enter the modelled road network at any point:

New M4 Motorway

> Western Harbour Tunnel

> M8 Motorway

> Victoria Road.

The demands between these centroids were removed from the matrix. Note that the demands between the centroids listed above and all other centroids in the study area remain in the matrix as these vehicles will enter the modelled network.

The PTPM includes four road-user vehicle types:

> Cars

> Rigid heavy vehicles

> Light commercial vehicles (LCV)

> Articulated heavy vehicles.

The Aimsun model only differentiates between light vehicles and heavy vehicles. The PTPM matrix was aggregated to produce two separate matrices representing light and heavy vehicles.

Growth across the study area was determined separately for each OD pair in the strategic model. The growth was calculated based on a subtraction of the 2018 PTPM matrix from the 2036 PTPM matrix. Zones that only exist in the 2036 PTPM matrix (i.e. those representing the WestConnex Rozelle Interchange) were assigned zero demand in 2018.

The strategic model growth was disaggregated to match the zoning structure already established in the Aimsun model. As was the case with the Base Model, the vehicle demand for train stations and light rail stops in the study area was low. These were not included as separate centroids in the Base Model, with the demand for these locations incorporated into the surrounding zone/s. The growth at these locations was similarly incorporated into the surrounding zones in the Aimsun model.

4.2 Incremental growth application

The traffic demand was incrementally applied to the Base Model to determine the network capacity. The following methodology was used:

- 1. Add a fixed proportion of the PTPM growth to the Base Model demand.
- Apply this demand to the Aimsun model.
- 3. Run the model and extract the model input count (the number of vehicles that are able to enter the model during the simulation period).
- 4. Graph the proportion of growth applied versus the model input count for each scenario to determine the maximum network capacity.

The network capacity was assumed to occur at the proportion of the PTPM growth applied where the number of vehicles able to enter the model during the simulation period is at a maximum.

Figure 4-1 shows the demand applied and number of vehicles arrived in the network by the end of the simulation period for the proportions of the PTPM demand applied. The application of 40 per cent, to the nearest five percent, of the PTPM growth to the Base Network resulted in a peak in the number of vehicles able to enter the model during the simulation period.

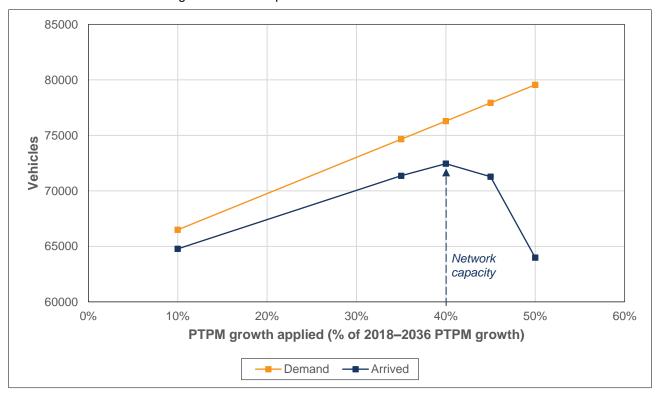


Figure 4-1 Incremental growth application results

4.3 Comparison of network capacity VKT to PPM penalty scenarios

The following procedure was used to determine the PTPM scenario with PPM penalty that most closely corresponds to the Network Capacity Model:

- 1. Calculate the change in vehicle kilometres travelled (VKT) between the Aimsun Network Capacity Model and Base Model as a percentage of the Base Model VKT
- 2. For each PPM penalty scenario, determine the change in VKT between the PTPM future scenario and PTPM base scenario as a percentage of the base VKT
- 3. Compare the Aimsun VKT change to the PTPM VKT change and identify which PPM penalty scenario has a VKT closest to that of the Aimsun model.

Figure 4-2 shows the change in VKT from the PTPM base scenario (2018) with each PPM penalty scenario applied. PPM0 resulted in an increase in VKT of 10.1 per cent while PPM60 resulted in a decrease of 11.0 per cent. The Network Capacity Model (2036 40% Growth) exhibited a decrease in VKT of 3.9 per cent compared to the Aimsun base scenario (2018). A decrease of 3.9 per cent corresponds to between PPM30 and PPM45 in the PTPM.

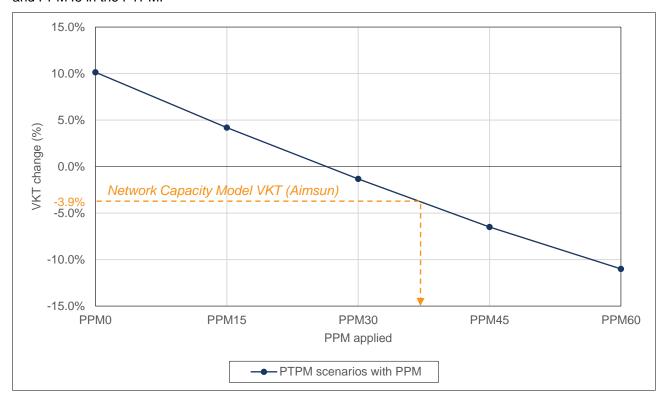


Figure 4-2 Comparison of Aimsun and PTPM VKT changes between scenarios

Cardno was advised by Transport for NSW and DPIE that to maintain consistency with other precincts along the corridor, PPM15 would be applied to all subsequent modelling.

4.4 STFM demand estimation

SGS Economics & Planning (SGS) were commissioned by DPIE to review and update the land-use within the study area. The updated land-use was supplied to Transport for NSW to run the STM, PTPM and PPM. PwC were commissioned by DPIE to apply the PTPM growth to the STFM using a modified methodology designed to account for negative growth in the PTPM. The methodology for this assessment was outlined in PRCUTS Transport Model Update Recommendations Action Plan, updated based on comments from TfNSW (PwC, June 2021). The STFM matrices from the PwC update for the study area were provided to Cardno.

The STFM was run with two scenarios:

- > No Development
- > With Development.

Cardno was instructed by DPIE to use the With Development scenario in the Aimsun model. All future references to the STFM demand in this report refer to the With Development scenario demand.

This section outlines the methodology for developing the future traffic demands using the STFM matrices. The steps are briefly outlined below:

- 1. Growth in the STFM for each origin-destination (OD) pair was calculated by subtraction of the base year matrix (2018) from the future year matrix (2026 or 2036)
- 2. The STFM growth was disaggregated to match the Aimsun zoning structure.
- 3. The growth was applied to the base matrices.
- 4. The future matrices were profiled using the same profile as the base matrices.

The following sections summarise the STFM and Aimsun demands.

4.4.1 STFM demand summary

This section provides a summary of the STFM demand

4.4.1.1 WestConnex demands

The STFM demands include trips that only use the WestConnex tunnels and do not interact with the surface network at all. **Figure 4-3** shows the number of trips in each year and peak that only use the WestConnex network within the study area. Only the entry and exit portals to WestConnex are part of the model, so vehicles that do not use the surface network at all are not included in the Aimsun models. This demand was removed from the STFM demands prior to calculating the STFM growth in the study area.

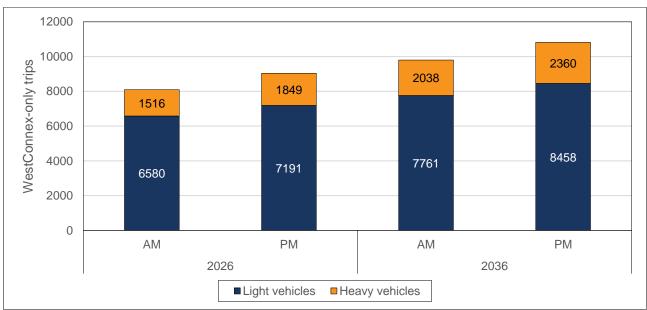


Figure 4-3 STFM WestConnex-only trips

4.4.1.2 STFM trip distribution

Trips were classified based on their origin and destination:

- > **External-external** (through trips): Trips with both origin and destination outside the study area, but that transit through the study area
- > Internal-external: Trips with an origin inside the study area but destination outside the study area
- > External-internal: Trips with an origin outside the study area but destination inside the study area
- > Internal-internal: Trips with both origin and destination inside the study area.

Figure 4-4 shows the distribution of trips in the study area. The main observations are listed below.

- > Trips entirely within the study area only represent a small proportion of the total demand in each peak.
- > Trips with either an origin or destination in the study area, but not both, make up between 35 and 38 per cent of the total demand in each peak. Trips from the study area to external destinations are typically higher in the AM Peak, while trips from external destinations to the study area are higher in the PM Peak.
- > Through trips (external-external) make up about 60 per cent of the total demand in each year.

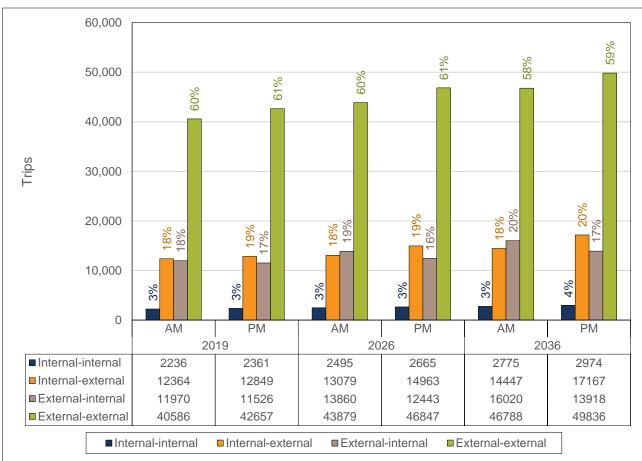


Figure 4-4 STFM trip distribution

4.4.1.3 STFM demand summary

Figure 4-5 shows the STFM demand in each future year. These values exclude the WestConnex-only trips identified in **Section 4.4.1.1**.

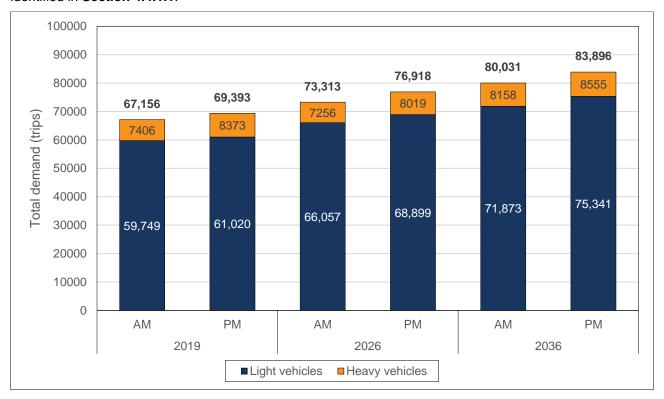
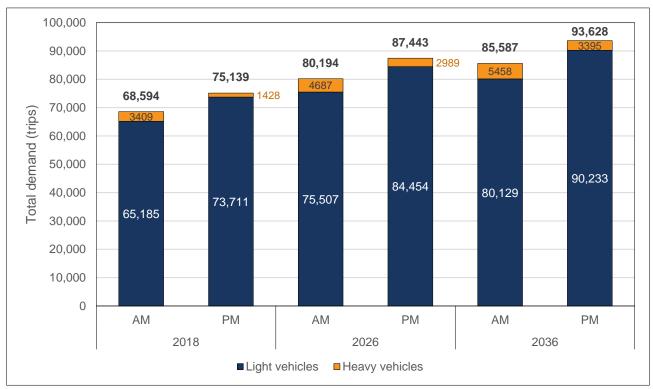


Figure 4-5 STFM demand in each future year

Table 4-1 provides a summary of the STFM demand and growth between 2019 and the two future years for each vehicle type. The main findings are discussed below.

- > Between 2019 and 2026, the overall traffic demand increases by 11 per cent in the AM Peak and 13 per cent in the PM Peak. This corresponds to an additional 6308 and 7879 trips respectively.
- There is a decrease in the total heavy vehicle demand between 2019 and 2026 of two per cent in the AM Peak and four per cent in the PM Peak. The reduction is cause by diverting through traffic truck trips to WestConnex.
- > Both light and heavy vehicle volumes increase between 2026 and 2036. The total traffic increase from 2019 is 19 per cent in the AM Peak and 21 per cent in the PM Peak.

Table 4-1 STFM growth summary


		AM Peak		PM Peak			
Year	Light vehicles	Heavy vehicles	All vehicles	Light vehicles	Heavy vehicles	All vehicles	
2019	59,749	7406	67,156	61,020	8373	69,393	
2026	66,057	7256	73,313	68,899	8019	76,918	
2019 – 2026 growth	6308 (+11%)	-150 6157 (-2%) (+9%)		7879 (+13%)	-354 (-4%)	7525 (11%)	
2036	71,873	8158	80,031	75,341	8555	83,896	
2019 – 2036 growth	12124 (+20%)	752 (+10%)	12876 (+19%)	14321 (+23%)	182 (+2%)	14503 (+21%)	

4.4.2 Aimsun traffic demand

The STFM growth was disaggregated to match the Aimsun zoning structure.

Figure 4-5 shows the STFM demand in each future year. The values indicated exclude the WestConnex-only trips identified in **Section 4.4.1.1**.

Table 4-3 summarises the future demand for the Aimsun model. The key observations are highlighted below.

- > The STFM heavy vehicle demand for the base year is much higher than the Aimsun model demand. The Aimsun demand was validated using traffic surveys for more than 80 intersections across the study area.
- > Application of the heavy vehicle growth from STFM (including negative growth) results in a number of ODs with negative heavy vehicle trips in the Aimsun matrix. **Table 4-2** shows that the STFM growth results in about 10 to 14 per cent of ODs having a negative heavy vehicle volume. These ODs were set to zero trips in the Aimsun matrix, which is a conservative assumption as it increases the number of vehicles in the model.

Table 4-2 ODs with negative trips in the Aimsun traffic demand

Year	Number of ODs wit	h negative HV trips	Total number of negative HV trips		
	AM Peak	PM Peak	AM Peak	PM Peak	
2026	3085	3347	1498	2015	
	(13%)	(14%)	(30%)	(64%)	
2036	2432	2640	1366	1901	
	(10%)	(11%)	(21%)	(46%)	

- > The Aimsun growth is higher than the STFM growth because:
 - The Aimsun growth includes an additional year of growth (2018-2019) as the Aimsun base year is 2018 while the STFM base year is 2019.
 - ODs where the demand became negative when the STFM growth was applied were set to nil which introduces more trips into the matrix.

Table 4-3 Aimsun traffic demand

		AM Peak		PM Peak			
Year	Light vehicles	Heavy vehicles	All vehicles	Light vehicles	Heavy vehicles	All vehicles	
2019	65,185	3409	68,594	73,711	1428	75139	
2026	75,507	4687	80194	84,454	2989	87443	
2019 – 2026 growth	10,322 (+16%)	1278 (+37%)	, , , , , , , , , , , , , , , , , , , ,		1,561 (109%)	12,304 (16%)	
2036	80,129	5458	85587	90,233	3395	93628	
2019 – 2036 growth	14,944 (23%)	2,049 (60%)	16,993 (25%)	16,522 (22%)	1,967 (138%)	18,489 (25%)	

5 Base Model operational results

This section outlines the Base Model operational results. The development, calibration and validation of the Base Models was previously outlined in *Base Model Development Report* (Cardno, 28 October 2020). The results in this section establish the base reference case for comparative assessment with future scenarios.

5.1 Data inputs

The Base Models were developed using the following inputs:

- > Cordon matrices from the STFM
- Intersection counts
- > Travel time data from TomTom
- > Traffic signal data, including historical phase times, cycle times and offsets
- > Public transport operations from the GTFS feed.

5.2 Model specifications and assumptions

The traffic model was developed to replicate the road network conditions observed at the time of development. The settings and parameters of note from the Base Model are:

- > Aimsun version 8.4.34 was used to develop the Base Models
- > The vehicle experiment results were calculated from stochastic route choice (SRC) using vehicle paths derived from dynamic user equilibrium (DUE) assignment
- Signals were coded as fixed using historical timings from SCATS data in 15-minute intervals (microsimulation area) or one-hour intervals (mesoscopic simulation area)
- > The peak periods were identified using traffic counts across all surveyed intersections:

AM Peak: 7:15AM – 9:15AMPM Peak: 4:30PM – 6:30PM.

- The Base Model was developed in accordance with *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013). The calibration and validation results showed that the Base Model provides an acceptable representation of existing conditions, including:
 - High network-wide calibration with over 89 per cent of turns having a GEH less than five in the AM
 Peak and over 90 per cent in the PM Peak
 - High statistical correlation between modelled and observed turning volumes
 - Modelled travel time on key routes fits well with the observed data.

The Base Model Development Report (Cardno, October 2020) is attached to this report as Appendix A.

The Base Model was reviewed by Arup on behalf of DPIE and Transport for NSW and the findings summarised in *Base Model Peer Review* (Arup, March 2020) which is attached to this report as **Appendix B**. The model and report were refined based on Arup's comments and resubmitted to Arup for independent review. The model was subsequently endorsed as fit for purpose by Arup.

-

^{4 2020-06-03 (}b46ec77181 x64 Python 2)

5.3 Existing network performance

5.3.1 Network performance summary

Table 5-1 summarises the Base Model network performance results for all peaks. Traffic demand is highest in the PM Peak, and this corresponds to a higher VKT and VHT. However, network performance is generally worse in the AM Peak with a lower mean speed and increased average delay. Unreleased demand is very low in both peaks.

Table 5-1 Network performance results – Base Model

Naturally wantamanana matuia	l lm:t	2018 Base Model results							
Network performance metric	Unit	AM Peak	PM Peak						
All vehicles	All vehicles								
Total traffic demand	veh	68,595	75,142						
Total vehicles arrived	veh	68,933	74,849						
Total kilometres travelled (VKT)	km	168,922	188,415						
Vehicle hours travelled (VHT)	hr	6718	6988						
Average per vehicle									
Average kilometres travelled	km	2.5	2.5						
Average time travelled in network	S	147	138						
Average speed	km/hr	27.6	29.0						
Average delay	s	78	71						
Unreleased demand	Unreleased demand								
Unreleased demand (% of total demand)	veh (%)	4 (0.0%)	3 (0.0%)						

5.3.2 Person statistics

Table 5-2 shows key network statistics per person based on the assumed vehicle occupancies outlined in **Section 3.2.1**.

Table 5-2 Network statistics by person – Base Model

		2018 Base Model results					
Network performance metric	Unit	AM	Peak	PM Peak			
		LV	HV	LV	HV		
Network statistics by vehicle type	•						
Total vehicles arrived	veh	65,210	3361	73,284	1486		
Total kilometres travelled (VKT)	km	158,156	9785	183,672	4531		
Vehicle hours travelled (VHT)	hr	6254	401	6800	176		
Average speed	km/hr	27.7	27.0	29.0	28.6		
Average delay	S	78	78	71	69		
Network statistics by person							
Total persons arrived	person	72,698	3361	81,699	1486		
Total person-kilometres travelled	km	176,316	9785	204,762	4531		
Total person-hours travelled	hr	6973	401	7581	176		
Average speed per person	km/hr	27.7	27.0	29.0	28.6		
Average delay per person	S	87	78	79	69		

5.4 Existing travel times

This section provides an overview of the travel times on key routes and through the PRCUTS precincts in the 2018 Base Model.

5.4.1 Travel times on key routes

Travel times on key routes were validated in the development of the Base Model. **Table 5-3** lists the modelled 2018 travel times on each route. The average speed along each route is also included. The colour code shown was presented in **Section 3.2.2** and excludes any temporary speed reductions such as school zones.

Note that the travel times shown in this table are for vehicles that traverse the full length of the route only.

Table 5-3 Travel times on key routes – Base Model

Bouto	D:	Travel	time (s)	Average speed (km/hr)		
Route	Dir.	AM Peak	PM Peak	AM Peak	PM Peak	
Dalmain Dand	NB	332	250	15.5	20.6	
Balmain Road	SB	188	169	18.3	20.4	
Crystal Street	NB	176	195	17.6	15.9	
	SB	273	224	11.4	13.9	
Johnston Street	NB	312	284	20.2	22.2	
Johnston Street	SB	254	302	24.7	20.8	
Marian Stroat	EB	320	219	17.5	25.6	
Marion Street	WB	209	205	26.8	27.3	
Parrametta Pand	EB	1165	881	19.1	25.2	
Parramatta Road	WB	820	927	27.0	23.9	

5.4.2 Travel times through precincts

Table 5-4 shows the modelled travel time through each precinct in each direction. Overleaf, **Figure 5-1** and **Figure 5-2** show travel times through each precinct along Parramatta Road for the eastbound and westbound directions respectively.

Table 5-4 Precinct travel times – Base Model

Direction	Travel time through precinct (s)							
	Taverners Hill	Leichhardt	Camperdown					
AM Peak								
Eastbound	407	390	223					
Westbound	197	284	115					
PM Peak								
Eastbound	278	332	126					
Westbound	215	292	179					

Note that the travel times shown in these graphs are the cumulative sum of the travel times of each section along the route, so include vehicles that only traverse part of the route.

Figure 5-1 Travel times between precincts (eastbound) –Base Model

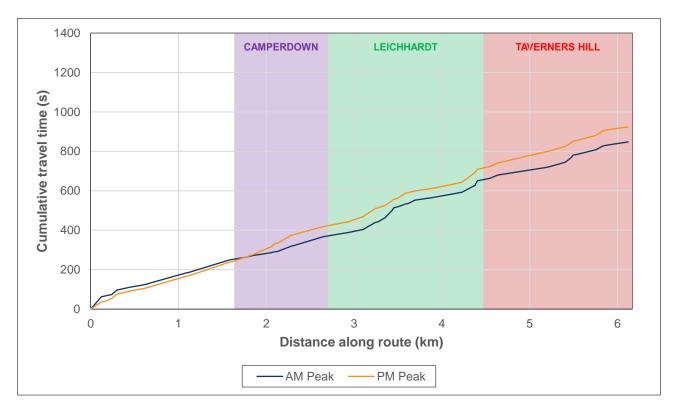


Figure 5-2 Travel times between precincts (westbound) –Base Model

5.5 Existing intersection performance

This section provides an overview of intersection performance in the study area. The results shown are for intersections in the PRCUTS precincts only. Detailed performance results for all intersections assessed are provided in **Appendix H**.

5.5.1 Intersection operation

Table 5-5 and **Table 5-6** show the intersection performance results for the AM and PM peaks respectively. These intersections were among those calibrated using survey data as documented in *Base Model Development Report* (Cardno, 2020). It is not recommended to assess the performance of intersections that were not calibrated.

The following sections provide a brief summary of the turns, movements and intersections that are at or over capacity in each peak. In general, most intersections along the corridor show acceptable performance for through traffic on Parramatta Road, however there is in most cases insufficient capacity on the side roads and some right turns from Parramatta Road.

Intersection performance at signalised intersections is based on the weighted average delay. Given that the through traffic movements on Parramatta Road are considerably higher than other movements at these intersections, overall intersection performance may be acceptable while there remain significant delays on the side road approaches.

AM Peak

- At Marion Street / Leichhardt Street / Balmain Road, the average delay on Balmain Road in both directions exceeds 70 seconds which corresponds to LOS F. The worst approach is Balmain Road (S). All movements on these approaches are LOS F across both hours.
- > While the overall performance of Pyrmont Bridge Road / Booth Street / Mallett Street is LOS D, delays on Booth Street correspond to LOS E or F in both hours, and the right turn from Pyrmont Bridge Road is also LOS E in both hours.
- > Parramatta Road / Liverpool Road is LOS C overall, but performance of the right turns from Liverpool Road and Parramatta Road is LOS E with an average delay of more than 60 seconds in the second hour.
- While the Parramatta Road movements at Sloane Street all have average delays of less than 38 seconds, most movements from Sloane Street in both directions are LOS E in both hours.
- > Parramatta Road / Old Canterbury Road / Tebbutt Street performs at LOS F due queue spillback from the West Street intersection.
- The left and right turns out of Norton Street at Parramatta Road perform at LOS F in the first hour of the AM Peak. Performance improves to LOS C on the left turn and LOS E on the right turn in the second hour.
- > The right turn from Parramatta Road into West Street experiences delays of over 140 seconds in both hours. At this intersection, some movements on Flood Street also perform at LOS F.
- > The through and right turn movements from Crystal Street at Parramatta Road experience delays exceeding 80 seconds in both hours, corresponding to LOS F. This intersection in particular is a bottleneck in the AM Peak with the average delay eastbound on Parramatta Road also exceeding 80 seconds by the second hour.
- > At Parramatta Road / Catherine Street / Phillip Street, most movements on the side roads perform at LOS E or worse in both hours. The highest delay is on the right turn movements. By the second hour, the average delay on Catherine Street exceeds 200 seconds.
- > On Percival Road approaching Parramatta Road, average delay exceeds 70 seconds for all movements by the second hour.
- Average delays on Johnston Street and Northumberland Avenue were at least 52 seconds for all movements, with some turns experiencing delays of up to 89 seconds. The right turn from Parramatta Road also experienced heavy delays of up to 107 seconds.
- > The right turn from Bridge Road is LOS F in the first hour and LOS E in the second hour.
- Average delay on Pyrmont Bridge Road is equivalent to LOS E in both peaks.

- > At Parramatta Road / Mallett Street, delays increase throughout the AM Peak, with all movements on the southern approach exceeding 70 seconds average delay by the second hour.
- > The side road movements at Parramatta Road / Missenden Avenue / Lyons Road experience delays of up to 106 seconds. The worst-performing movements are on Lyons Road. The right turn from Parramatta Road also has an average delay of 85 seconds in the first hour and 110 seconds in the second hour.

PM Peak

- > At Marion Street / Leichhardt Street / Balmain Road, average delay on Balmain Road in both directions corresponds to LOS F. Delays on the southern approach are highest and were up to 89 seconds.
- At Liverpool Road, the right turn from Parramatta Road is LOS F in both peaks with delays up to 159 seconds. The right turn from Liverpool Road is also LOS E in the first hour but improves to LOS D in the second.
- > The northern approach to Parramatta Road / Sloane Street is over capacity in both hours with delays exceeding 62 seconds on all approaches. Most movements on the southern approach are also LOS E in both hours.
- > At Parramatta Road / Norton Street, the right turn from Norton Street performs at LOS E in both peaks, but all other movements have average delays less than 56 seconds (LOS D or better).
- Overall intersection performance at Parramatta Road / Flood Street / West Street is LOS E in both hours of the PM Peak. Average delays on at least one movement on all approaches except West Street corresponds to LOS F in one or both hours. The worst performing movements are the through and right turn from Flood Street, all movements on Parramatta Road in the westbound direction and the right turn from Parramatta Road (W) into West Street.
- > All movements on Crystal Street at Parramatta Road experience delays corresponding to LOS F in one or both hours. In particular, the through and right turn movements experience protracted delays of up to 153 seconds. The right turn from Parramatta Road into Crystal Street also has an average delay corresponding to LOS E in both hours.
- > The left turn from Phillip Street onto Parramatta Road has an average delay corresponding to LOS F in both hours. This is caused by downstream queueing which prevents vehicles from turning into Parramatta Road.
- The through and right turn movements on Johnston Street have average delays of up to 107 seconds. The right turn from Parramatta Road into Johnston Street also experiences delays up to 82 seconds (LOS F).
- > The right turn from Parramatta Road at Bridge Road is LOS E in the first hour and LOS F in the second hour. The right turn from Bridge Road is also LOS E in the second hour.
- > Pyrmont Bridge Road experiences long delays in both hours that correspond to LOS F. The maximum delay is 116 seconds. In the second hour, queueing on Parramatta Road in the westbound direction also results in delays of up to 70 seconds.
- > Mallett Street performs poorly in both directions. The average delay on the left and through movements is LOS E in most instances, and the right turns are LOS F with average delays of up to 185 seconds.
- > The right turn out of Dalhousie Street has an average delay of up to 94 seconds and is LOS F in both hours.
- > At Missenden Road, most movements on Missenden Road are LOS E in both peaks.

Table 5-5 Intersection performance results – Base Model (AM Peak)

	Intersection		7:15AM – 8:15AM			8:15AM – 9:15AM		
Inte			Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS
19	Marion Street / Norton Street	S	1753	28.0	В	1718	27.5	В
20	Marion Street / Leichhardt Street / Balmain Road	S	1611	41.5	С	1545	41.1	С
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S	1783	51.0	D	1690	39.0	С
39	Parramatta Road / Liverpool Road	S	4055	38.0	С	4048	35.6	С
42	Tebbutt Street / Lords Road	S	1449	12.4	Α	1498	15.6	В
44	Tebbutt Street / Hathern Street	S	1425	19.7	В	1508	20.0	В
45	Parramatta Road / Sloane Street	S	3975	18.3	В	3893	27.4	В
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	S	3727	73.5	F	3763	80.7	F
50	Parramatta Road / Norton Street	S	3285	24.6	В	3321	14.7	В
51	Parramatta Road / Flood Street / West Street	S	3648	56.4	D	3672	56.4	D
52	Parramatta Road / Crystal Street / Balmain Road	S	3813	33.1	С	3731	42.7	D
53	Parramatta Road / Catherine Street / Phillip Street	S	3305	14.9	В	3292	38.4	С
67	Parramatta Road / Young Street / Percival Road	S	3433	26.6	В	3448	32.0	С
68	Parramatta Road /Northumberland Avenue / Johnston Street	S	4059	29.1	С	4050	32.9	С
69	Parramatta Road / Bridge Road	S	3964	38.2	С	3931	44.0	D
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S	3960	12.9	А	3980	12.5	А
71	Parramatta Road / Mallett Street	S	3850	33.2	С	3933	39.3	С
81	Parramatta Road / Dalhousie Street	S	3114	34.3	С	3169	37.0	С
83	Parramatta Road / Missenden Avenue / Lyons Road	S	3455	39.7	С	3676	49.0	D

Table 5-6 Intersection performance results – Base Model (PM Peak)

			4:30PM - 5:30PM			5:30PM - 6:30PM		
Inte	Intersection		Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS
19	Marion Street / Norton Street	S	1575	24.5	В	1596	28.3	В
20	Marion Street / Leichhardt Street / Balmain Road	S	1456	40.5	С	1441	41.7	С
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S	1689	23.8	В	1864	25.2	В
39	Parramatta Road / Liverpool Road	S	4584	33.5	С	4671	43.1	D
42	Tebbutt Street / Lords Road	S	1656	16.0	В	1657	16.1	В
44	Tebbutt Street / Hathern Street	S	1774	25.4	В	1763	30.3	С
45	Parramatta Road / Sloane Street	S	4484	22.3	В	4589	28.3	В
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	S	4065	17.7	В	4217	17.1	В
50	Parramatta Road / Norton Street	S	3595	32.0	С	3808	30.7	С
51	Parramatta Road / Flood Street / West Street	S	4048	59.1	Е	4339	59.4	Е
52	Parramatta Road / Crystal Street / Balmain Road	S	3971	38.4	С	4167	32.2	С
53	Parramatta Road / Catherine Street / Phillip Street	S	3407	24.3	В	3542	27.5	В
67	Parramatta Road / Young Street / Percival Road	S	3468	16.7	В	3603	17.1	В
68	Parramatta Road /Northumberland Avenue / Johnston Street	S	4287	28.3	В	4470	33.8	С
69	Parramatta Road / Bridge Road	S	3876	26.2	В	4037	31.9	С
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S	3818	32.8	С	3991	49.7	D
71	Parramatta Road / Mallett Street	S	3494	19.1	В	3594	19.3	В
81	Parramatta Road / Dalhousie Street	S	3551	35.4	С	3707	37.2	С
83	Parramatta Road / Missenden Avenue / Lyons Road	S	3431	46.0	D	3564	37.0	С

Figure 5-3 and Figure 5-4 show the intersection performance results on a map of the study area.

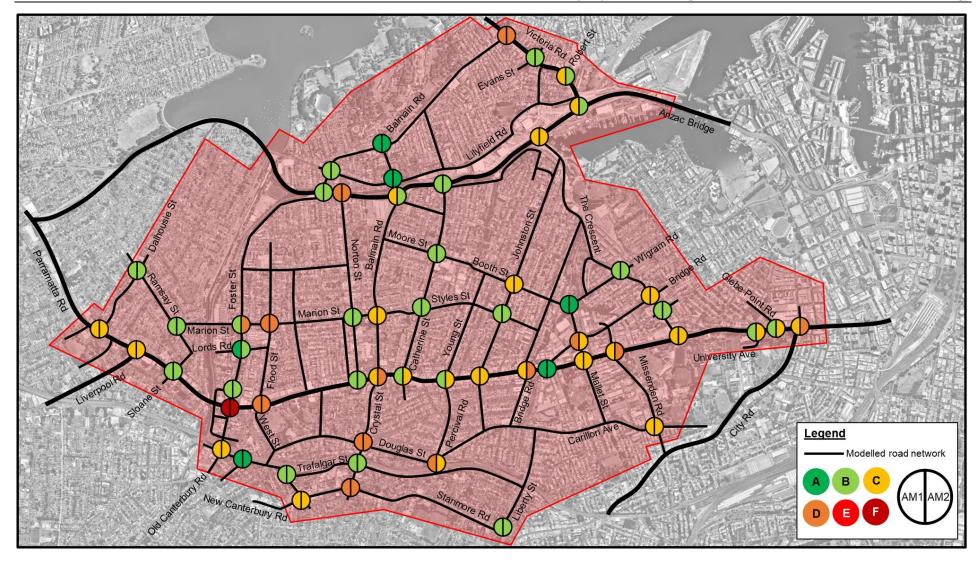


Figure 5-3 Intersection level of service – Base Model (AM Peak)

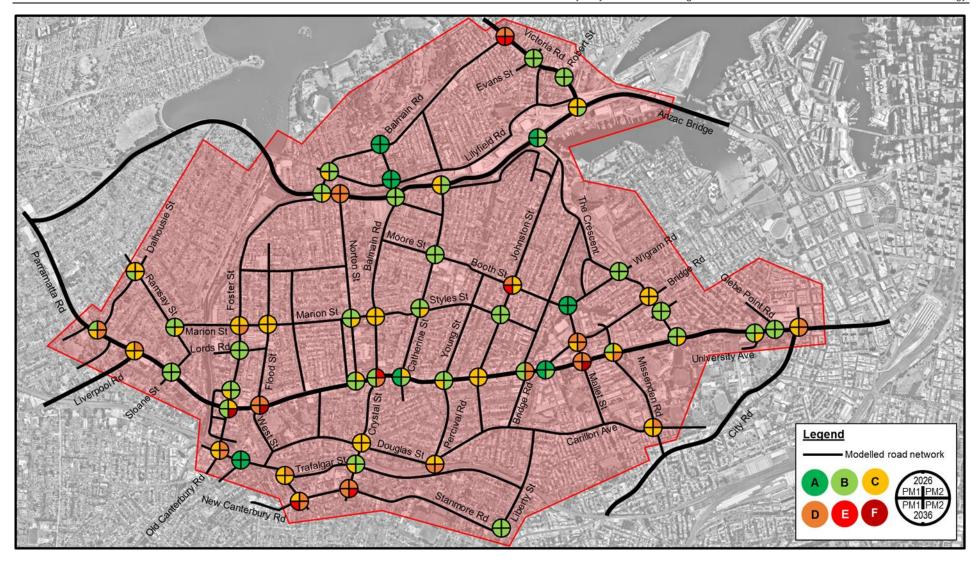


Figure 5-4 Intersection level of service – 2018 Base Model (PM Peak)

5.5.2 Queue lengths at major intersections

Table 5-7 shows the maximum queue length at major intersections along Parramatta Road in the PRCUTS precincts. On side roads, only queueing within the microsimulation area is included.

Table 5-7 Maximum queue length at major intersections in the PRCUTS precincts – Base Model

Interpostion	Approach		Maximum queue length (m)				
Intersection	Appr	oacn	AM Peak	PM Peak			
	N	Dalhousie Street	87	114			
Parramatta Road / Dalhousie Street	Е	Parramatta Road	91	86			
24	W	Parramatta Road	301	294			
	E	Parramatta Road	32	32			
Parramatta Highway / Hume Highway	S	Hume Highway	28	29			
· · · · · · · · · · · · · · · · · · ·	W	Parramatta Road	116	136			
	N	Sloane Street	45	50			
Parramatta Road /	Е	Parramatta Road	291	328			
Sloane Street	S	Sloane Street	298	300			
	W	Parramatta Road	306	147			
	N	Flood Street	134	231			
Parramatta Road /	Е	Parramatta Road	476	487			
Flood Street / West Street	S	West Street	66	68			
	W	Parramatta Road	193	184			
	N	Norton Street	72	71			
Parramatta Road / Norton Street	Е	Parramatta Road	117	121			
Notion Street	W	Parramatta Road	35	37			
Parramatta Road /	Е	Parramatta Road	36	37			
Crystal Street /	S	Crystal Street	160	162			
Balmain Road	W	Parramatta Road	115	116			
	N	Catherine Street	176	68			
Parramatta Road /	Е	Parramatta Road	223	223			
Catherine Street	S	Catherine Street	98	105			
	W	Parramatta Road	51	48			
	N	Young Street	104	100			
Parramatta Road /	Е	Parramatta Road	66	58			
Young Street / Percival Road	S	Percival Road	82	65			
	W	Parramatta Road	244	41			
	N	Johnston Street	56	54			
Parramatta Road /	Е	Parramatta Road	83	81			
Johnston Street / Northumberland Avenue	S	Northumberland Avenue	45	44			
	W	Parramatta Road	146	140			
	Е	Parramatta Road	45	45			
Parramatta Road / Bridge Road	S	Bridge Road	87	88			
Dhuge Noau	W	Parramatta Road	34	26			

Intersection	Approach		Maximum queue length (m)				
Intersection	Appi	Dacii	AM Peak	PM Peak			
Parramatta Road /	N	Pyrmont Bridge Road	73	164			
Pyrmont Bridge Road /	E	oach AM Peak	268				
Denison Street	W	Parramatta Road	40	39			
	N	Mallett Street	72	71			
Parramatta Road /	E	Parramatta Road	36	39			
Mallett Street	S	Mallett Street	238	140			
	W	Parramatta Road	265	37			
Parramatta Road /	N	Pyrmont Bridge Road 73 Parramatta Road 194 Parramatta Road 40 Mallett Street 72 Parramatta Road 36 Mallett Street 238 Parramatta Road 265 Lyons Road 97 Parramatta Road 198	78				
Lyons Road /	E	Parramatta Road	198	353			
Missenden Road	S	Missenden Road	62	103			

5.6 Existing network plots

5.6.1 Traffic density

Figure 5-5 and **Figure 5-6** show the simulated traffic density for the AM and PM peaks respectively. In both peaks, traffic density is highest along Parramatta Road, with significant queueing approaching the Parramatta Road / West Street / Flood Street intersection in the AM Peak. Other areas with high traffic density include Crystal Street and the approaches to Victoria Road.

5.6.2 Speed ratio

Figure 5-7 and **Figure 5-8** show the simulated speed ratio for the AM and PM peaks respectively. Speed ratio is the average section speed as a proportion of the posted speed limit. The simulated speed ratio is low along Parramatta Road, particularly eastbound in the AM Peak and westbound in the PM Peak. Speed ratio is low on most approaches to signalised intersections along Parramatta Road, Victoria Road and City-West Link Road. Simulated speeds on Crystal Street and Stanmore Road, and their approaches, were low in both peaks also.

5.6.3 Heavy vehicle proportions

Figure 5-9 and **Figure 5-10** show the proportion of the total traffic volume on each link that is heavy vehicles. The proportion of heavy vehicles is significantly higher in the AM Peak than in the PM Peak on most roads. In the AM Peak, the heavy vehicle proportion on Parramatta Road westbound and City-West Link Road westbound is more than eight per cent. There is also high heavy vehicle traffic on Norton Street, Livingstone Road and Glebe Point Road.

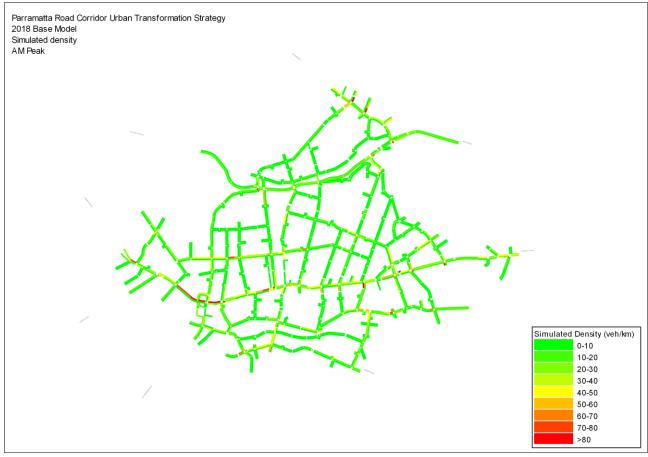


Figure 5-5 Simulated density – Base Model (AM Peak)

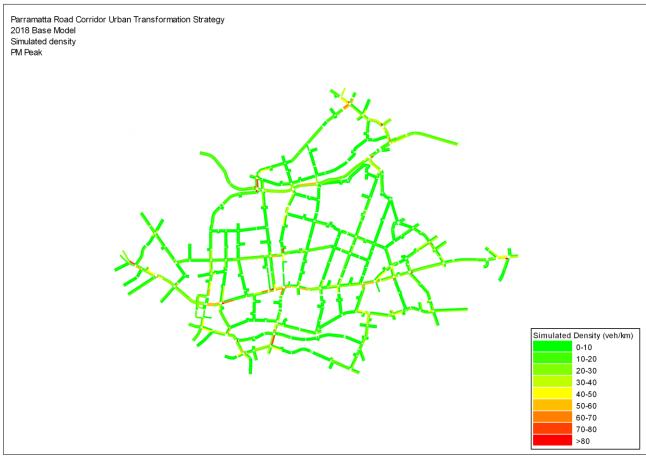


Figure 5-6 Simulated density – Base Model (PM Peak)

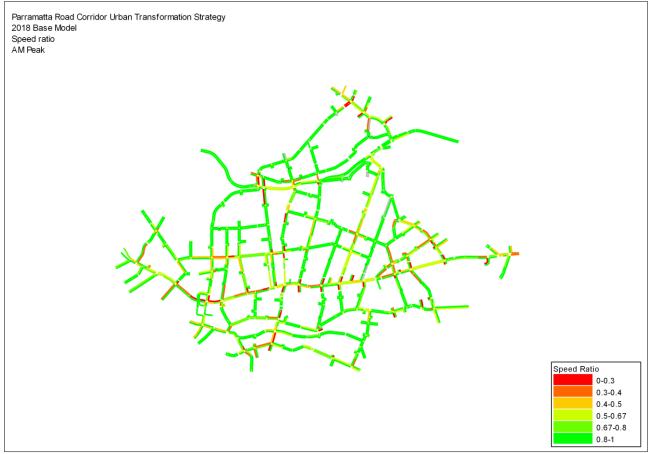


Figure 5-7 Speed ratio – Base Model (AM Peak)

Figure 5-8 Speed ratio – Base Model (PM Peak)

Figure 5-9 Heavy vehicle proportions – Base Model (AM Peak)

Figure 5-10 Heavy vehicle proportions – Base Model (PM Peak)

6 Do Minimum operational results

The Do Minimum model was used to identify network deficiencies in the future network performance. It included the following infrastructure upgrades:

- > City-West Link road additional eastbound lane between Waratah Street and James Street
- > Parramatta Road / West Street right turn lane extension
- > Missenden Road speed limit reduction
- > Parramatta Road / Crystal Street right turn lane extension
- > WestConnex Rozelle Interchange including Iron Cove Tunnel from Victoria Road to Anzac Bridge.

The above upgrades were outlined in greater detail in **Section 2.1**. These models identify deficiencies in the future road network absent any upgrades beyond those already implemented or under construction.

6.1 Do Minimum network performance

6.1.1 Network performance summary

Table 6-1 shows the network performance results for the Do Minimum scenario. The key findings are summarised below.

- > Between 2018 and 2026, the total traffic demand increases by 11,598 trips in the AM Peak and 12,301 trips in the PM Peak. There are an additional 5394 trips in the AM Peak and 6185 trips in the PM Peak in 2036 compared to 2026.
- In 2026, the total distance travelled by all vehicles in the simulation (VKT) increases by 13.3 per cent in the AM Peak and by 7.8 per cent in the PM Peak. In 2036, these increases are 13.5 per cent and 8.3 per cent. These are less than the proportional increase in demand in each peak which results in a lower average kilometres travelled per vehicle.

This reduction is primarily caused by the WestConnex tunnels. VKT is only measured while vehicles are on the modelled road network, which excludes the tunnels. Vehicles that use the tunnels for part of their journey have a lower distance travelled in the network, which increases the proportion of shorter trips within the study area.

- > Vehicle hours travelled (VHT) generally increases more than the increase in demand, which indicates greater congestion in the network.
- In the AM Peak, average speed increases by 2.4 kilometres per hour between 2018 and 2026. The increase is 1.1 kilometres per hour up to 2036. In the PM Peak, the increase is 2.0 and 0.2 kilometres per hour. Network improvements including WestConnex, upgrades to Parramatta Road eastbound and upgrades to City-West Link Road eastbound have improved travel times on these roads. Some key congestion hotspots from 2018 such as Victoria Road and Parramatta Road have lower traffic volumes due to WestConnex.

Average speed is also higher because vehicles using the WestConnex tunnels no longer have to traverse the surface network. The tunnels, such as the Iron Cove Tunnel, bypass some of the most congested parts of the network, which improves the overall vehicle average speed.

- > Average delay time increases in all years and peaks, with the greatest increase in the PM Peak in both years.
- In 2026, the total of unreleased and deleted vehicles is 706 vehicles in the AM Peak and 740 vehicles in the PM Peak. These represent 0.9 per cent of the total demand. In 2036, the number of vehicles unreleased and deleted is 2110 in the AM Peak and 2738 in the PM Peak. Unreleased demand is discussed in the next section.

6.1.2 Person statistics

Table 6-2 shows key network statistics per person for the Do Minimum scenario based on the assumed vehicle occupancies outlined in **Section 3.2.1**.

Table 6-1 Network performance results – Do Minimum

			20	26	6		2036				
Network performance metric	Unit	Do Minimum results		Compared to Base		Do Minimum results		Compared to Base			
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak		
All vehicles											
Total traffic demand	veh	80,193	87,443	+11,598 (+16.9%)	+12,301 (+16.4%)	85,587	93,628	+16,992 (+22.6%)	+18,486 (+24.6%)		
Total vehicles arrived	veh	78,904	85,173	+9971 (+14.5%)	+10,324 (+13.8%)	80,962	86,585	+12,029 (+16.1%)	+11,736 (+15.7%)		
Total kilometres travelled (VKT)	km	191,466	203,096	+22,544 (+13.3%)	+14,681 (+7.8%)	194,433	204,051	+25,511 (+13.5%)	+15,636 (+8.3%)		
Vehicle hours travelled (VHT)	hr	7671	8589	+953 (+14.2%)	+1601 (+22.9%)	8542	9898	1824 (+26.1%)	+2910 (+41.6%)		
Average per vehicle											
Average kilometres travelled	km	2.4	2.4	-0.0 (-1.0%)	-0.1 (-5.3%)	2.4	2.4	-0.0 (-1.9%)	-0.2 (-6.4%)		
Average time travelled in network	s	146	153	-1 (-0.4%)	+15 (+10.9%)	158	181	+11 (+8.3%)	+43 (+31.5%)		
Average speed	km/hr	30.0	31.0	+2.4 (+8.6%)	+2.0 (+7.0%)	28.7	29.2	+1.1 (+3.6%)	+0.2 (+0.8%)		
Average delay	s	79	87	+1 (+1.1%)	+16 (+23.0%)	91	115	+13 (+18.4%)	+45 (+63.6%)		
Unreleased demand											
Unreleased demand (% of total demand)	veh (%)	73 (0.1%)	417 (0.5%)	+69	+414	916 (1.1%)	1839 (2.0%)	+912	+1836		
Deleted vehicles (% of total demand)	veh (%)	633 (0.8%)	323 (0.4%)	+633	+323	1194 (1.4%)	899 (1.0%)	+1194	+899		
Total unreleased and deleted (% of total demand)	veh (%)	706 (0.9%)	740 (0.8%)	+702	+737	2110 (2.5%)	2738 (2.9%)	+2106	+2735		

Table 6-2 Network statistics by person – Do Minimum

		2026				2036			
Network performance metric	Unit	AM Peak		PM Peak		AM Peak		PM Peak	
		LV	HV	LV	HV	LV	HV	LV	HV
Network statistics by vehicle type									
Total vehicles arrived	veh	73,916	4517	82,113	2890	75,395	5094	83,200	3219
Total kilometres travelled (VKT)	km	178,438	11,681	195,520	7111	179,825	13,255	195,592	8015
Vehicle hours travelled (VHT)	hr	7108	478	8262	298	7861	593	9492	376
Average speed	km/hr	30.0	31.4	30.8	38.6	28.6	30.2	29.0	36.3
Average delay	s	79	74	88	62	92	83	117	79
Network statistics by person									
Total persons arrived	person	82,403	4517	91,541	2890	84,052	5094	92,753	3219
Total person-kilometres travelled	km	198,927	11,681	217,970	7111	200,473	13,255	218,050	8015
Total person-hours travelled	hr	7924	478	9210	298	8763	593	10,582	376
Average speed per person	km/hr	30.0	31.4	30.8	38.6	28.6	30.2	29.0	36.3
Average delay per person	s	88	74	98	62	102	83	130	79

6.1.3 Unreleased demand

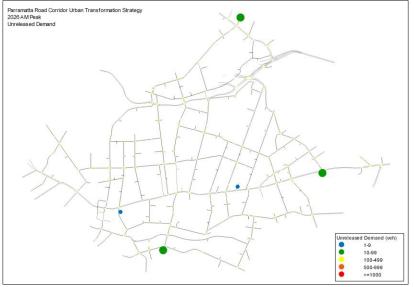
Unreleased demand refers to vehicles that are unable to enter the study are by the end of the simulation period. This is caused by queueing on their arrival link that extends back to the edge of the study area. High unreleased demand is an indication of significant network congestion.

The following sections outline the total unreleased demand and locations of unreleased demand in the AM and PM peaks for the Do Minimum scenario.

AM Peak

The unreleased demand in the AM Peak is 73 vehicles in 2026 and 916 vehicles in 2036. **Figure 6-1** and **Figure 6-3** show the locations of unreleased demand in 2026 and 2036 respectively. The main locations with unreleased demand are discussed below.

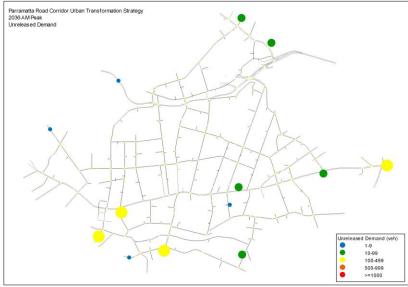
- > Unreleased demand on Shaw Street is caused by the nearby Crystal Street / Shaw Street / Stanmore Road / New Canterbury Road intersection. This totals 31 vehicles in 2026 and 143 vehicles in 2036.
- > While there is no unreleased demand on Old Canterbury Road in 2026, in 2036, 180 vehicles are unreleased due to gueueing from the Old Canterbury Road / Railway Terrace intersection.
- > Queueing on West Street causes unreleased demand on Station Street up to 269 vehicles in 2036.
- > Unreleased demand on Darling Street and Robert Street is caused by queueing on Victoria Road.

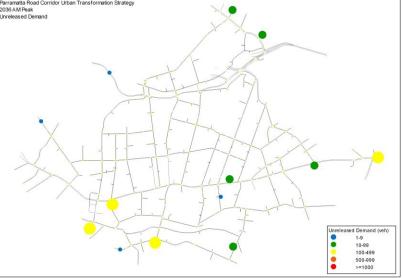

PM Peak

The unreleased demand in the PM Peak is 417 vehicles in 2026 and 1839 vehicles in 2036. **Figure 6-2** and **Figure 6-4** show the locations of unreleased demand in 2026 and 2036 respectively. The main locations with unreleased demand are discussed below.

- > Unreleased demand on Bridge Road is 210 vehicles in 2026 and 297 vehicles in 2036. This is cause by queueing from the Bridge Road / Ross Street intersection.
- > Queueing on Old Canterbury Road approaching Railway Terrace causes 76 vehicles to be unreleased in 2026 and 212 vehicles in 2036.
- > Queueing on West Street causes unreleased demand on Station Street up to 162 vehicles in 2036.

Glebe Point Road experiences queueing in 2036 that results in 137 vehicles being unreleased.





Parramatta Road Corridor Urban Transformation Strategy 2026 PM Peak Unreleased Demand 10-99 100-499 500-999 >=1000

Unreleased demand – 2026 Do Minimum (AM Peak) Figure 6-1

Unreleased demand – 2026 Do Minimum (PM Peak) Figure 6-2

Unreleased demand – 2036 Do Minimum (AM Peak) Figure 6-3

Unreleased demand – 2036 Do Minimum (PM Peak) Figure 6-4

6.2 Do Minimum travel times

This section provides an overview of travel times on key routes and through the PRCUTS precincts in the 2026 and 2036 Do Minimum scenarios.

6.2.1 Travel times on key routes

Table 6-3 lists the modelled travel times on each route in the 2026 and 2036 Do Minimum scenarios. The key findings are discussed below.

- > Travel times on Balmain Road in both directions decreased. Traffic volumes on Balmain Road significantly decreased with WestConnex. In 2018, the northbound volume was 354 vehicles, and in the southbound direction the volume was 160 vehicles. In 2026, these are reduced to 218 and 122 vehicles respectively.
- > Travel times on Crystal Street increase in both directions, however the greatest increase is approaching Parramatta Road. In the AM Peak, travel times in that direction increased by 23 seconds in 2026 and by 24 seconds in 2036.
- > Travel times generally increased on Johnston Street. In the PM Peak, the southbound travel time increased by 125 seconds in 2026 and 91 seconds in 2036. The traffic volume was lower in 2036 due to congestion elsewhere in the network, unreleased vehicles and deleted vehicles which resulted in an apparent improvement in performance.
- > In 2026, travel times on Marion Street in the eastbound direction decreased in the AM Peak. Due to a combination of WestConnex and improvements in the eastbound direction along Parramatta Road, Marion Street becomes a less attractive rat-run, resulting in improved performance. However, travel times in the westbound direction increased by 56 seconds. In 2036, travel times in both peaks increased, with the greatest increase being in the PM Peak (up to 202 seconds).
- > The number of vehicles using Parramatta road decreases due to WestConnex. Furthermore, network improvements such as an additional eastbound travel lane between Sloane Street and West Street, extended right turn bays at West Street and Crystal Street, and signal optimisation improve eastbound travel times. In the 2026 AM Peak, the resulting decrease represents a travel time saving of 261 seconds in the eastbound direction. In the 2026 PM Peak, the decrease is 32 seconds. However, the higher traffic volume by 2036 means that the eastbound travel time is 70 seconds longer in the AM Peak and 30 seconds longer in the PM Peak than the 2018 values.

Travel times in the westbound direction increase by 165 seconds in the 2026 AM Peak and 217 seconds in the 2026 PM Peak. This is caused by additional congestion at key intersections including at West Street and Crystal Street. The increases are 302 and 223 seconds respectively in 2036.

Note that the travel times shown in this table are for vehicles that traverse the full length of the route only.

Table 6-3 Travel times on key routes – Do Minimum

			Do Minimu	um results		Compared to 2018 Base				
Route	Dir.	Travel times (s)		Average speed (km/hr)		Travel times (s)		Average speed (km/hr)		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
2026	2026									
Balmain Road	NB	288	254	17.9	20.3	-44	+4	+2.4	-0.3	
Dalillalli Ruau	SB	169	140	20.4	24.5	-19	-29	+2.1	+4.2	
Crystal Street	NB	199	186	15.5	16.7	+23	-9	-2.1	+0.8	
Crysiai Street	SB	238	249	13.0	12.4	-35	+25	+1.7	-1.4	
Johnston Street	NB	288	282	21.9	22.3	-24	-2	+1.7	+0.1	
Johnston Street	SB	264	427	23.8	14.7	+10	+125	-0.9	-6.1	
Marion Street	EB	243	214	23.0	26.2	-77	-5	+5.5	+0.6	
Manon Street	WB	261	202	21.5	27.8	+52	-3	-5.3	+0.5	
Parramatta Road	EB	904	849	24.6	26.2	-261	-32	+5.5	+1.0	
T arramatta Noau	WB	985	1144	22.5	19.4	+165	+217	-4.5	-4.5	
2036										
Balmain Road	NB	324	390	15.9	13.2	-8	+140	+0.4	-7.4	
Daimain Noau	SB	186	149	18.6	23.1	-2	-20	+0.2	+2.7	
Crystal Street	NB	200	203	15.5	15.3	+24	+8	-2.1	-0.6	
Orystal Street	SB	253	477	12.3	6.5	-20	+253	+0.9	-7.3	
Johnston Street	NB	297	289	21.2	21.8	-15	+5	+1.0	-0.4	
JOHNSTON ON GET	SB	278	393	22.6	16.0	+24	+91	-2.1	-4.8	
Marion Street	EB	335	421	16.7	13.3	+15	+202	-0.8	-12.3	
Manon Street	WB	279	313	20.1	17.9	+70	+108	-6.7	-9.4	
Parramatta Road	EB	1235	911	18.0	24.4	+70	+30	-1.1	-0.8	
i arramatta Noau	WB	1122	1150	19.7	19.3	+302	+223	-7.3	-4.6	

6.2.2 Travel times through precincts

Table 6-4 shows the modelled travel time through each precinct in each direction. Overleaf, **Figure 6-5** and **Figure 6-6** show travel times through each precinct along Parramatta Road for the eastbound and westbound directions respectively.

AM Peak

- > Eastbound travel time through Taverners Hill is reduced from the Base Model in both 2026 and 2036. The reduction is caused by an additional lane provided between Sloane Street and West Street.
- > Eastbound travel time through Leichhardt is also lower in 2026 than in 2018 due to upgrades around Crystal Street, however by 2036 the travel time through Leichhardt is higher than in the Base Model.
- > In the westbound direction, travel time increased from 2018 to 2026 and 2036 in Taverners Hill and Leichhardt, and remained about the same through Camperdown.

PM Peak

- > Intersection upgrades improve the eastbound travel time through Leichhardt in the PM Peak.
- > Eastbound travel time through Taverners Hill is about the same in 2026 as in 2018, but increases by over 90 seconds in 2036.
- > Eastbound travel times through Camperdown increase by 20 seconds from 2018 to 2026 and by an additional 27 seconds from 2026 to 2036.
- > In the westbound direction, travel times through Taverners Hill remain about the same, while those through Leichhardt and Camperdown increase in both future years. The increase through Leichhardt is 39 seconds in 2026 and 57 seconds in 2036, while in Camperdown, this amounts to 30 additional seconds in 2026 and 50 seconds in 2036.

Table 6-4 Precinct travel times – Do Minimum

		Travel time through precinct (s)							
Direction		2026			2036				
	Taverners Hill	Leichhardt	Camperdown	Taverners Hill	Leichhardt	Camperdown			
AM Peak									
Eastbound	307	259	188	291	446	231			
Westbound	227	359	110	244	430	113			
PM Peak									
Eastbound	276	313	146	363	312	173			
Westbound	203	331	209	218	349	229			

Note that the travel times shown in these graphs are the cumulative sum of the travel times of each section along the route, so include vehicles that only traverse part of the route.

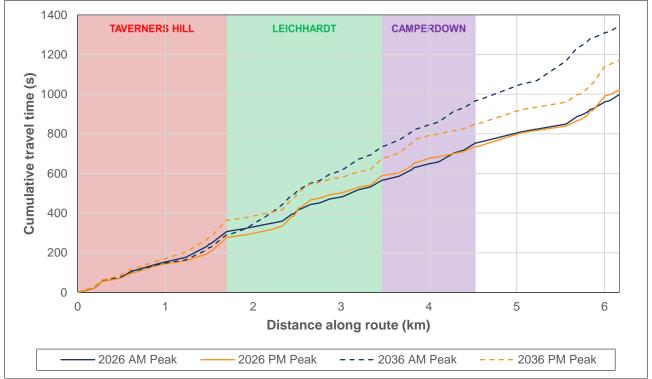


Figure 6-5 Travel times between precincts (eastbound) – Do Minimum

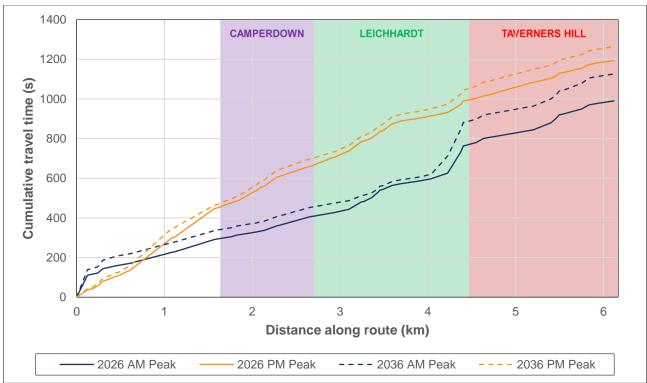


Figure 6-6 Travel times between precincts (westbound) – Do Minimum

6.3 Do Minimum intersection performance

This section provides an overview of intersection performance in the study area in the Do Minimum scenario. The results shown are for intersections in the PRCUTS precincts. Detailed performance results for all intersections assessed are provided in **Appendix H**.

6.3.1 Intersection operation

Table 6-5 and **Table 6-6** show the intersection performance results for the AM and PM peaks respectively. These intersections were among those calibrated using survey data as documented in *Base Model Development Report* (Cardno, 2020). It is not recommended to assess the performance of intersections that were not calibrated.

The following sections provide a brief summary of the key turns, movements and intersections that are at or over capacity in each peak. In general, the performance of side roads already noted as over capacity in the Base Model deteriorated, with most approaches to Parramatta Road performing at LOS E or F by 2036. Some other side roads that were not over capacity in 2018 are over capacity by 2026 or 2036. Some right turns from Parramatta Road also exhibited protracted delays in 2026 and/or 2036.

Intersection performance at signalised intersections is based on the weighted average delay. Given that the through traffic movements on Parramatta Road are considerably higher than other movements at these intersections, overall intersection performance may be acceptable while still recording significant delays on the side road approaches.

The performance of some movements or intersections may appear to improve as the proportion of the demand that arrives at the intersection by the end of the simulation period is reduced by the high levels of congestion in the model in this year.

AM Peak

- While the Marion Street and Leichhardt Street approaches to Marion Street / Leichhardt Street / Balmain Road continue to perform acceptably (LOS C or better), all movements on Balmain Road have average delays exceeding 72 seconds (LOS F). Overall intersection remains LOS C in 2026 and LOS C/D⁵ in 2036.
- > In 2026, both movements from Booth Street at Pyrmont Bridge Road / Booth Street / Mallett Street have delays of over 67 seconds. In 2036, average delays on this approach exceed 74 seconds, corresponding to LOS F. The right turn from Pyrmont Bridge Road continues to perform at LOS E up to 2036.
- Liverpool Road experiences average delays of up to 249 seconds by 2036, and delays increase over the simulation period as queues build up on Parramatta Road. Overall intersection performance deteriorates from LOS C in 2018 to LOS F in the second hour in 2036.
- > Parramatta Road / Norton Street continues to perform at LOS B up to 2036. The right turn movement out of Norton Street is LOS E in both hours. Additionally, the right turn from Parramatta Road performs at LOS F in the first hour in 2036, up from LOS D in 2018.
- > The performance of Parramatta Road / Flood Street / West Street deteriorates from LOS D in 2018 to LOS F by 2026. Almost all movements at this intersection perform at LOS F with delays exceeding 100 seconds on Parramatta Road (E), West Street and the right turns from Parramatta Road (W) and Flood Street.
- > The through and right turn movements out of Crystal Street remain LOS F, but the maximum delay increases from 91 seconds to 149 second by 2026.
- > Queueing on Young Street and Percival Road increase throughout the peak period, with delays on these side roads exceeding 100 seconds in the second hour by 2036. Overall intersection performance deteriorates from LOS B/C to LOS C/D by 2036.
- All movements on Northumberland Drive perform at LOS F by 2026, and on Johnston Street by 2036. Overall performance in the second hour is worse as queues build up over the simulation period. Level of service goes from LOS C in 2018 to LOS E by 2036.

-

⁵ LOS C in the first hour and LOS D in the second hour.

- > All movements on Bridge Road continue to fail in 2026 and 2036. By 2036, the eastbound Parramatta Road movement at this location is also LOS F.
- Queueing on Missenden Road and Lyons Road build up over the simulation period such that these approaches perform at LOS F by the second hour of the AM Peak by 2026. The right turn from Parramatta Road remains LOS F in both future years.

PM Peak

- > As was the case in the Base Model, Balmain Road (S) at Marion Street / Leichhardt Street / Balmain Road is over capacity with delays corresponding to LOS F in both hours. However, due to WestConnex, the volume on Balmain Road (N) is reduced, and LOS improves from LOS F in 2018 to LOS D in 2036.
- While all movements at Pyrmont Bridge Road / Booth Street / Mallett Street were acceptable in 2018, performance in the second hour particularly deteriorates by 2036 with all movements on Booth Street and Mallett street experiencing average delays corresponding to LOS E or F.
- > Delay on the right turn from Liverpool Road increases from LOS E/D in 2018 to LOS F/F in 2026. By 2036, the left turn is also over capacity at LOS E/F. Overall intersection performance is LOS E in 2036.
- > Tebbutt Street / Lords Road and Tebbutt street / Hathern Street perform at LOS E in the second hour in 2036. This is caused by queue spillback from Parramatta Road along Tebbutt Street.
- > All southbound movements on Sloane Street remain over capacity in both future years with LOS E or F recorded. Overall intersection performance is LOS D in the second hour by 2036.
- Norton Street is severely over capacity by 2036 with average delays of over 200 seconds observed. The right turn from Parramatta Road also experiences delays corresponding to LOS E. Overall intersection performance is LOS E in 2026 and 2036.
- > Parramatta Road / Flood Street / West Street performed at LOS E in 2018. By 2026, all movements except those on Parramatta Road (W) perform at LOS E or worse and the overall intersection delay is 73 seconds. By 2036, overall intersection delay is 104 seconds.
- > Parramatta Road / Crystal Street performs similarly to the Base Model, with the main delays being all movements on Crystal Street. Average delay increases from 38 seconds in 2018 to 47 seconds in 2036.
- > All movements on Catherine Street are LOS F in both hours. Additionally, Parramatta Road westbound is LOS F in the second hour with delays exceeding 75 seconds.
- At Parramatta Road / Northumberland Avenue / Johnston Street, the side road movements remain over capacity up to 2036. Traffic volume on the right turn from Parramatta Road is reduced with WestConnex, and performance of this movement improves from LOS F in 2018 to LOS E by 2036.
- > All movements on Bridge Road at Parramatta Road are LOS F by 2036. Additionally, the right turn from Parramatta Road at this location is also LOS F, with delays of up to 287 seconds experienced.
- > Pyrmont Bridge Road performs at LOS F in both hours. By the second hour, queueing on Parramatta Road in the westbound direction at this location also results in LOS F for these movements. Overall intersection performance remains LOS D up to 2036.
- All movements except the left and through movements on Parramatta Road (W) at Parramatta Road / Missenden Road / Lyons Road are LOS E or F in 2026 and 2036. Overall intersection performance corresponds to LOS F also.

Table 6-5 Intersection performance results – Do Minimum (AM Peak)

			2026						2036					
Inte	rsection	Туре	7:15	SAM – 8:1	5AM	8:15	AM – 9:1	5AM	7:15	SAM – 8:1	5AM	8:15	SAM – 9:1	5AM
		.,,,,,	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS
19	Marion Street / Norton Street	S	1879	28.6	С	1650	23.4	В	1956	29.5	С	1908	54.0	D
20	Marion Street / Leichhardt Street / Balmain Road	S	1628	33.1	С	1423	32.3	С	1670	36.0	С	1626	47.3	D
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S	2149	53.2	D	2132	68.5	Е	2126	54.3	D	2068	63.4	E
39	Parramatta Road / Liverpool Road	S	4279	48.0	D	4388	64.9	Е	4341	42.2	С	4328	94.5	F
42	Tebbutt Street / Lords Road	S	2000	27.3	В	1827	18.0	В	1970	19.6	В	1996	20.1	В
44	Tebbutt Street / Hathern Street	S	1936	23.6	В	1780	27.7	В	1780	24.4	В	1893	24.7	В
45	Parramatta Road / Sloane Street	S	4495	20.6	В	4446	18.0	В	4589	22.4	В	4546	20.8	В
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	S	4076	50.4	D	4450	33.9	С	4145	43.7	D	4156	27.9	В
50	Parramatta Road / Norton Street	S	3463	21.9	В	3624	18.0	В	3488	22.8	В	3374	22.3	В
51	Parramatta Road / Flood Street / West Street	S	4278	76.6	F	4730	89.3	F	4459	66.9	Е	4324	144.3	F
52	Parramatta Road / Crystal Street / Balmain Road	S	4018	48.2	D	4245	33.8	С	4072	38.5	С	4012	38.4	С
53	Parramatta Road / Catherine Street / Phillip Street	S	3480	37.6	С	3751	45.3	D	3483	24.8	В	3554	35.5	С
67	Parramatta Road / Young Street / Percival Road	S	3571	25.3	В	3717	23.9	В	3557	34.7	С	3587	49.0	D
68	Parramatta Road /Northumberland Avenue / Johnston Street	S	4275	36.6	С	4332	35.7	С	4094	40.0	С	4171	58.0	E
69	Parramatta Road / Bridge Road	S	4060	38.5	С	4223	43.5	D	4012	53.1	D	4176	61.0	E
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S	4117	10.4	А	4245	9.2	А	4048	15.1	В	4249	11.1	А
71	Parramatta Road / Mallett Street	S	4225	54.9	D	4164	50.2	D	4120	53.7	D	4229	39.6	С
81	Parramatta Road / Dalhousie Street	S	3322	38.9	С	3350	32.5	С	3402	47.5	D	3274	47.8	D
83	Parramatta Road / Missenden Avenue / Lyons Road	S	3859	41.4	С	3900	55.6	D	3895	44.8	D	3874	46.7	D

Table 6-6 Intersection performance results – Do Minimum (PM Peak)

			2026						2036						
Inte	ersection	Type	4:30)PM - 5:30	ОРМ	5:30	PM - 6:30	ОРМ	4:30	DPM - 5:30	0PM	5:30	DPM - 6:30	OPM	
		.,,,,,	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	
19	Marion Street / Norton Street	S	1650	22.7	В	1701	30.5	С	1736	103.8	F	1654	40.6	С	
20	Marion Street / Leichhardt Street / Balmain Road	S	1245	29.8	С	1361	33.5	С	1290	37.9	С	1523	47.0	D	
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S	1921	41.4	С	1771	44.8	D	1996	31.4	С	1738	65.8	Е	
39	Parramatta Road / Liverpool Road	S	4637	29.0	С	4928	31.2	С	4821	44.0	D	4642	59.6	Е	
42	Tebbutt Street / Lords Road	S	1880	22.6	В	1894	19.8	В	1987	25.0	В	1744	70.3	Е	
44	Tebbutt Street / Hathern Street	S	2008	24.5	В	2091	25.1	В	2029	25.2	В	1982	67.2	Е	
45	Parramatta Road / Sloane Street	S	4654	33.0	С	4999	39.9	С	4854	30.1	С	4712	50.1	D	
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	S	3958	22.8	В	4239	13.4	А	4149	16.6	В	3802	76.3	F	
50	Parramatta Road / Norton Street	S	3399	32.6	С	3561	56.9	Е	3564	61.1	Е	3613	51.1	D	
51	Parramatta Road / Flood Street / West Street	S	4278	73.2	F	4529	64.9	Е	4347	81.5	F	4041	106.4	F	
52	Parramatta Road / Crystal Street / Balmain Road	S	3771	30.9	С	3957	53.0	D	3988	43.6	D	3691	46.8	D	
53	Parramatta Road / Catherine Street / Phillip Street	S	3199	36.9	С	3318	78.1	F	3427	39.7	С	3177	57.0	Е	
67	Parramatta Road / Young Street / Percival Road	S	3041	14.5	Α	3303	39.7	С	3289	17.7	В	3075	35.1	С	
68	Parramatta Road /Northumberland Avenue / Johnston Street	S	3877	42.3	С	4255	82.9	F	4203	44.7	D	4096	78.7	F	
69	Parramatta Road / Bridge Road	S	3533	50.9	D	3740	47.4	D	3741	47.6	D	3413	84.3	F	
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S	3502	35.4	С	3817	43.2	D	3708	49.2	D	3477	44.4	D	
71	Parramatta Road / Mallett Street	S	3682	32.3	С	4067	32.3	С	3823	36.3	С	3743	36.6	С	
81	Parramatta Road / Dalhousie Street	S	3735	44.9	D	3957	101.5	F	3772	84.4	F	3807	86.8	F	
83	Parramatta Road / Missenden Avenue / Lyons Road	S	3492	71.2	F	3875	114.9	F	3754	63.3	Е	3731	109.5	F	

Figure 6-7 and Figure 6-8 show the intersection performance results on a map of the study area.

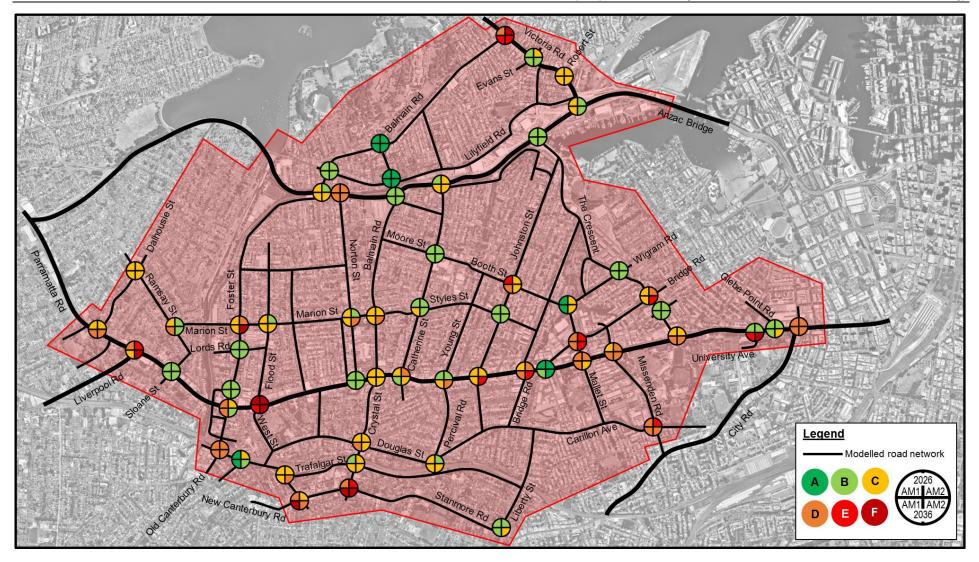


Figure 6-7 Intersection level of service – Do Minimum (AM Peak)

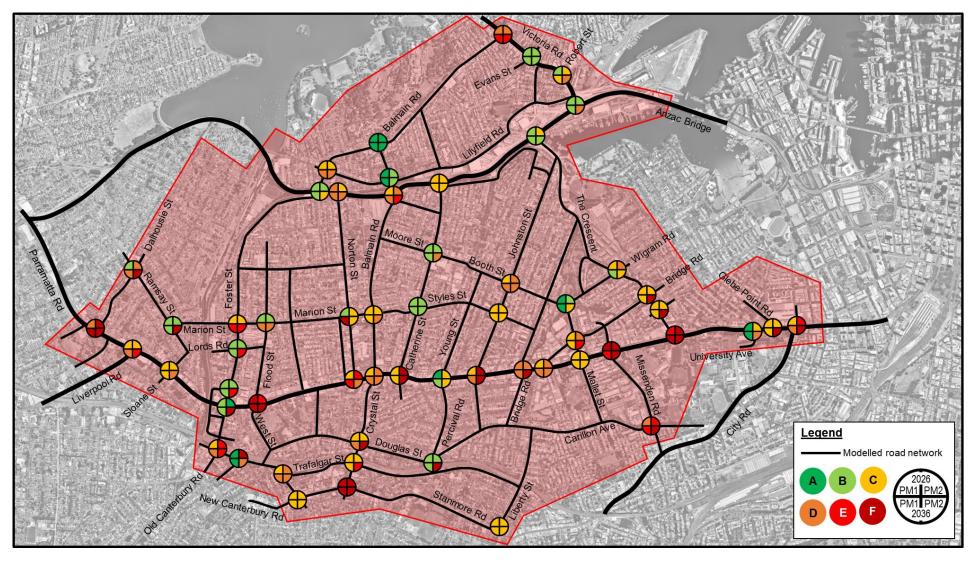


Figure 6-8 Intersection level of service - Do Minimum (PM Peak)

6.3.2 Queue lengths at major intersections

Table 6-7 shows the maximum queue length at major intersections along Parramatta Road in the PRCUTS precincts. On side roads, only queueing within the microsimulation area is included.

Table 6-7 Maximum queue length at major intersections in the PRCUTS precincts – Do Minimum

			Maximum queue length (m)						
Intersection	Appr	oach	20	26	20	36			
			AM Peak	PM Peak	AM Peak	PM Peak			
	N	Dalhousie Street	157	325	209	331			
Parramatta Road / Dalhousie Street	Е	Parramatta Road	91	88	93	90			
Damousie Street	W	Parramatta Road	301	295	300	297			
	Е	Parramatta Road	31	32	32	33			
Parramatta Highway / Hume Highway	S	Hume Highway	29	28	27	28			
Trume riighway	W	Parramatta Road	139	136	99	136			
	N	Sloane Street	44	54	49	60			
Parramatta Road /	Е	Parramatta Road	299	376	329	319			
Sloane Street	S	Sloane Street	299	299	299	297			
	W	Parramatta Road	302	144	302	174			
	N	Flood Street	231	239	205	240			
Parramatta Road /	Е	Parramatta Road	473	480	492	494			
Flood Street / West Street	S	West Street	74	69	73	74			
	W	Parramatta Road	194	190	194	192			
	N	Norton Street	72	71	73	70			
Parramatta Road / Norton Street	Е	Parramatta Road	119	118	113	114			
Tronon on our	W	Parramatta Road	65	62	65	65			
Parramatta Road /	Е	Parramatta Road	37	37	34	36			
Crystal Street /	S	Crystal Street	168	161	170	161			
Balmain Road	W	Parramatta Road	116	125	121	123			
	N	Catherine Street	185	186	176	183			
Parramatta Road /	Е	Parramatta Road	223	225	189	225			
Catherine Street	S	Catherine Street	100	103	103	101			
	W	Parramatta Road	52	50	52	43			
	N	Young Street	105	105	107	113			
Parramatta Road /	Е	Parramatta Road	66	67	60	61			
Young Street / Percival Road	S	Percival Road	84	62	91	73			
	W	Parramatta Road	244	40	244	41			
	N	Johnston Street	56	57	56	55			
Parramatta Road /	Е	Parramatta Road	82	82	93	84			
Johnston Street / Northumberland Avenue	S	Northumberland Avenue	44	42	45	44			
	W	Parramatta Road	200	251	243	251			
	Е	Parramatta Road	44	44	41	44			
Parramatta Road / Bridge Road	S	Bridge Road	91	90	95	94			
	W	Parramatta Road	34	31	33	34			

Intersection			Maximum queue length (m)						
Intersection	Appr	oach	20	26	2036				
			AM Peak	PM Peak	AM Peak	PM Peak			
Parramatta Road /	N	Pyrmont Bridge Road	73	157	81	187			
Pyrmont Bridge Road /	E	Parramatta Road	200	270	199	265			
Denison Street	W	Parramatta Road	37	40	40	35			
	N	Mallett Street	81	80	80	81			
Parramatta Road /	E	Parramatta Road	34	42	33	41			
Mallett Street	S	Mallett Street	241	233	242	233			
	W	Parramatta Road	264	33	262	39			
Parramatta Road /	N	Lyons Road	95	96	96	99			
Lyons Road /	E	Parramatta Road	181	489	211	494			
Missenden Road	S	Missenden Road	226	224	187	229			

6.4 Do Minimum network plots

6.4.1 Traffic density

Figure 6-9 to **Figure 6-12** show the simulated traffic density for the Do Minimum scenario. Traffic density is generally highest along Parramatta Road, and at major side road approaches to the corridor including Crystal Street, Catherine Street, Johnston Street and Mallett Street. In 2036, traffic density is also high on roads below the corridor such as Stanmore Road and Salisbury Road.

6.4.2 Speed ratio

Figure 6-13 to **Figure 6-16** show the simulated speed ratio for the Do Minimum scenario. Speed ratio is the average section speed as a proportion of the posted speed limit. The simulated speed ratio is low along Parramatta Road, particularly eastbound in the AM Peak and westbound in the PM Peak. Speed ratio is low on most approaches to signalised intersections along Parramatta Road, Victoria Road and City-West Link Road. In 2036, the speed ratio is reduced on parallel routes to Parramatta Road including Marion Street and Salisbury Road as vehicles reroute to avoid congestion along the main corridor.

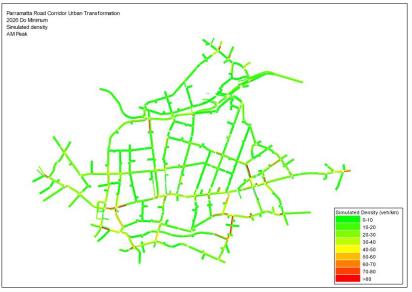
6.4.3 Heavy vehicle proportions

Figure 6-17 to **Figure 6-20** show the proportion of the total traffic volume on each link that is heavy vehicles for the Do Minimum scenario. The proportion of heavy vehicles is significantly higher in the AM Peak than in the PM Peak on most roads.

In the AM Peak, the heavy vehicle percentage is highest on WestConnex, Victoria Road and Anzac Bridge. The heavy vehicle proportion on Parramatta is also between eight and 10 per cent. The main north-south routes used by heavy vehicles are Johnston Street, Balmain Road and Norton Street.

In the PM Peak, heavy vehicle proportions remain highest on WestConnex. The heavy vehicle proportion on Parramatta Road is between four and eight per cent at most locations. The main north-south route used by heavy vehicles is Balmain Road.

10-20


20-30 30-40

40-50

50-60

60-70 70-80 >80

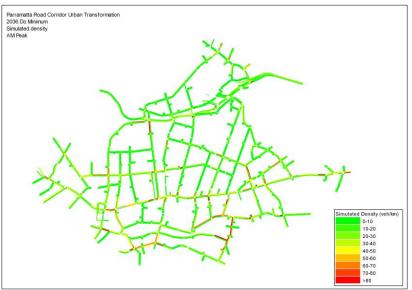

Simulated Density (veh/km)

Figure 6-9 Simulated density – 2026 Do Minimum (AM Peak)

Figure 6-10 Simulated density – 2026 Do Minimum (PM Peak)

Parramatta Road Corridor Urban Transformation 2026 Do Minimum

Simulated density PM Peak

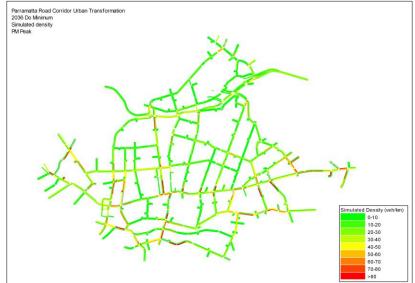


Figure 6-11 Simulated density – 2036 Do Minimum (AM Peak)

Figure 6-12 Simulated density – 2036 Do Minimum (PM Peak)

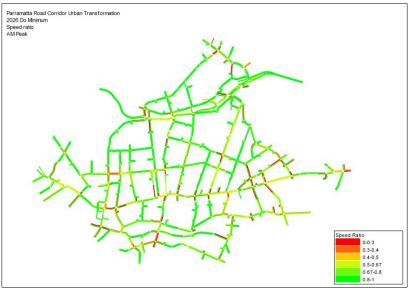


Figure 6-13 Speed ratio – 2026 Do Minimum (AM Peak)

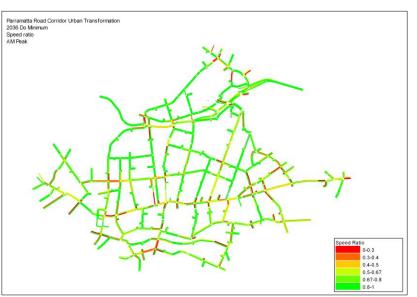


Figure 6-15 Speed ratio – 2036 Do Minimum (AM Peak)

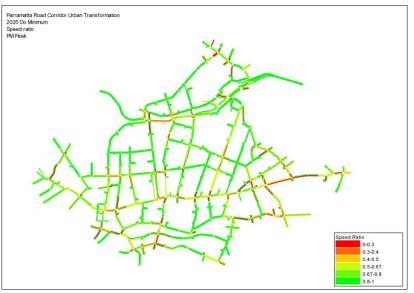


Figure 6-14 Speed ratio – 2026 Do Minimum (PM Peak)

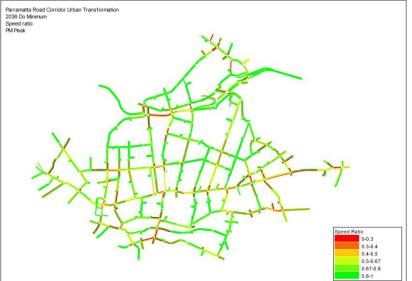


Figure 6-16 Speed ratio – 2036 Do Minimum (PM Peak)

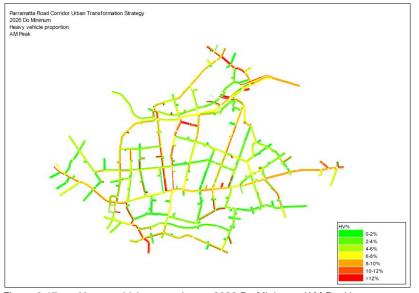


Figure 6-17 Heavy vehicle proportions – 2026 Do Minimum (AM Peak)

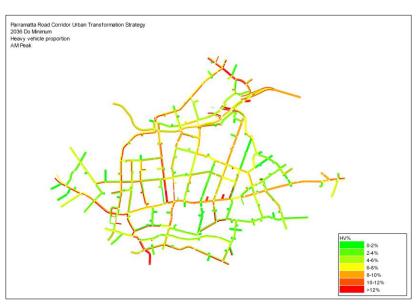


Figure 6-19 Heavy vehicle proportions – 2036 Do Minimum (AM Peak)

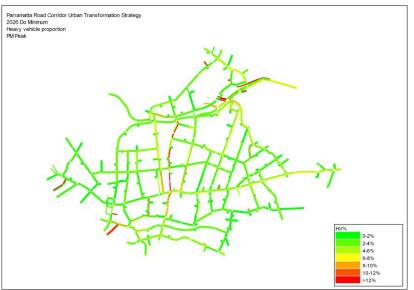


Figure 6-18 Heavy vehicle proportions – 2026 Do Minimum (PM Peak)

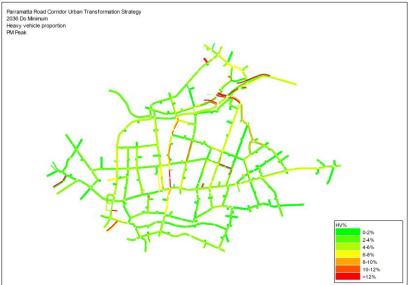


Figure 6-20 Heavy vehicle proportions – 2036 Do Minimum (PM Peak)

7 With Upgrades operational results

The With Upgrades model was used to optimise network performance by introducing localised infrastructure upgrades across the study area. The upgrades included were discussed in **Section 2.1.2**. As discussed in that section, the localised upgrades were Cardno's suggestions for how the traffic performance of the network could be improved, and are not endorsed by Council, DPIE, Transport for NSW or any other stakeholders. Further traffic modelling is suggested during the Concept and Detailed Design stages to assess the viability of these upgrades.

7.1 With Upgrades network performance

7.1.1 Network performance summary

Table 7-1 shows the network performance results for the With Upgrades scenario. The key findings are summarised below.

- > The total traffic demand remains the same as the Do Minimum scenario.
- > The number of vehicles arrived increases in all peaks. The increase is greatest in the PM Peak in each future year. In 2036, an additional 2554 vehicles arrive at their destination by the end of the simulation period. This is a result of reduced congestion throughout the network, fewer unreleased vehicles and fewer deleted vehicles.
- In 2026, the total distance travelled by all vehicles in the simulation (VKT) increase by 0.8 per cent in the AM Peak and 1.8 per cent in the PM Peak. In 2036, these increases are 1.8 per cent and 3.8 per cent respectively. This is also a result of reduced congestion throughout the network as more vehicles are able to complete their trips (ie travel further) in the simulation period.
- > Vehicle hours travelled (VHT) reduces in both peaks. In 2026, the reduction is up to 4.6 per cent and in 2036 the reduction is up to 3.5 per cent. This is a result of lower congestion in the model which increases average speeds and decreases delay time.
- > Average speed increases by 0.6 kilometres per hour in the 2026 AM Peak and by 0.3 kilometres per hour in the 2026 PM Peak. In 2036, these values are 0.4 and 0.3 respectively.
- > Average delay decreases by five to 10 seconds in 2026 and by up to 18 seconds in 2036.
- > The total of deleted and unreleased demand is reduced by 829 vehicles in the AM Peak and 993 vehicles in the PM Peak. Unreleased demand is discussed in the next section.

7.1.2 Person statistics

Table 7-2 shows key network statistics per person for the With Upgrades scenario based on the assumed vehicle occupancies outlined in **Section 3.2.1**.

Table 7-1 Network performance results – With Upgrades

Naturally newformance metric			20	26		2036					
Network performance metric	Unit	With Upgra	des results	Compare	d to Base	With Upgra	des results	Compare	d to Base		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak		
All vehicles											
Total traffic demand	veh	80,193	87,443	0 (+0.0%)	0 (+0.0%)	85,587	93,628	0 (0.0%)	0 (0.0%)		
Total vehicles arrived	veh	79,425	86,386	+521 (+0.7%)	+1213 (+1.4%)	82,289	89,139	+1050 (+1.3%)	+2554 (+3.1%)		
Total kilometres travelled (VKT)	km	193,032	206,804	+1566 (+0.8%)	+3708 (+1.8%)	200,098	211,719	+4049 (+2.1%)	+7668 (+3.8%)		
Vehicle hours travelled (VHT)	hr	7320	8251	-351 (-4.6%)	-338 (-3.9%)	8302	9597	-163 (-1.9%)	-301 (-3.5%)		
Average per vehicle											
Average kilometres travelled	km	2.4	2.4	+0.0 (+0.2%)	+0.0 (+0.4%)	2.4	2.4	0 (+0.8%)	0 (+0.8%)		
Average time travelled in network	s	141	143	-5 (-3.4%)	-10 (-6.4%)	153	164	-4 (-2.4%)	-18 (-10.6%)		
Average speed	km/hr	30.6	31.3	+0.6 (+2.1%)	+0.3 (+0.9%)	29.2	29.6	+0.4 (+1.2%)	+0.3 (+1.2%)		
Average delay	s	74	77	-5 (-6.3%)	-10 (-11.3%)	86	97	-4 (-4.3%)	-18 (-20.9%)		
Unreleased demand											
Unreleased demand (% of total demand)	veh (%)	31 (0.0%)	107 (0.1%)	-42	-310	715 (0.8%)	472 (0.5%)	-40	-1367		
Deleted vehicles (% of total demand)	veh (%)	147 (0.2%)	232 (0.3%)	-486	-91	343 (0.4%)	1273 (1.4%)	-789	374		
Total unreleased and deleted (% of total demand)	veh (%)	178 (0.2%)	339 (0.4%)	-528	-401	1058 (1.2%)	1745 (1.9%)	-829	-993		

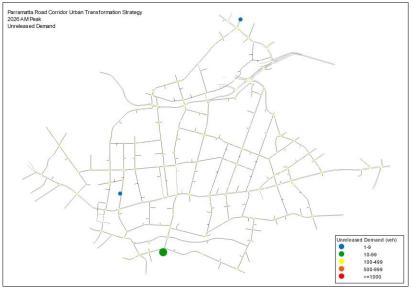
Table 7-2 Network statistics by person – With Upgrades

			20	26			20	36		
Network performance metric	Unit	AM	Peak	PM	Peak	AM I	Peak	PM Peak		
		LV	HV	LV	HV	LV	HV	LV	HV	
Network statistics by vehicle type										
Total vehicles arrived	veh	74,407	4547	83,272	2941	76,621	5196	85,652	3315	
Total kilometres travelled (VKT)	km	179,861	11,824	199,010	7316	184,947	13,802	202,828	8414	
Vehicle hours travelled (VHT)	hr	6779	459	7935	287	7619	597	9187	381	
Average speed	km/hr	30.6	31.9	31.1	38.8	29.2	30.3	29.3	36.1	
Average delay	s	74	69	78	55	86	81	98	72	
Average per vehicle										
Total persons arrived	person	82,951	4547	92,833	2941	85,419	5196	95,487	3315	
Total person-kilometres travelled	km	200,513	11,824	221,860	7316	206,183	13,802	226,117	8414	
Total person-hours travelled	hr	7557	459	8846	287	8494	597	10,241	381	
Average speed per person	km/hr	30.6	31.9	31.1	38.8	29.2	30.3	29.3	36.1	
Average delay per person	s	83	69	87	55	96	81	110	72	

7.1.3 Unreleased demand

Unreleased demand refers to vehicles that are unable to enter the study are by the end of the simulation period. This is caused by queueing on their arrival link that extends back to the edge of the study area. High unreleased demand is an indication of significant network congestion.

The following sections outline the total unreleased demand and locations of unreleased demand in the AM and PM peaks for the With Upgrades scenario.

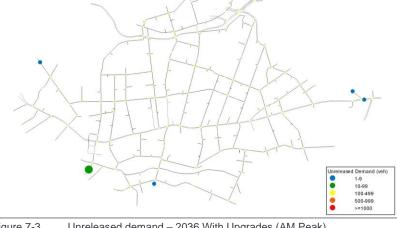

AM Peak

- Unreleased demand in 2026 is 31 vehicles which represents a reduction of 42 vehicles compared to the Do Minimum. In 2036, the unreleased demand is 715 vehicles which is a reduction of 472 vehicles compared to the Do Minimum.
- In 2026, there was significant unreleased demand on Darling Street approaching Victoria Road, as well as on Western Avenue near Parramatta Road. Unreleased demand as these locations have been removed/reduced by localised intersection upgrades.
- Localised intersection upgrades in 2036 resulted in a reduction of unreleased demand on Shaw Street and Station Street. Unreleased demand on Old Canterbury Road and Parramatta Road was also significantly reduced.

PM Peak

- Unreleased demand in 2026 is 107 vehicles which represents a reduction of 310 vehicles compared to the Do Minimum. In 2036, the unreleased demand is 472 vehicles which is a reduction of 1367 vehicles compared to the Do Minimum.
- > Localised intersection improvements around Ross Street remove significant unreleased demand on Bridge Road, St Johns Road and Western Avenue in 2026.
- In 2036, reduced congestion along Parramatta Road and its approaches leads to the removal/reduction of unreleased demand on Dalhousie Street, Tebbutt Street, Station Street, along Salisbury Road, around Bridge Rod and St Johns Road and Glebe Point Road. Some unreleased demand remains on Old Canterbury Road, Parramatta Road and Victoria Road.





Parramatta Road Corridor Urban Transformation Strategy 2026 PM Peak Unreleased Demand 10-99 100-499 500-999 >=1000

Unreleased demand – 2026 With Upgrades (AM Peak) Figure 7-1

Parramatta Road Corridor Urban Transformation Strategy 2036 PM Peak Unreleased Demand Unreleased Demand (veh) 1-9 10-99 100-499 500-999 >=1000

Figure 7-3 Unreleased demand – 2036 With Upgrades (AM Peak)

Figure 7-4 Unreleased demand – 2036 With Upgrades (PM Peak)

7.2 With Upgrades travel times

This section provides an overview of travel times on key routes and through the PRCUTS precincts in the 2026 and 2036 Do Minimum scenarios.

7.2.1 Travel times on key routes

Table 7-3 lists the modelled travel times on each route in the 2026 and 2036 Do Minimum scenarios. In general, the intersection upgrades improve the performance of Parramatta Road and reduce queueing on side road approaches. This reduces travel time on most routes compared to the Do Minimum scenario.

- > The With Upgrades scenario provides improvements to travel times along Balmain Road in both peaks and future years. In 2026, travel times in the northbound direction are up to 15 seconds shorter than in the Do Minimum scenario, while those in the southbound direction are up to 16 seconds shorter. In 2036, the travel time savings are more extreme. In the 2036 PM Peak, travel times in the northbound direction are more than two minutes faster, while those in the southbound direction are 28 seconds shorter in the 2036 AM Peak.
- > Travel times on Crystal Street generally improve in 2026, however travel times were longer in 2036 than in the Do Minimum scenario. This is one of the most congested areas of the model in both scenarios.
- > Intersection improvements at Johnston Street reduce the southbound travel time by 109 seconds in 2026 and by 26 seconds in 2036. There are also improvements to travel times in the northbound direction in the AM Peak in both years.
- > Travel times along Marion Street remain similar in 2026, but significantly improve in 2036, particularly in the PM Peak. Intersection improvements along Parramatta Road make Marion Street a less attractive ratrun which improves its performance. It is also less affected by queue spillback from Parramatta Road in the second hour of the peak.
- > Travel times along Parramatta Road improve in both peaks and future years. Intersection improvements significantly reduced travel times in the westbound direction on Parramatta Road. In the 2026 AM Peak, travel times are reduced by 236 seconds, corresponding to an increase in average speed of 7.1 kilometres per hour. In the 2026 PM Peak, the reduction is 176 seconds. In 2036, 341 seconds are saved in the AM Peak in the westbound direction, corresponding to an average speed increase of 8.6 kilometres per hour compared to the Do Minimum scenario.

Note that the travel times shown in this table are for vehicles that traverse the full length of the route only.

Table 7-3 Travel times on key routes – With Upgrades

			Do Minimu	um results		Compared to 2018 Base					
Route	Dir.	Travel t	imes (s)	Average sp	eed (km/hr)	Travel t	imes (s)	Average sp	peed (km/hr)		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak		
2026											
Balmain Road	NB	281	239	18.4	21.6	-7	-15	0.4	1.3		
Dalillalli Ruau	SB	153	131	22.6	26.3	-16	-9	2.2	1.7		
Crystal Street	NB	195	268	15.9	11.6	-4	82	0.3	-5.1		
Crystal Street	SB	235	225	13.2	13.8	-3	-24	0.2	1.3		
Johnston Street	NB	268	287	23.5	22.0	-19	4	1.6	-0.3		
Johnston Street	SB	273	317	23.0	19.8	9	-109	-0.8	5.1		
Marion Street	EB	245	219	22.8	25.6	2	5	-0.2	-0.7		
Marion Street	WB	284	199	19.7	28.1	23	-3	-1.8	0.4		
Parramatta Road	EB	836	798	26.6	27.9	-67	-51	2.0	1.7		
i airailialla Noau	WB	748	968	29.6	22.9	-236	-176	7.1	3.5		
2036											
Balmain Road	NB	280	263	18.4	19.6	-44	-126	2.5	6.4		
Dairiair Road	SB	158	138	21.9	24.9	-28	-11	3.3	1.8		
Crystal Street	NB	283	470	10.9	6.6	84	267	-4.6	-8.7		
Orystal Otreet	SB	257	499	12.1	6.2	4	22	-0.2	-0.3		
Johnston Street	NB	272	281	23.2	22.4	-26	-8	2.0	0.6		
JOHNSTON ON GGE	SB	264	367	23.8	17.1	-14	-26	1.2	1.1		
Marion Street	EB	311	252	18.0	22.2	-24	-169	1.3	8.9		
Manon Street	WB	286	222	19.6	25.3	7	-92	-0.5	7.4		
Parramatta Road	EB	1058	837	21.0	26.5	-176	-74	3.0	2.2		
i arramatta Nodu	WB	781	1136	28.3	19.5	-341	-14	8.6	0.2		

7.2.2 Travel times through precincts

Table 7-4 shows the modelled travel time through each precinct in each direction. Overleaf, **Figure 7-5** and **Figure 7-6** show travel times through each precinct along Parramatta Road for the eastbound and westbound directions respectively.

AM Peak

- > Eastbound travel time through Taverners Hill is reduced from the Do Minimum scenario in both 2026 and 2036. In 2026, the reduction is 50 seconds and 27 seconds in 2036.
- > Eastbound travel time through Leichhardt is also reduced, with the most significant reductions occurring in the AM Peak. In 2026, the reduction is 34 seconds and in 2036 it is 43 seconds.
- > The most significant reduction in the precinct travel time is through Leichhardt in the westbound direction. In the Do Minimum scenario, the travel time in 2026 was 359 seconds and in 2036 it was 430 seconds. With upgrades, these are reduced to 217 seconds and 242 seconds, a saving of over three minutes by 2036.

PM Peak

- > Travel times through Taverners Hill are reduced in the eastbound direction by up to 51 seconds. Travel times are slightly increased in the westbound direction which is caused by intersection and signal optimisation to reduce queueing on side roads.
- > Travel times also slightly increase in the westbound direction through Leichhardt in both future years.
- > Through Camperdown, travel times decreased in both future years, with the greatest decrease occurring in the westbound direction in 2026.

Table 7-4 Precinct travel times – With Upgrades

	Travel time through precinct (s)										
Direction		2026		2036							
	Taverners Hill	Leichhardt	Camperdown	Taverners Hill	Leichhardt	Camperdown					
AM Peak											
Eastbound	257	293	157	264	489	190					
Westbound	244	217	99	261	242	104					
PM Peak											
Eastbound	261	304	150	312	332	147					
Westbound	224	342	177	227	420	233					

Note that the travel times shown in these graphs are the cumulative sum of the travel times of each section along the route, so include vehicles that only traverse part of the route.

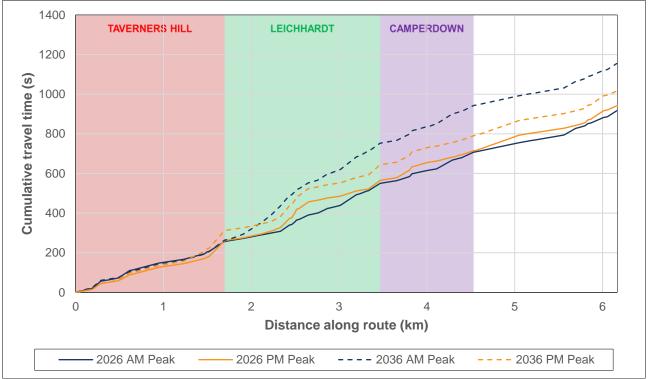


Figure 7-5 Travel times between precincts (eastbound) –With Upgrades

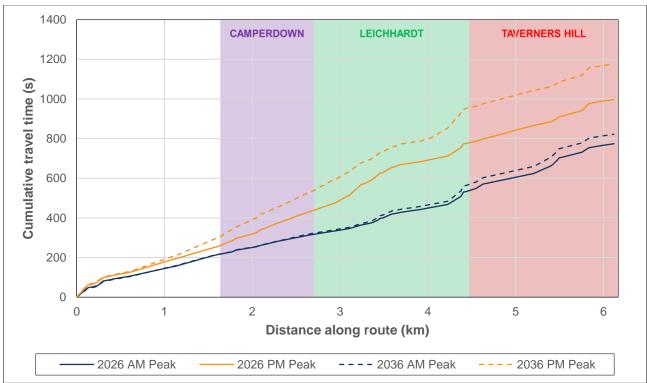


Figure 7-6 Travel times between precincts (westbound) – With Upgrades

7.3 With Upgrades intersection performance

This section provides an overview of intersection performance in the study area in the With Upgrades scenario. The results shown are for intersections in the PRCUTS precincts. Detailed performance results for all intersections assessed are provided in **Appendix H**.

7.3.1 Intersection operation

Table 7-5 and Table 7-6 show the intersection performance results for the AM and PM peaks respectively.

The following sections provide a brief summary of the turns, movements and intersections where there is a notable improvement in performance between the Do Minimum scenario and corresponding With Upgrades scenario. In general, the modelled upgrades provide additional capacity for the side road approaches to Parramatta Road. This reduces the average delay on these approaches. In some cases, the green time for side roads could be reduced due to additional turn lanes (ie higher capacity), which provides benefits for traffic on Parramatta Road.

AM Peak

Table 7-5 shows the intersection performance for key intersections in the study area. **Figure 7-7** shows the performance of these intersections on a map of the study area.

- Upgrades at Booth Street improve the overall intersection performance from LOS D/E in the 2036 Do Minimum scenario to LOS C/C in the 2036 With Upgrades scenario. All movements on Booth Street have acceptable delays (LOS C or better), in comparison to the Do Minimum scenario where they were LOS F.
- While Parramatta Road / Flood Street / West Street remains over capacity in 2036, with upgrades, the average delay is reduced from 144 seconds (LOS F) to 62 seconds (LOS E) in the second hour of the AM Peak. Average delay is also reduced on the West Street and Flood Street approaches, although these remain LOS F.
- > At Percival Road and Young Street, average delays on the side roads are reduced by intersection upgrades, but overall intersection performance remains LOS D.
- > The overall performance of Parramatta Road / Northumberland Avenue / Johnston Street is improved, with the average delay in the second hour decreased from 58 seconds (LOS E) to 46 seconds (LOS D).
- Performance of Parramatta Road / Bridge Road improves as the average delay decreases from 61 seconds (LOS E) to 33 seconds (LOS C).
- Performance of Parramatta Road / Missenden Road / Lyons Road is improved from LOS D to LOS C in 2036.All movements on Missenden Road except the right turn experience average delays less than 52 seconds (corresponding to LOS D), while in the Do Minimum scenario, these movements were all LOS E or F.

PM Peak

Table 7-6 shows the intersection performance for key intersections in the study area. **Figure 7-8** shows the performance of these intersections on a map of the study area.

- Intersection improvements at Pyrmont Bridge Road / Booth Street / Mallett Street improve the overall intersection performance. In 2036, overall delay in the second hour is reduced from 66 seconds (LOS E) to 50 seconds (LOS D), and delays on Booth street and Mallett Street are reduced with upgrades.
- > Queue spillback on Parramatta Road affecting Tebbutt Street is greatly reduced with the upgrades, which improves the performance of Tebbutt Street / Lords Road and Tebbutt Street / Hathern Road. Both intersections perform acceptably in 2036 with upgrades.
- Although the performance of Parramatta Road / Flood Street / West Street remains LOS F in 2036, upgrades to the side road approaches reduce their average delays. Flood street in the PM Peak experiences up to 845 seconds delay in 2036 Do Minimum, but with upgrades, this is reduced to 295.
- > Maximum delay on Young Street decreases from 141 seconds to 92 seconds with upgrades.
- > While remaining over capacity, overall delay at Parramatta Road / Northumberland Avenue / Johnston Street is reduced from 79 seconds (LOS F) to 62 seconds (LOS E) in the second hour.
- > The performance of Parramatta Road / Bridge Road improves from LOS D/F to LOS C/D in 2036.
- > Parramatta Road / Missenden Road / Lyons Road remains over capacity, however the average delay is decreased from 110 seconds to 85 seconds. Improvements on Lyons Road and Missenden Road reduce the average delays associated with these approaches, but they remain LOS F.

Table 7-5 Intersection performance results – With Upgrades (AM Peak)

			2026						2036					
Inte	rsection	Туре	7:15	AM – 8:1	5AM	8:15	AM – 9:1	5AM	7:15	SAM – 8:1	5AM	8:15	AM – 9:1	AM
		21	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS
19	Marion Street / Norton Street	S	1705	35.6	С	2008	39.8	С	1705	35.6	С	2008	39.8	С
20	Marion Street / Leichhardt Street / Balmain Road	S	1364	30.5	С	1604	51.8	D	1364	30.5	С	1604	51.8	D
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S	1845	39.4	С	1964	50.4	D	1845	39.4	С	1964	50.4	D
39	Parramatta Road / Liverpool Road	S	4640	39.4	С	4933	48.0	D	4640	39.4	С	4933	48.0	D
42	Tebbutt Street / Lords Road	S	1979	23.4	В	2028	22.2	В	1979	23.4	В	2028	22.2	В
44	Tebbutt Street / Hathern Street	S	1960	18.7	В	2159	33.6	С	1960	18.7	В	2159	33.6	С
45	Parramatta Road / Sloane Street	S	4682	26.5	В	5039	39.5	С	4682	26.5	В	5039	39.5	С
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	S	4038	13.9	А	4290	41.7	С	4038	13.9	Α	4290	41.7	С
50	Parramatta Road / Norton Street	S	3384	53.2	D	3533	32.3	С	3384	53.2	D	3533	32.3	С
51	Parramatta Road / Flood Street / West Street	S	4357	74.6	F	4438	153.0	F	4357	74.6	F	4438	153.0	F
52	Parramatta Road / Crystal Street / Balmain Road	S	4006	54.0	D	3847	71.5	F	4006	54.0	D	3847	71.5	F
53	Parramatta Road / Catherine Street / Phillip Street	S	3614	52.7	D	3516	40.8	С	3614	52.7	D	3516	40.8	С
67	Parramatta Road / Young Street / Percival Road	S	3488	40.8	С	3362	27.6	В	3488	40.8	С	3362	27.6	В
68	Parramatta Road /Northumberland Avenue / Johnston Street	S	4116	62.3	Е	4155	62.4	Е	4116	62.3	Е	4155	62.4	E
69	Parramatta Road / Bridge Road	S	4028	38.7	С	4027	51.0	D	4028	38.7	С	4027	51.0	D
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S	4087	40.2	С	4152	44.8	D	4087	40.2	С	4152	44.8	D
71	Parramatta Road / Mallett Street	S	3769	36.1	С	3747	30.8	С	3769	36.1	С	3747	30.8	С
81	Parramatta Road / Dalhousie Street	S	3788	67.2	Е	4007	87.0	F	3788	67.2	Е	4007	87.0	F
83	Parramatta Road / Missenden Avenue / Lyons Road	S	3812	44.0	D	3794	85.4	F	3812	44.0	D	3794	85.4	F

Table 7-6 Intersection performance results – With Upgrades (PM Peak)

			2026						2036					
Inte	rsection	Туре	4:30	DPM - 5:30	ОРМ	5:30	PM - 6:30	ОРМ	4:30	PM - 5:30)PM	5:30	PM - 6:30	PM
		21.	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS	Vol. (veh)	Delay (s)	LOS
19	Marion Street / Norton Street	S	1714	23.0	В	1791	29.3	С	1705	35.6	С	2008	39.8	С
20	Marion Street / Leichhardt Street / Balmain Road	S	1322	28.7	С	1399	33.9	С	1364	30.5	С	1604	51.8	D
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S	1878	44.2	D	1987	47.6	D	1845	39.4	С	1964	50.4	D
39	Parramatta Road / Liverpool Road	S	4572	29.2	С	4969	33.4	С	4640	39.4	С	4933	48.0	D
42	Tebbutt Street / Lords Road	S	1819	20.7	В	1796	17.9	В	1979	23.4	В	2028	22.2	В
44	Tebbutt Street / Hathern Street	S	1852	17.9	В	1959	18.5	В	1960	18.7	В	2159	33.6	С
45	Parramatta Road / Sloane Street	S	4654	28.3	В	5080	31.6	С	4682	26.5	В	5039	39.5	С
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	S	4042	17.9	В	4345	11.2	А	4038	13.9	А	4290	41.7	С
50	Parramatta Road / Norton Street	S	3360	30.3	С	3489	33.8	С	3384	53.2	D	3533	32.3	С
51	Parramatta Road / Flood Street / West Street	S	4472	83.1	F	4753	71.0	F	4357	74.6	F	4438	153.0	F
52	Parramatta Road / Crystal Street / Balmain Road	S	3805	44.9	D	3918	51.2	D	4006	54.0	D	3847	71.5	F
53	Parramatta Road / Catherine Street / Phillip Street	S	3472	53.2	D	3501	57.3	Е	3614	52.7	D	3516	40.8	С
67	Parramatta Road / Young Street / Percival Road	S	3338	13.4	А	3338	30.3	С	3488	40.8	С	3362	27.6	В
68	Parramatta Road /Northumberland Avenue / Johnston Street	S	3963	35.5	С	4188	51.6	D	4116	62.3	Е	4155	62.4	Е
69	Parramatta Road / Bridge Road	S	4093	37.9	С	4228	35.1	С	4028	38.7	С	4027	51.0	D
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S	4080	25.0	В	4317	34.9	С	4087	40.2	С	4152	44.8	D
71	Parramatta Road / Mallett Street	S	3737	27.6	В	3942	28.9	С	3769	36.1	С	3747	30.8	С
81	Parramatta Road / Dalhousie Street	S	3708	45.9	D	4036	61.3	Е	3788	67.2	E	4007	87.0	F
83	Parramatta Road / Missenden Avenue / Lyons Road	S	3603	36.7	С	3899	41.3	С	3812	44.0	D	3794	85.4	F

Figure 7-7 and Figure 7-8 show the intersection performance results on a map of the study area.

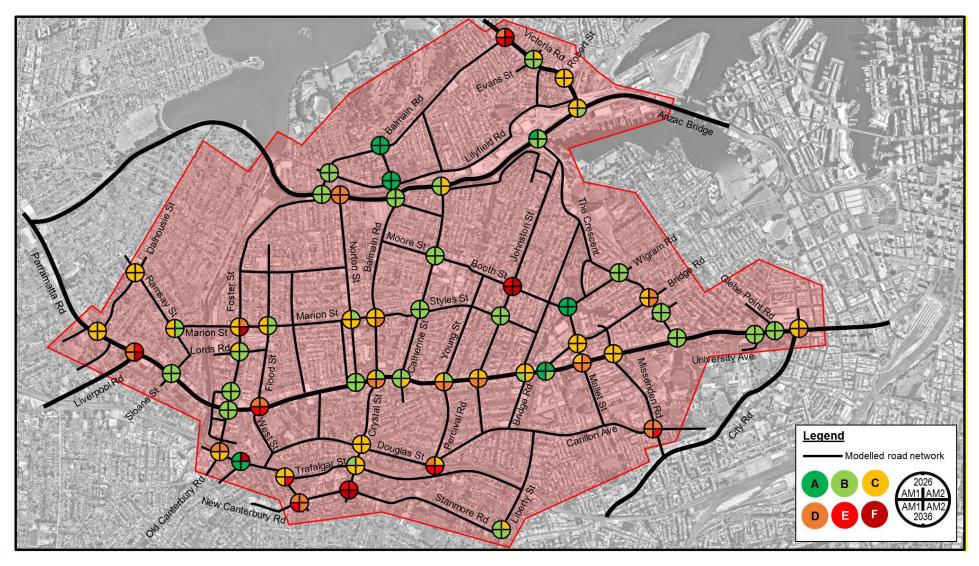


Figure 7-7 Intersection level of service – With Upgrades (AM Peak)

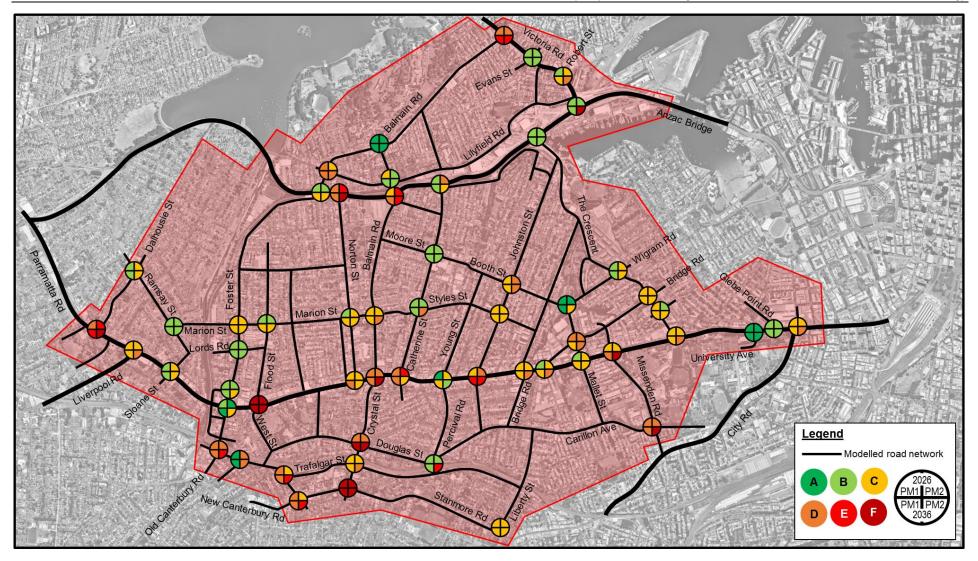


Figure 7-8 Intersection level of service – With Upgrades (PM Peak)

7.3.2 Queue lengths at major intersections

Table 7-7 shows the maximum queue length at major intersections along Parramatta Road in the PRCUTS precincts. On side roads, only queueing within the microsimulation area is included.

Table 7-7 Maximum queue length at major intersections in the PRCUTS precincts – With Upgrades

			Maximum queue length (m)						
Intersection	Appr	oach	20	26	20	36			
			AM Peak	PM Peak	AM Peak	PM Peak			
	N	Dalhousie Street	129	322	169	329			
Parramatta Road / Dalhousie Street	Е	Parramatta Road	94	91	95	93			
Damousie Street	W	Parramatta Road	301	291	301	295			
	Е	Parramatta Road	31	29	31	32			
Parramatta Highway / Hume Highway	S	Hume Highway	30	24	30	28			
Trume riigiiway	W	Parramatta Road	140	133	110	137			
	N	Sloane Street	41	50	51	54			
Parramatta Road /	Е	Parramatta Road	345	379	312	334			
Sloane Street	S	Sloane Street	299	299	299	297			
	W	Parramatta Road	304	153	306	143			
	N	Flood Street	232	238	221	240			
Parramatta Road /	Е	Parramatta Road	491	484	481	496			
Flood Street / West Street	S	West Street	70	70	69	66			
	W	Parramatta Road	193	193	189	193			
	N	Norton Street	74	72	75	76			
Parramatta Road / Norton Street	Е	Parramatta Road	111	113	116	113			
Tronon Guest	W	Parramatta Road	69	62	67	65			
Parramatta Road /	Е	Parramatta Road	36	35	36	35			
Crystal Street /	S	Crystal Street	169	168	171	172			
Balmain Road	W	Parramatta Road	115	122	119	116			
	N	Catherine Street	148	186	127	149			
Parramatta Road /	Е	Parramatta Road	42	226	45	225			
Catherine Street	S	Catherine Street	100	104	103	105			
	W	Parramatta Road	52	52	52	48			
	N	Young Street	104	88	105	105			
Parramatta Road /	Е	Parramatta Road	57	68	57	68			
Young Street / Percival Road	S	Percival Road	82	49	83	83			
	W	Parramatta Road	243	34	244	41			
	N	Johnston Street	50	56	56	56			
Parramatta Road / Johnston Street /	Е	Parramatta Road	87	83	93	91			
Northumberland Avenue	S	Northumberland Avenue	45	37	43	43			
	W	Parramatta Road	78	245	59	256			
	Е	Parramatta Road	80	84	79	85			
Parramatta Road / Bridge Road	S	Bridge Road	95	89	97	89			
ŭ	W	Parramatta Road	34	33	34	33			

Intersection			Maximum queue length (m)						
Intersection	Appr	oach	20	26	2036				
			AM Peak	PM Peak	AM Peak	PM Peak			
Parramatta Road /	N	Pyrmont Bridge Road	111	192	116	205			
Pyrmont Bridge Road /	E	Parramatta Road	201	263	202	266			
Denison Street	W	Parramatta Road	39	33	39	38			
	N	Mallett Street	129	84	131	112			
Parramatta Road /	E	Parramatta Road	41	41	39	41			
Mallett Street	S	Mallett Street	242	243	243	239			
	W	Parramatta Road	259	42	269	43			
Parramatta Road /	N	Lyons Road	96	96	98	93			
Lyons Road /	E	Parramatta Road	168	210	164	488			
Missenden Road	S	Missenden Road	88	132	67	226			

7.4 With Upgrades network plots

7.4.1 Traffic density

Figure 7-9 to **Figure 7-12** show the simulated traffic density for With Upgrades scenario. The density results are similar across the network to the Do Minimum scenario, however the impact of localised upgrades can be seen in reduced densities on side roads to Parramatta Road, on Booth Street, along Salisbury Road and on Liberty Street.

7.4.2 Speed ratio

Figure 7-13 to **Figure 7-16** show the simulated speed ratio for the With Upgrades scenario. Speed ratio is the average section speed as a proportion of the posted speed limit. The With Upgrades scenario shows improvements to the speed ratio, particularly on side roads with intersection upgrades including Liverpool Road, Booth Street and Missenden Road.

7.4.3 Heavy vehicle proportions

Figure 7-17 to **Figure 7-20** show the proportion of the total traffic volume on each link that is heavy vehicles. The proportion of heavy vehicles is significantly higher in the AM Peak than in the PM Peak on most roads. There is no significant change to the heavy vehicle distribution with upgrades.

Figure 7-9 Simulated density – 2026 With Upgrades (AM Peak)

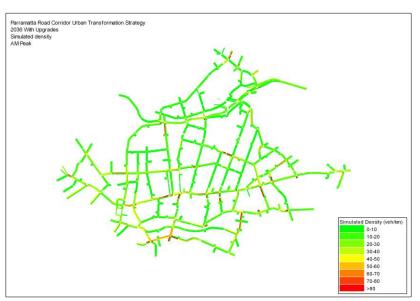


Figure 7-11 Simulated density – 2036 With Upgrades (AM Peak)

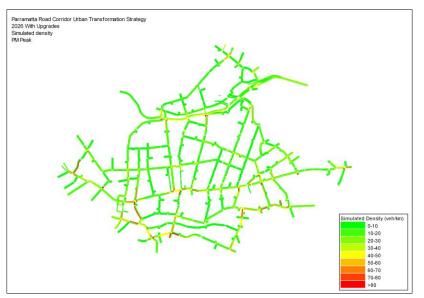


Figure 7-10 Simulated density – 2026 With Upgrades (PM Peak)

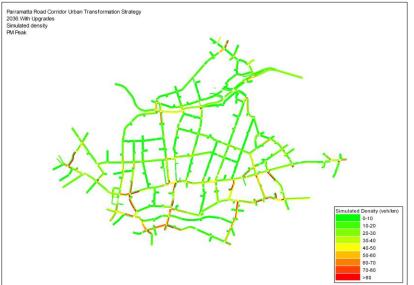


Figure 7-12 Simulated density – 2036 With Upgrades (PM Peak)

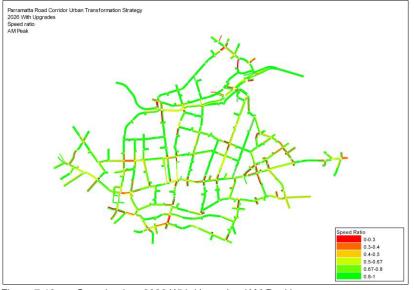


Figure 7-13 Speed ratio – 2026 With Upgrades (AM Peak)

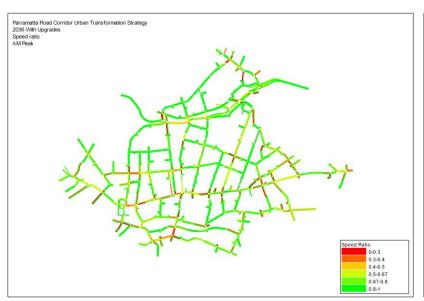


Figure 7-15 Speed ratio – 2036 With Upgrades (AM Peak)

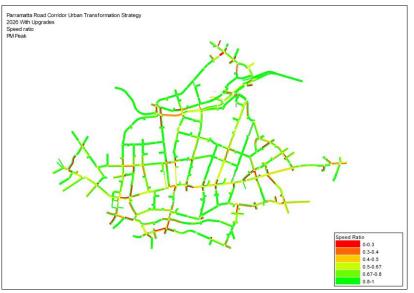


Figure 7-14 Speed ratio – 2026 With Upgrades (PM Peak)

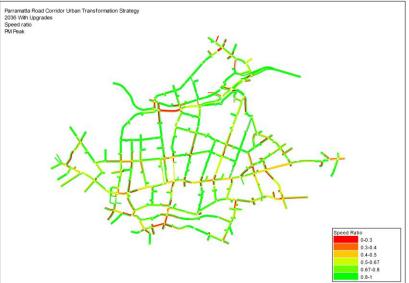


Figure 7-16 Speed ratio – 2036 With Upgrades (PM Peak)

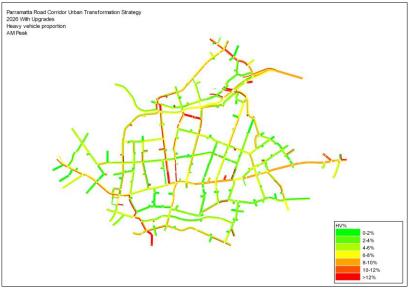


Figure 7-17 Heavy vehicle proportions – 2026 With Upgrades (AM Peak)

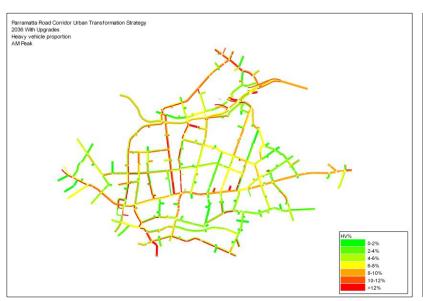


Figure 7-19 Heavy vehicle proportions – 2036 With Upgrades (AM Peak)

Figure 7-18 Heavy vehicle proportions – 2026 With Upgrades (PM Peak)

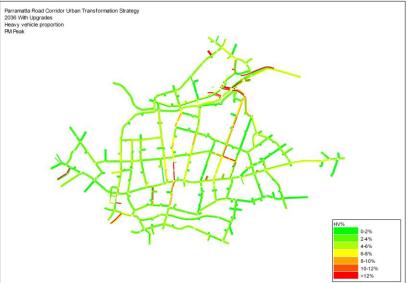


Figure 7-20 Heavy vehicle proportions – 2036 With Upgrades (PM Peak)

8 Conclusion

This report documents the development and results of the hybrid mesoscopic / microscopic model of the Parramatta Road corridor through Taverners Hill, Leichhardt and Camperdown, and the surrounding road network. The purpose of the study was to assess the impact of traffic demands on the operation of the corridor after the opening of the WestConnex interchange. The model will be used to develop strategies to cater for that demand. The following scenarios were modelled in detail:

- > Base / Do Nothing
- > Do Minimum.

Two peaks were modelled to capture typical weekday operation:

- > 7:15AM 9:15AM
- > 4:30PM 6:30PM.

A summary of the main findings is presented below.

- > The traffic demand increased by 11,598 trips in the AM Peak and 12,301 trips in the PM Peak between 2018 and 2026. The increase between 2026 and 2036 was 5394 and 6185 trips respectively.
- > The key findings of the Do Minimum scenario are:
 - The total distance travelled by all vehicles in the simulation increases in both future years, but by proportionally less than the demand increase which results in a lower average kilometres travelled per vehicle
 - Vehicle hours travelled also increases in both future years, but network improvements including WestConnex result in an increase in average speed between 2018 and 2026
 - Average delay increases in each future year, with the greatest increase in the PM Peak in both years
 - Up to three per cent of the total demand is either unreleased or deleted due to congestion across the network
 - Travel times on most routes increase, although there is a short-term decrease in travel times on Parramatta Road due to upgrades at West Street and Crystal Street
 - Many side road approaches to Parramatta Road are over capacity by 2026 and/or 2036 which results in long queues and significant approach delays.
- > The localised upgrades were Cardno's suggestions for how the traffic performance of the network could be improved, and are not endorsed by Council, DPIE, Transport for NSW or any other stakeholders. Further traffic modelling is suggested during the Concept and Detailed Design stages to assess the viability of these upgrades.
- The key findings of the With Upgrades scenario are:
 - The upgrades resulted in an increased number of vehicles arrived within the simulation period, fewer unreleased vehicles and fewer deleted vehicles across all peaks
 - Vehicle kilometres travelled increased as more vehicles were able to complete their trips
 - Vehicle hours travelled decreased in all peaks as a result of less congestion within the study area
 - Average speed across the network increased with the upgrades and average delay time decreased by up to 18 seconds in 2036
 - Less than 0.4 per cent of the total demand was unreleased or deleted in 2026, and less than two per cent in 2036
 - The upgrades provided travel time improvements to key routes across the study area including Parramatta Road in both directions
 - Intersection performance was improved at most key locations, particularly for side road movements, by providing additional capacity such as dedicated turning lanes and/or dual turning lanes.

APPENDIX

BASE MODEL DEVELOPMENT REPORT

Base Model Development Report

Parramatta Road Corridor Urban Transformation Strategy

80018116

Prepared for

Department of Planning, Industry and Environment

28 October 2020

Contact Information

ABN 95 001 145 035

203 Pacific Highway

St Leonards NSW 2065

Document Information

Cardno (NSW/ACT) Pty Ltd Prepared for

Department of Planning, Industry and Environment

Level 9 - The Forum Project Name Parramatta Road Corridor

Urban Transformation

Strategy

Australia File Reference 80018116_Base Model

Development Report.docx

www.cardno.com

Phone +61 2 9496 7700 Job Reference 80018116

Fax +61 2 9439 5170

Date 28 October 2020

Version Number 2

Author(s):

Stephen Payne Effective Date 29/10/2020

Transport Modeller

Approved By:

Siavash Shahsavaripour Date Approved 29/10/2020

Traffic Modelling Team Lead

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	12/04/2019	Draft	Kevin Wu Stephen Payne	Ghaith Farfour
2	29/10/2020	Response to comments	Stephen Payne	Siavash Shahsavaripour

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introdu	Introduction		
	1.1	Project background	1	
	1.2	Project objectives	1	
	1.3	Scope of works	1	
	1.4	Stakeholders	3	
	1.5	Report outline	3	
2	Existin	Existing conditions		
	2.1	Study area	4	
	2.2	Data inputs	7	
	2.3	Congestion locations	14	
3	Model	Model assumptions		
	3.1	Modelling platform	17	
	3.2	Modelled network	17	
	3.3	Time period	19	
	3.4	Assignment type	20	
	3.5	Vehicle types	21	
	3.6	Traffic zones/input	21	
	3.7	Road types	24	
	3.8	Elevation and slope profile	26	
	3.9	Speed profiles	26	
	3.10	Traffic signals	30	
	3.11	Public transport services	33	
	3.12	Demand assumptions and adjustment	36	
	3.13	Pedestrians and cyclists	41	
	3.14	Behaviour parameters	41	
	3.15	End constraints at model boundary	42	
	3.16	Calibration criteria	42	
	3.17	Validation criteria	42	
4	Model	Model stability		
	4.1	Seeds run	44	
	4.2	Stability assessment	45	
5	Model	Model calibration and validation		
	5.1	Convergence	47	
	5.2	Calibration results	48	
	5.3	Validation results	53	
6	Model	Model limitations		
7	Conclu	Conclusions		

Appendices

Appendix A GEH Summary **Appendix B** Base Model Flow Plots **Appendix C** Base Model Density Plots **Tables** 8 Table 2-1 Classified intersection count survey locations Table 2-2 Travel time routes 11 Table 2-3 TCS number and subsystem for signalised intersections 13 Table 3-1 Road types and section capacities 24 Table 3-2 Local speed reductions 29 Table 3-3 Station barrier counts (November 2017) 33 Table 3-4 Vehicle trips to train stations from STM data (2016) 33 Table 3-5 Profile demand traffic composition 41 Table 4-1 Number of simulation runs required 46 Table 4-2 Median seed values 46 Table 5-1 Summary of GEH statistics for each modelled hour 48 Table 5-2 Turns with GEH greater than 10 49 Table 5-3 Regression analysis summary 50 Table 5-4 Travel time validation results by route 53 Table 5-5 Modelled versus observed travel time by segment 55 Table 5-6 Segments with travel times exceeding 15 per cent of the observed value 69 **Figures** Figure 1-1 Regional context 2 IWC precincts along Parramatta Road Figure 2-1 5 Figure 2-2 6 Study area Figure 2-3 Classified intersection count locations 10 Figure 2-4 Travel time routes 12 TomTom median speed (AM Peak) Figure 2-5 15 Figure 2-6 TomTom median speed (PM Peak) 15 Figure 3-1 Modelled road network 18 Figure 3-2 Traffic profile (AM Peak) 19 Figure 3-3 Traffic profile (PM Peak) 19 Figure 3-4 Key vehicle attributes 21

Figure 3-5 STFM centroid numbering and zone boundaries

22

Figure 3-6	Aimsun centroid disaggregation and numbering	23
Figure 3-7	Modelled road types	25
Figure 3-8	Posted speed limits	27
Figure 3-9	School zones	28
Figure 3-10	Signalised intersection locations	31
Figure 3-11	SCATS subsystem hierarchy	32
Figure 3-12	Multi-level modelling framework process	37
Figure 3-13	Total trips	38
Figure 3-14	AM Peak trip length distribution	39
Figure 3-15	PM Peak trip length distribution	39
Figure 3-16	Profiled demand comparison (AM Peak)	40
Figure 3-17	Profiled demand comparison (PM Peak)	40
Figure 3-18	Key behavioural parameters	41
Figure 4-1	Vehicle hours travelled (VHT) across all seeds (AM Peak)	45
Figure 4-2	Vehicle hours travelled (VHT) across all seeds (PM Peak)	45
Figure 5-1	AM Peak DUE convergence	47
Figure 5-2	PM Peak DUE convergence	47
Figure 5-3	AM Peak (7:15AM – 8:15AM) regression plot	51
Figure 5-4	AM Peak (8:15AM – 9:15AM) regression plot	51
Figure 5-5	PM Peak (4:30PM – 5:30PM) regression plot	52
Figure 5-6	PM Peak (5:30PM – 6:30PM) regression plot	52
Figure 5-7	Travel times on Parramatta Road (eastbound)	57
Figure 5-8	Travel times on Parramatta Road (westbound)	58
Figure 5-9	Travel times on Crystal Street (northbound)	59
Figure 5-10	Travel times on Crystal Street (southbound)	60
Figure 5-11	Travel times on Balmain Road (northbound)	61
Figure 5-12	Travel times on Balmain Road (southbound)	62
Figure 5-13	Travel times on Salisbury Street (eastbound)	63
Figure 5-14	Travel times on Salisbury Street (westbound)	64
Figure 5-15	Travel times on Marion Street (eastbound)	65
Figure 5-16	Travel times on Marion Street (westbound)	66
Figure 5-17	Travel times on Johnston Street (northbound)	67
Figure 5-18	Travel times on Johnston Street (southbound)	68
Figure 5-19	Travel time variability (7:15AM – 8:15AM)	70
Figure 5-20	Travel time variability (8:15AM – 9:15AM)	70
Figure 5-21	Travel time variability (4:30PM – 5:30PM)	71
Figure 5-22	Travel time variability (5:30PM – 6:30PM)	71
Figure 5-23	Observed (top) and modelled (bottom) average speed plots (AM Peak)	73
Figure 5-24	Observed (top) and modelled (bottom) average speed plots (PM Peak)	74

1 Introduction

1.1 Project background

Cardno was engaged by Department of Planning, Industry and Environment (DPIE) to investigate the traffic network along the Parramatta Road corridor within the Inner West Council (IWC) local government area. The study involves the development of a hybrid (microscopic/mesoscopic) traffic simulation model using Aimsun, and the analysis of key sites on Parramatta Road using SIDRA Intersection. The purpose of the study is to better inform future minor traffic and safety works.

Figure 1-1 shows the regional context of the study area. The study area is located in the Inner West suburbs of Sydney approximately five kilometres south west of the CBD. The Parramatta Road is a key arterial road corridor connecting the Sydney CBD to the metropolitan centre of Parramatta, as well as other major destinations in inner western Sydney.

The boundary of the Parramatta Road corridor traffic model, the software platform and the locations and types of traffic surveys for input into the model development have been previously endorsed Inner West Council (IWC), Department of Planning, Industry and Environment (DPIE) and Transport for NSW (TfNSW) and used as the basis for developing the base mode.

This report documents the development, calibration and validation of the hybrid Aimsun model. A separate report was previously submitted detailing the SIDRA Intersection analysis (*SIDRA Base Model Development Report*, Cardno, April 2019).

1.2 Project objectives

The objectives of the Parramatta Road Corridor Urban Transformation Study (PRCUTS) are to:

- > Evaluate the impacts of future infrastructure upgrades and trip reassignment in the study area on Parramatta Road and other major corridors
- > Investigate future developments and land use changes in the study area
- > Asses the maximum network capacity and recommended public transport mode shift
- > Investigate optimal configuration of intersection improvements at key locations.

1.3 Scope of works

The traffic modelling scope of work for this traffic study is as follows:

- > Review existing relevant works, previous traffic studies and development patterns in the Parramatta Road study area
- > Conduct traffic surveys and undertake analysis of the historical trends and existing traffic conditions within the study area
- > Use existing strategic models to estimate current and future demands across the study area
- Develop, calibrate and validate a Base Model to capture existing conditions on a typical weekday in the study area to establish a reliable and robust platform for future year testing, in accordance with the following guidelines:
 - Traffic Modelling Guidelines (Roads and Maritime Services, 2017)
 - Technical Direction TTD 2018/002: Traffic signals in microsimulation modelling (Roads and Maritime Services, 2018)
 - Technical Direction TTD 2017/001: Operational modelling reporting structure (Roads and Maritime Services, 2018).

Develop future year scenarios to assess the operation of Parramatta Road and the surrounding network in the future

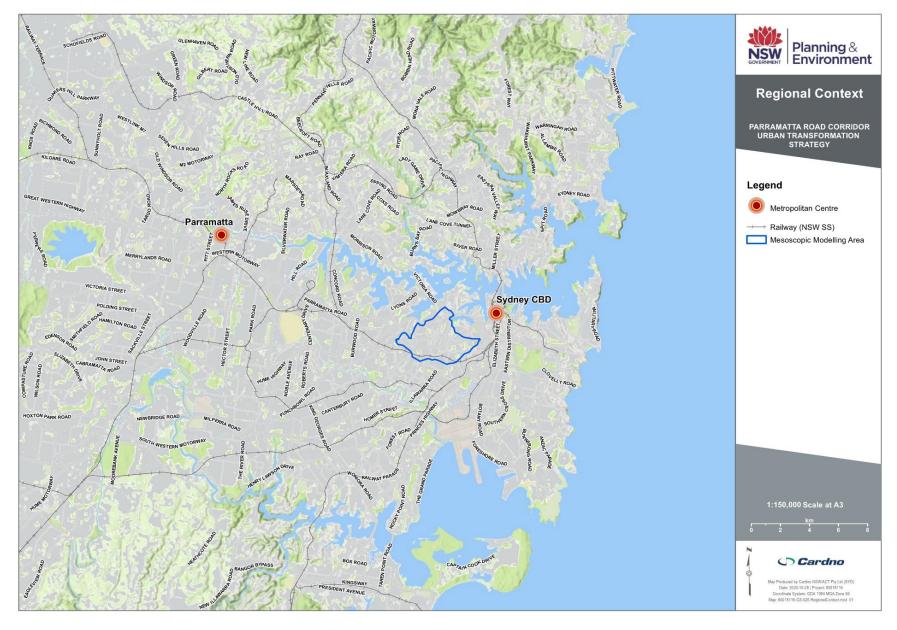


Figure 1-1 Regional context

1.4 **Stakeholders**

The key stakeholders for this project are:

- Department of Planning, Industry and Environment (DPIE)¹
- Inner West Council (IWC)
- Transport for NSW (TfNSW)2.

1.5 Report outline

This report documents the Base Model development process, including discussion of the modelling assumptions, stability, calibration and validation process, limitations and conclusions. It follows the Operational Modelling Reporting Structure (Roads and Maritime Services, 2017) and is intended to be read in isolation from previous reporting.

The structure of this report is outlined below:

- Section 1 Introduction
- Section 2 Existing conditions: discussion of the study area, explanation of the data inputs used in the study including classified intersection counts, travel time data and signal timings, and existing congestion locations
- Section 3 Model assumptions: explanation of the study methodology and discussion of the assumptions underlying the development of the Base Model
- Section 4 Model stability: statistical analysis of the stability of the Base Model
- Section 5 Model calibration and validation: summary of the Base Model calibration and validation results
- Section 6 Limitations: discussion of the limitations of the Base Model that could affect future modelling, and suggestions for accounting for these limitations in future year model outputs
- Section 7 Conclusions.

¹ Formerly Department of Planning and Environment until 1 July 2019

² Roads and Maritime Services existed as a separate agency until it was dissolved and functions transferred to Transport for NSW on 1 December 2019

2 Existing conditions

2.1 Study area

The study area encompasses the precincts of Taverners Hill, Leichhardt and Camperdown which are all within the IWC local government area. **Figure 2-1** shows these precincts along Parramatta Road.

The study area includes the following key links:

- > Parramatta Road (Great Western Highway) between Haberfield and Ultimo including key intersections with Liverpool Road (Hume Highway), Pyrmont Bridge Road and City Road (Princes Highway).
 Parramatta Road is a major east-west route connecting the Sydney CBD to the Inner West, Strathfield, Lidcombe and Parramatta. At the western extent of the study area, Parramatta Road connects to the M4 East, twin tunnels between Haberfield and Homebush. On the calibration date (17 October 2018), the M4 East was under construction. It was subsequently opened on 13 July 2019
- City-West Link Road between the Anzac Bridge in Rozelle and Dobroyd Point. This road forms part of the Western Distributor, a key link connecting North Sydney (via the Harbour Bridge) to Western Sydney. To the west of the study area, City-West Link Road connects to Parramatta Road and the M4 East
- Victoria Road between City-West Link Road and Parramatta River. Victoria Road is a major north-south arterial road that connects the Western Distributor to Balmain, Rozelle, Drummoyne, Lane Cove and Ryde
- > Stanmore Road runs east-west along the southern edge of the study area. Stanmore Road connects to Enmore Road and King Street (Princes Highway) to the east of the study area and links Inner West suburbs Newtown, Petersham, Lewisham and Dulwich Hill to Old Canterbury Road.

The study area includes key trip generators (origins) and trip attractors (destinations) within the Inner West including three railway stations, seven light rail stops, commercial centres Leichhardt, Rozelle and Camperdown, the University of Sydney, Princes Alfred Hospital, numerous schools, parks, sports fields and light industries. Residential areas are generally low to medium density across the study area, with some high-density apartment complexes in Glebe, Lewisham and around the University of Sydney.

Figure 2-2 shows the study area.

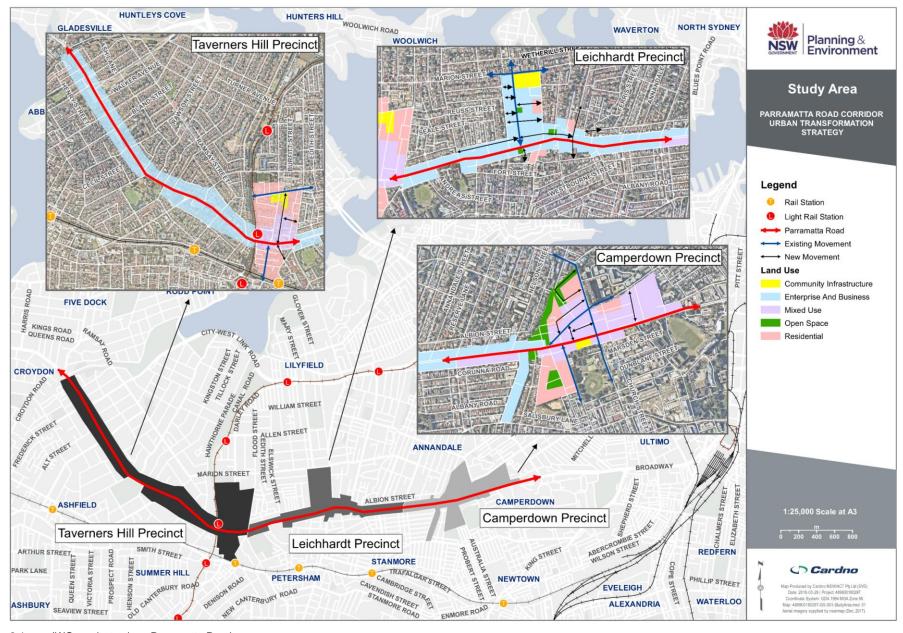


Figure 2-1 IWC precincts along Parramatta Road

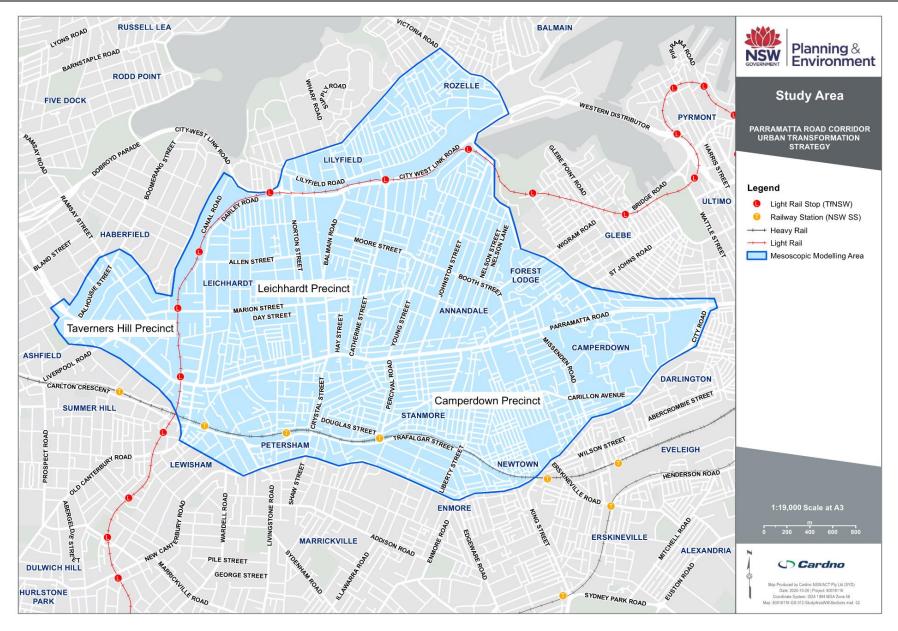


Figure 2-2 Study area

2.2 Data inputs

Traffic models rely on a range of survey inputs to capture existing conditions including vehicle routing, driver behaviour and congestion hotspots. The more data that is used in the development of a model, the better the model can replicate existing conditions to provide a more reliable and robust basis for future year assessments.

The data set for the microsimulation model was compiled from the following sources:

- > Cordon matrices from the Sydney Transport Forecast Model (STFM) provided by TfNSW
- > Classified intersection counts undertaken at 88 locations in 2018
- > Travel time data from TomTom
- > Average speed data from TomTom
- > Traffic signal data obtained from TfNSW.

The data collected for each of the above categories is outlined in the following sections.

2.2.1 Cordon matrices

TfNSW provided traffic matrices from the STFM for 2016. The cordon matrices consisted of 96 centroids made up of:

- > 51 internal travel zones wholly or partially within the study area
- > 31 external gates
- > Three railway station centroids
- > Nine light rail stop centroids
- > One ferry wharf centroid
- > One container terminal centroid.

The locations and STFM zoning structure is discussed in Section 3.6.

2.2.2 Classified intersection counts

Classified intersection counts record vehicle movements for all approaches to an intersection. The number of vehicles making each turn are used in the development of the Base Model to ensure that the modelled volumes are reflective of those in reality.

Classified intersection counts were undertaken for 88 intersections on Wednesday 17 October 2018. The counts were classified into the following classes:

- > Light vehicles (cars)
- > Heavy vehicles (trucks)
- > Pedestrians.

The classified intersection counts were undertaken for the following four-hour periods in each peak:

- > 6:00AM 10:00AM
- > 3:00PM 7:00PM.

Table 2-1 lists the survey locations for classified intersection counts. Following the table, **Figure 2-3** shows these locations on a map of the study area.

Table 2-1 Classified intersection count survey locations

Survey	Intersection	Type ³
ID		
1	Victoria Road / Darling Street	S
2	Victoria Road / Evans Street	S
3	Victoria Road / Robert Street	S
4	Balmain Road / Cecily Street / Park Drive	S
5	Balmain Road / Lilyfield Road	S
6	The Crescent / Victoria Road	S
7	Balmain Road / Perry Street / Wharf Road	S
8	City-West Link Road / The Crescent	S
9	City-West Link Road / Norton Street	S
10	City-West Link Road / Brenan Street / Balmain Road	S
11	City-West Link Road / Brenan Street / Catherine Street	s
12	Catherine Street / Piper Street	Р
13	Catherine Street / Moore Street	S
14	Styles Street / Catherine Street	S
15	Balmain Road / Moore Street	S
16	Grove Street and O'Neill Lane	Р
17	Salisbury Road / Carillon Avenue / Church Street	S
18	Norton Street / Allen Street	S
19	Marion Street / Norton Street	S
20	Marion Street / Leichhardt Street / Balmain Road	S
21	Young Street / Collins Street	R
22	Johnston Street / Collins Street	S
23	Johnston Street / Booth Street	S
24	Lilyfield Road / Lamb Street	Р
25	Johnston Street / Rose Street	Р
26	The Crescent / Nelson Street	R
27	Booth Street / Wigram Road	R
28	Minogue Crescent / Wigram Road	S
29	Ross Street / Bridge Road	S
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S
31	Allen Street / Elswick Street	R
32	Allen Street / Flood Street	R
33	Allen Street / Foster Street / Darley Road	R

Survey ID	Intersection	Type ³
34	Marion Street / Foster Street	S
35	Marion Street / Flood Street	S
36	Marion Street / Ramsay Street	S
39	Parramatta Road / Liverpool Road (Hume Highway)	S
41	City-West Link Road / James Street	S
42	Tebbutt Street / Lords Road	S
43	Lilyfield Road / James Street	S
44	Tebbutt Street / Hathern Street	S
45	Parramatta Road / Sloane Street	Р
46	Cook Street / Old Canterbury Road	Р
47	Parramatta Road / Old Canterbury Road / Tebbutt Street	Р
48	Old Canterbury Road / Barker Street	Р
49	Old Canterbury Road / Railway Terrace / Longport Street	S
50	Parramatta Road / Norton Street	S
51	Parramatta Road / Flood Street / West Street	S
52	Parramatta Road / Crystal Street / Balmain Road	S
53	Parramatta Road / Catherine Street / Phillip Street	s
54	Parramatta Road / Elswick Street	Р
55	Crystal Street / Fort Street / Robert Street	Р
56	Crystal Street / Douglas Street / Brighton Street	s
57	Crystal Street / Trafalgar Street	S
58	New Canterbury Road / Stanmore Road / Crystal Street / Shaw Street	S
59	Gordon Street / Trafalgar Street	S
60	New Canterbury Road / Gordon Street / Livingstone Road	s
61	Stanmore Road / Wemyss Street / Merchant Street	s
62	Ramsay Road / Dalhousie Street	S
64	Stanmore Road / Merton Street	Р
65	Stanmore Road / Liberty Street	S
66	Ross Street / St Johns Road	S

 $^{^3}$ S = signalised, R = roundabout, P = priority

Survey ID	Intersection	Type ³
67	Parramatta Road / Young Street / Percival Road	S
68	Parramatta Road /Northumberland Avenue / Johnston Street	S
69	Parramatta Road / Bridge Road	S
70	Parramatta Road /Pyrmont Bridge Road / Denison Street	S
71	Parramatta Road / Mallett Street	S
72	Parramatta Road / Ross Street / Western Avenue	S
73	Great Western Highway / Glebe Point Road	S
74	Broadway / City Road (Princes Highway) / Bay Street	S
75	University Avenue / Parramatta Road / Derwent Street / Arundel Street	S
76	Gordon Street / Lilyfield Road / Burt Street	Р

Survey ID	Intersection	Type ³
77	Salisbury Road / Northumberland Ave	R
78	Liberty Street / Trafalgar Street	Р
79	Douglas Street / Percival Road	S
80	Railway Terrace / Victoria Street	Р
81	Parramatta Road / Dalhousie Street	S
82	Carillon Avenue / Missenden Road	S
83	Parramatta Road / Missenden Avenue / Lyons Road	S
84	Parramatta Road / Rofe Street	S
85	Dot Lane / Balmain Road	Р
86	Parramatta Road / Renwick Street / Railway Street	Р
87	Crystal Street / Queen Street	S
88	Parramatta Road / Petersham Street	Р

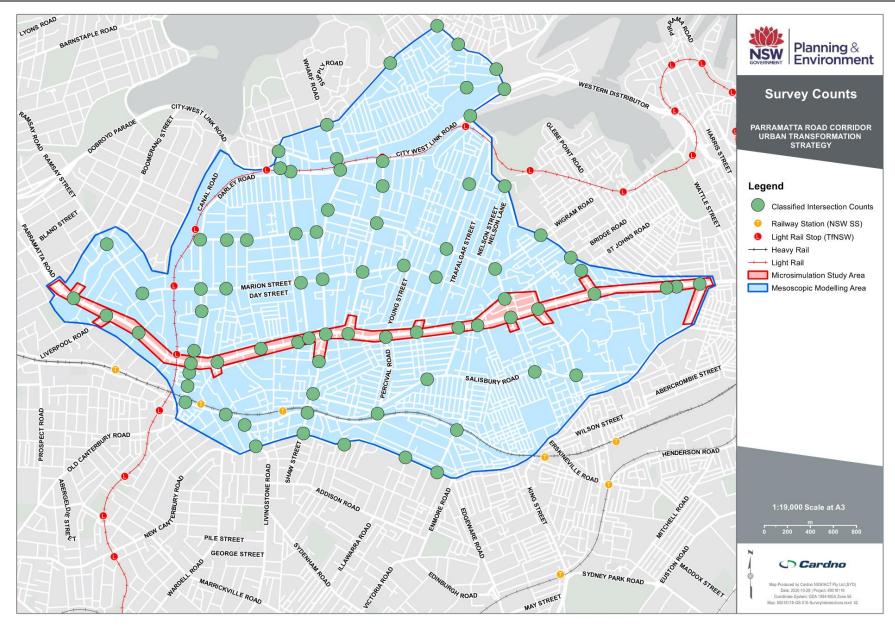


Figure 2-3 Classified intersection count locations

2.2.3 Travel time routes

TomTom captures 3.5 million kilometres of floating car data (FCD) every day in Australia. The data is collected from a combination of TomTom devices (fleet and consumer), third party auto original-equipment manufacturers (OEMs) and mobile devices. FCD provides a new method for measuring speeds, travel times and road performance. Probe devices in vehicles, which may be cellular phones or Global Positioning System (GPS) devices, provide average travel time data in large sample sizes per route segment. This method of data collection is advantageous to the traditional floating car method and less susceptible to being skewed by anomalous data points.

Travel time and speed data for vehicles travelled along six key routes in the study area was extracted from TomTom. The data was aggregated over a four-week period including the survey date (Wednesday 17 October 2018) for Tuesdays, Wednesdays and Thursdays only. The data was separately aggregated for each hour of each peak.

Table 2-2 lists the travel time routes. Each route is bi-directional. **Figure 2-4** shows the locations of these routes in the study area.

Table 2-2 Travel time routes

Route #	Description
1	Parramatta Road between Princes Highway (City Road) and Orpington Street
2	Crystal Street between Trafalgar Street and Parramatta Road
3	Balmain Road between Parramatta Road and City-West Link Road ⁴
4	Brighton Street between West Street and Crystal Street, then Douglas Street between Crystal Street and Salisbury Road, then Salisbury Road between Douglas Street and Australia Street
5	Marion Street between Ramsay Street and Balmain Road
6	Johnston Street between Parramatta Road and The Crescent

2.2.4 Average speed data

Average speed data was extracted from TomTom for all major roads in the study area for the AM Peak and PM Peak to identify congestion locations and compare to the modelled outputs (refer to **Section 5.3.3**).

⁴ In the southbound direction, Route 3 ends at Marion Street at Balmain Road is one-way in the opposite direction between Parramatta Road and Marion Street.

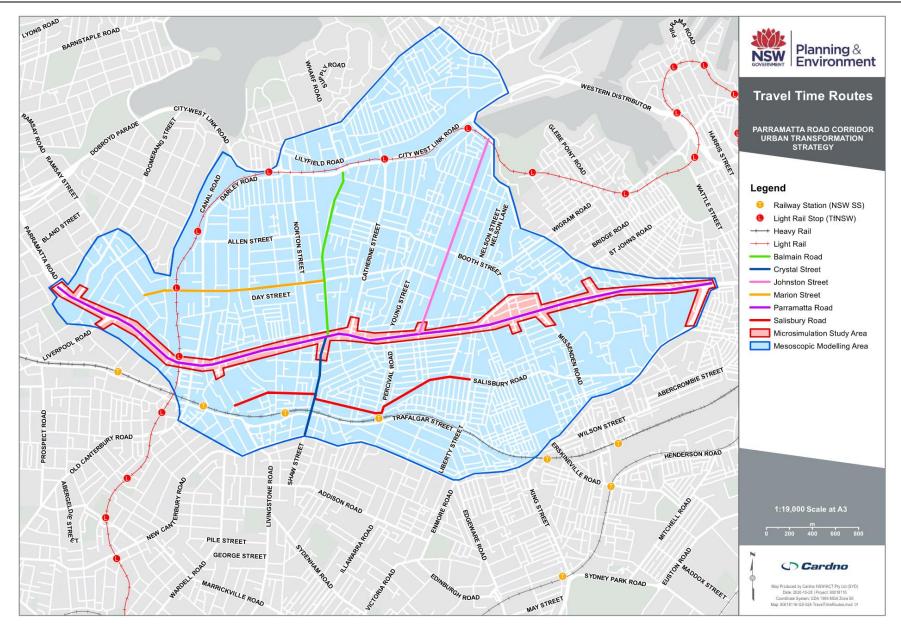


Figure 2-4 Travel time routes

2.2.5 SCATS traffic signal data

The following SCATS traffic signal information was obtained from TfNSW for the signalised intersections within the study area:

- > SCATS history file
- > TCS graphic plots
- > SCATS Region LX files
- > TCS plans.

Table 2-3 shows the TCS number for all signalised intersections in the study area and the subsystems to which they belong.

Table 2-3 TCS number and subsystem for signalised intersections

Table 2-3	TCS number and subsystem for signalised inter		
TCS	SS	Intersection	
2	ROZ 24	Parramatta Road / Pyrmont Bridge Road / Denison Street	
4	ROZ 25	Pyrmont Bridge Road / Booth Street	
13	NEW 11	Salisbury Road / Australia Street	
16	LEW 27	Parramatta Road / Flood Street	
17	LEW 43	Old Canterbury Road / Longport Street / Railway Terrace	
18	LEW 22	Parramatta Road / Sloane Street	
19	LEW 22	Salisbury Road / Cardigan Street	
21	LEW 50	Parramatta Road / Bridge Road	
33	LEW 30	Parramatta Road / Percival Road / Young Street	
62	LEW 50	Ross Street / Bridge Road	
63	ROZ 36	Marion Street / Foster Street	
70	LEW 22	Parramatta Road / Liverpool Road	
87	ROZ 8	Balmain Road / Lilyfield Road	
91	ROZ 37	Norton Street / Marion Street	
92	LEW 92	Parramatta Road / Johnston Street / Northumberland Avenue	
93	LEW 28	Parramatta Road / Balmain Road / Crystal Street	
97	LEW 44	Railway Terrace / Cardigan Street	
100	LEW 7	Crystal Street / New Canterbury Road / Shaw Street / Stanmore Road	
101	LEW 10	Crystal Street / Trafalgar Street	
102	LEW 13	New Canterbury Road / Gordon Street / Livingstone Road	
132	LEW 32	Parramatta Road / Missenden Road	
140	LEW 49	Parramatta Road / Dalhousie Street	
143	LEW 45	Parramatta Road / Norton Street	

TCS	SS	Intersection
176	LEW 0	Percival Road / Douglas Street
179	ROZ 27	Catherine Street / Styles Street
215	ROZ 13	Johnston Street / Booth Street
327	LEW 57	Dalhousie Street / Ramsay Street
373	LEW 28	Parramatta Road / Catherine Street / Philip Street
384	LEW 32	Parramatta Road / Mallett Street
385	LEW 32	Parramatta Road / Layton Street
411	ULT 4	Parramatta Road / Broadway / Derwent Street / University Avenue
412	ULT 4	Broadway / Glebe Point Road
413	ULT 4	Broadway / Princes Highway
414	ULT 25	Broadway / Mountain Street
434	LEW 33	Parramatta Road / Ross Street / Western Avenue
438	LEW 16	Crystal Street / Douglas Street
546	ROZ 8	City West Link Road / Brenan Street / Balmain Road
651	ROZ 2	Victoria Road / The Crescent
652	ROZ 6	Victoria Road / Roberts Street
653	ROZ 35	Victoria Road / Gordon Street
654	ROZ 35	Victoria Road / Evans Street
655	-	Victoria Road / Darling Street
656	ROZ 1	Victoria Road / Wellington Street
661	NEW 5	City Road / Princes Highway / Carillon Avenue
664	NEW 1	King Street / Missenden Road
667	NEW 2	King Street / Mary Street / Erskineville Road
721	FIDO1 0	Catherine Street / Moore Street
747	LEW 13	New Canterbury Road / Audley Street

TCS	SS	Intersection
821	LEW 14	New Canterbury Road / Wardell Road
861	ROZ 36	Marion Street / Flood Street
862	ROZ 11	City West Link Road / Brenan Street / Catherine Street
884	NEW 23	Stanmore Road / Liberty Street
902	LEW 52	New Canterbury Road / Constitution Road / Beach Road
1081	ROZ 92	Lilyfield Road / Mary Street / James Street
1143	ROZ 25	Pyrmont Bridge Road / Alexandria Drive / Lyons Road
1208	ROZ 12	City West Link Road / The Crescent
1209	ROZ 26	Wigram Road / Minogue Crescent
1406	ROZ 36	Foster Street / Tebutt Street / Lords Road
1407	ROZ 13	Collins Street / Johnston Street
1502	ROZ 33	City West Link Road / Norton Street
1527	ROZ 34	City West Link Road / James Street / Darley Street
1540	ROZ 32	The Crescent / Johnston Street
1585	NEW 23	Stanmore Road / Merchant Street / Wemyss Street
1864	ROZ 27	Balmain Road / Marion Street
1865	LEW 45	Pedestrian crossing: Parramatta Road near Railway Street

TCS	SS	Intersection
1873	FIDO2 29	Balmain Road / Perry Street / Wharf Road
1879	ROZ 24	Ross Street / St Johns Road
1881	LEW 21	Railway Terrace / Trafalgar Street / Gordon Street
1913	NEW 0	Pedestrian crossing: Trafalgar Street outside Stanmore Station
1939	FIDO1 0	Balmain Road / Cecily Street / Park Drive
2004	NEW 23	Pedestrian crossing: Stanmore Road outside Newington College
2020	ROZ 13	Pedestrian crossing: Johnston Street outside Annandale North Public School
2087	ROZ 25	Pedestrian crossing: Pyrmont Bridge Road near Layton Street
2124	LEW 27	Pedestrian crossing: Parramatta Road opposite Tebbutt Street
2405	NEW 11	Salisbury Road / Kingston Road
2673	ROZ 53	Balmain Road / Moore Street
2753	ROZ 36	Marion Street / Elswick Street
3495	NEW 48	Missenden Road / Carillon Avenue
3547	ROZ 38	Marion Street / Ramsay Street
4207	ROZ 1	Darling Street / Waterloo Road / Belmore Street
4221	ROZ 53	Balmain Road / Alfred Street
4441	ROZ 45	Minogue Crescent / The Crescent / Scotsman Street
4559	ROZ 15	Tebbutt Street / Hathern Street

2.3 Congestion locations

Cardno extracted speed data from TomTom for five Wednesdays in October 2018 to assist with identifying congestion hotspots across the study area. **Figure 2-5** and **Figure 2-6** show the median speed data graphically across the study area. Only roads with a sufficient sample size are shown. Note the following limitations of the TomTom output:

- > The median speed on local roads is the average of both directions
- > On major roads such as Parramatta Road, the median speed is reported in each direction but in the output one direction is often obscured by the other
- Anomalous speed data appears to have been recorded on Trafalgar Street and Railway Terrace. Both these roads have speed limits of 50 kilometres per hour, however the median speed data recorded speeds of up to 90 kilometres per hour. This is likely due to the close proximity of this road to the railway line. As TomTom data is also captured from mobile phones, it is likely that some of the data collected for this road is actually sourced from mobile phones on the train line. These roads will not be considered in the hotspot validation.

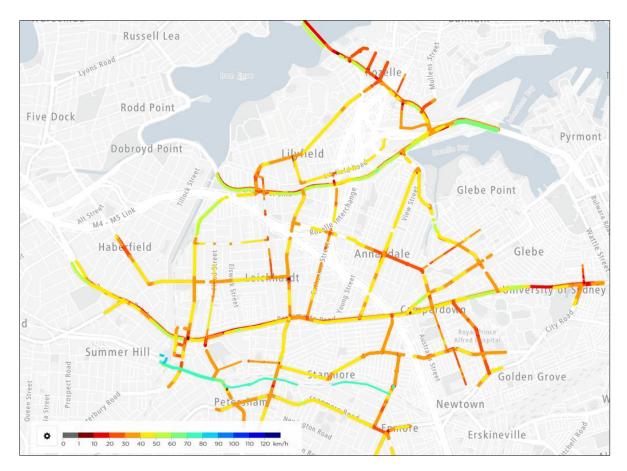


Figure 2-5 TomTom median speed (AM Peak)

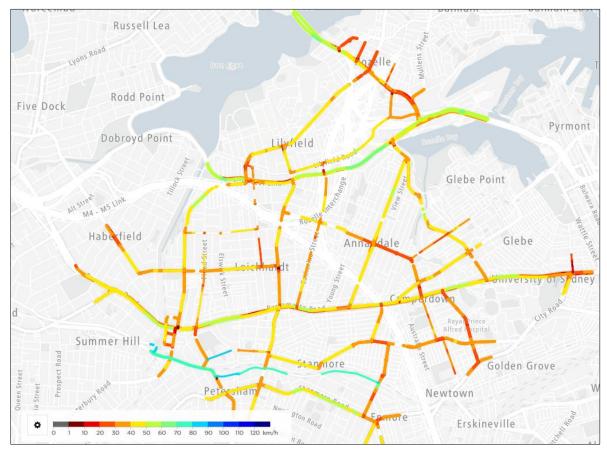


Figure 2-6 TomTom median speed (PM Peak)

In the AM Peak, the following key congestion locations were observed from the site visit and TomTom data:

- > Parramatta Road eastbound generally exhibited very low average speeds, in particular at the following locations:
 - Between Liverpool Road and West Street the average speed on Parramatta Road was observed to be less than 25 kilometres per hour. Some segments, in particular around the merge from three lanes to two lanes, had an average speed of less than 10 kilometres per hour over the two-hour AM Peak
 - Approaching Balmain Road, the average speed on Parramatta Road is approximately 15 kilometres per hour across the AM Peak with queues regularly extending back to West Street
 - Between Balmain Road and Johnston Street, the average speed is less than 20 kilometres per hour
 - East of Pyrmont Bridge Road, traffic was generally observed to be less congested on Parramatta Road with the average speed approximately 30 kilometres per hour
 - Congestion was observed approaching City Road and Broadway on Parramatta Road with the average speed across the AM Peak being approximately 25 kilometres per hour.
- > Long queues and slow-moving traffic were observed in both directions on Crystal Street in the AM Peak
- > Long queueing was observed approaching Parramatta Road on Missenden Road
- Long queues and slow-moving traffic were observed on Booth Street approaching the Wigram Road roundabout. This was mainly caused by queue propagation from the Pyrmont Bridge Road / Bridge Road / Mallett Street / Booth Street intersection
- Average speeds on City-West Link Road in the eastbound direction were generally less than 40 kilometres per hour west of Balmain Road. Traffic was more free-flowing between Balmain Road and Victoria Road where more lanes are provided with an average speed approaching 60 kilometres per hour. However, the average speed over the Anzac Bridge was approximately 35 kilometres per hour
- Congestion and slow-moving traffic was observed on Victoria Road in the southbound direction. The average speed between Terry Street and City-West Link Road was approximately 25 kilometres per hour. Significant queueing was also observed on all side roads leading to Victoria Road from Rozelle (to the north)
- > In the non-peak direction (westbound), traffic was generally more free-flowing with the average speed on Parramatta Road approximately 40 kilometres per hour and on City-West Link Road approximately 55 kilometres per hour.

In the PM Peak, the following key congestion locations were observed from the site visit and TomTom data:

- > Parramatta Road westbound generally exhibited low average speeds, in particular at the following locations:
 - West of Johnston Street, traffic was generally slow-moving with average speeds varying between 30 and 40 kilometres per hour with the highest average speeds observed in longer sections and away from traffic signals
 - Average speed on the section of Parramatta Road approaching Catherine Street was approximately
 25 kilometres per hour in the PM Peak
 - Congestion and queueing were also observed on Booth Street where the average speed in the PM Peak was less than 30 kilometres per hour approaching Wigram Road
 - Long queueing was also observed on Perry Street approaching City-West Link Road
 - Victoria Road was slow-moving in the northbound direction with the average speed between City-West Link Road and Darling Street being about 25 kilometres per hour
 - Average speed on the Anzac Bridge in the westbound direction was 30 kilometres per hour
 - Significant queueing and slow-moving traffic was observed on Carillon Avenue and Liberty Street, and on Missenden Road and Mallett Street approaching Parramatta Road
 - In the non-peak direction (eastbound), traffic was generally more free-flowing with the average speed on Parramatta Road approximately 30-40 kilometres per hour and on City-West Link Road approximately 60 kilometres per hour.

3 Model assumptions

This section outlines the assumptions behind the Base Model development.

3.1 Modelling platform

The PRCUTS model was developed using Aimsun version 8.4.3⁵. Aimsun was considered an appropriate tool for this study as it seamlessly integrates microscopic and mesoscopic simulation into the one model (hybrid simulation). It is capable of modelling baseline conditions and incorporating future infrastructure changes, and quantifying the performance of the traffic network.

Mesoscopic models bridge the gap between strategic planning models (macroscopic models) and detailed operational models (microscopic models). Mesoscopic modelling utilises the dynamic traffic simulation framework similar to microscopic models but at a lower level of detail. The level of detail in mesoscopic models is sufficient to determine the performance of the road network under proposed future land use scenarios and provide guidance on the need for further road infrastructure requirements. Additionally, mesoscopic simulation allows for true dynamic equilibrium assignment where vehicles can select their optimum/preferred travel routes based on their perceived cost. This provides a confidence that the modelled pattern of traffic represents a realistic response to the delays and capacity constraints that would be experience by users on a daily basis.

The microscopic simulation (microsimulation) section of the hybrid model provides a higher level of detail beneficial to this study. Microsimulation allows for detailed interaction between vehicles and/or pedestrians at intersections to be modelled and visualised which results in accurate queueing behaviour only achievable with this type of modelling. Microsimulation also more accurately replicates travel times due to detailed friction, acceleration and deceleration factors and it provides a visualisation of the simulation to verify driver behaviour.

3.2 Modelled network

3.2.1 BSORT / PRRP model

Following discussions with DPIE, IWC and TfNSW, Cardno obtained the previously-developed Burwood to Sydney On-street Rapid Transit Model (BSORT) which was used as the basis for the model development. This included the Parramatta Road Reconfiguration Program (PRRP) models (September 2018), however these were not considered fit for the purpose of this project following an internal review as the calibration and validation targets from *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013) were not met. The PRRP model was only used to import the network geometry to develop the hybrid model.

3.2.2 PRCUTS model network

The PRCUTS model extent covers an area of approximately 15 square kilometres including the Taverners Hill, Leichhardt and Camperdown precincts in the IWC local area. Geometry and coding from the PRRP model were checked against aerial photography from *Nearmap*⁶. Network infrastructure and road geometry for the Base Model was based on that which existed on the calibration date (17 October 2018).

Figure 3-1 shows the modelled road network including the extent of the microsimulation area.

⁵ 2020-06-03 (b46ec77181 x64 Python 2)

⁶ Aerial photography from Tuesday 23 October 2018

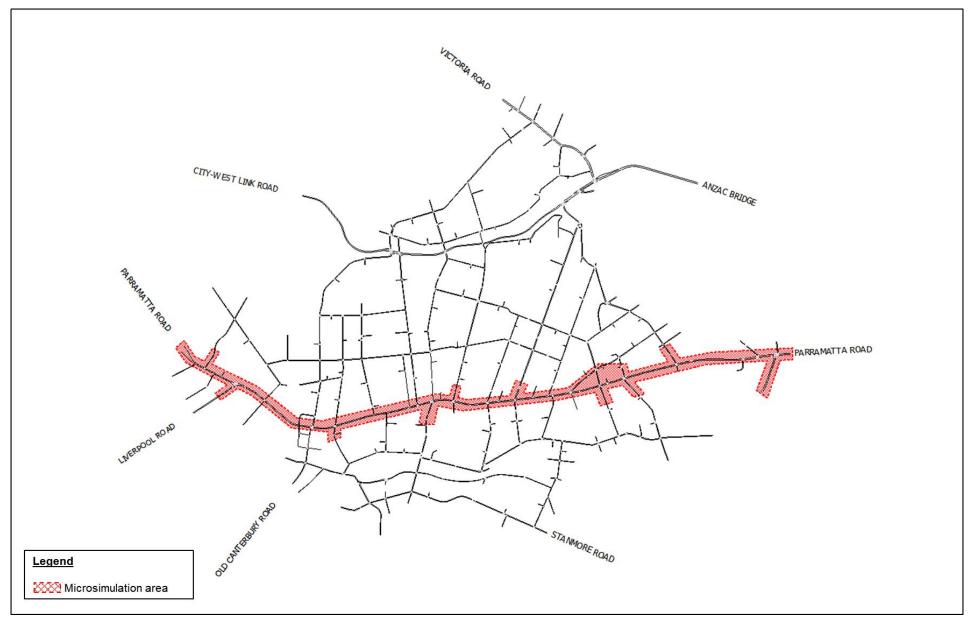


Figure 3-1 Modelled road network

3.3 Time period

The traffic peak periods were determined from the classified intersection counts. The busiest two-hour period in each peak was identified as the period during which the greatest number of turn movements were recorded across all intersections. The model provides an indication of the performance of the network during the worst two-hour period in each peak.

The peak periods were identified as:

- > 7:15AM 9:15AM
- > 4:30PM 6:30PM.

Figure 3-2 and Figure 3-3 show the traffic profiles for the AM Peak and PM Peak respectively.

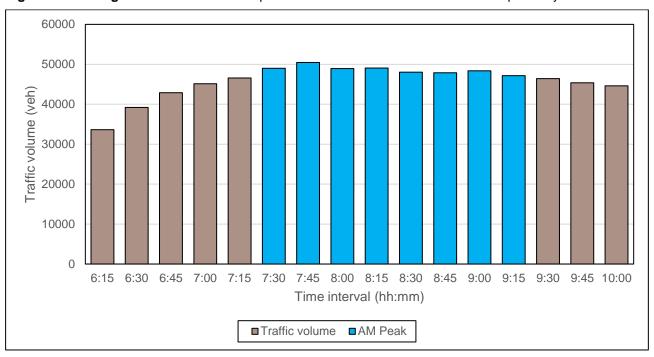


Figure 3-2 Traffic profile (AM Peak)

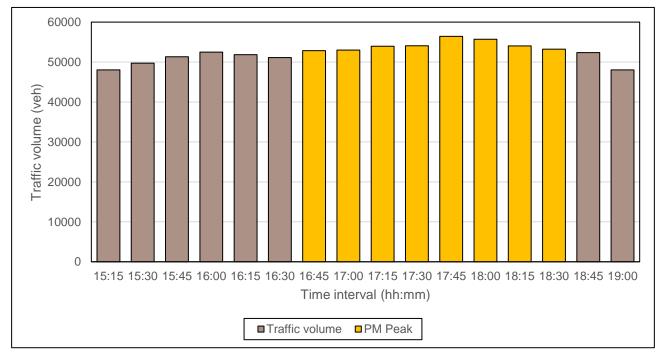


Figure 3-3 Traffic profile (PM Peak)

3.4 Assignment type

This section outlines the assignment types used in the model. **Section 3.12** provides greater detail of the demand estimation and assignment process.

3.4.1 Static assignment

Static assignment uses deterministic algorithms to assign traffic volumes to links in the network. Individual vehicles are not modelled and the performance of each section is determined by the link performance function. Typically link performance functions are based on the number of vehicles assigned to a section and the section capacity, although other attributes may also be considered.

The aim of static assignment is to minimise the total generalised cost (usually a function of travel time) across the network. The total travel time for the network is calculated by the product of the volume on each link multiplied by the travel time on that link (given by the link performance function), summed for all links in the network. At equilibrium, all paths that are used between a given origin and destination will have the same generalised cost.

3.4.2 Dynamic user equilibrium

To assess options that impact vehicle route choice, dynamic user equilibrium (DUE) assignment was used. Dynamic assignment is based on an iterative simulation process where drivers choose their routes through the network based on the travel cost they experienced in the previous iteration. The simulation continues until a stable model environment is reached where travel times and volumes do not change significantly between iterations.

The principle of this assignment is that users will try to minimise their individual travel times by travelling on a route which they perceive to be the shortest path given the traffic conditions. To achieve a dynamic equilibrium state, the travel times of each OD pair for vehicles departing at the same time must be equal across all used routes, and less than that of a single user on any of the unused routes (Ran and Boyce's dynamic version of Wardrop's equilibrium).

3.4.3 Stochastic route choice assignment

The stochastic route choice (SRC) assignment is based on discrete route choice models or on a userdefined assignment, Discrete route choice models are based on discrete choice theory and emulate the decisions of users selecting paths from those that area available. This model uses the probability of choosing alternative paths from the available paths as a function of their disutility, typically travel time or travel cost.

3.5 Vehicle types

The following vehicle types were used in the models:

- > Light vehicles (cars)
- > Heavy vehicles (trucks)
- > Buses.

Cardno adopted the definition of light vehicle from Austroads (1994). A light vehicle is any vehicle with only two axles that does not have dual tyres on the rear axle, and is up to 5.5 metres in length. This can include cars, SUVs, small vans and motorcycles. The default Aimsun maximum car length was increased from 4.5 metres to 5.5 metres to align with the Austroads classification.

A heavy vehicle is any vehicle with more than two axles, or with dual tyres on the rear axle. This includes rigid vehicles, trucks and heavy articulated vehicles but excludes buses. Buses were included as a separate vehicle type. The demand for buses was adopted using fixed routes and timetables (refer to **Section 3.11**).

Aimsun defaults were generally adopted for all parameters. Cardno notes that the PRRP model inherited for this project contained substantial adjustment to many of the vehicle parameters. In some cases, these were restored to Aimsun defaults as the adjusted values were found to be unrealistic. **Figure 3-4** presents the values for key vehicle attributes adopted in the models.

Figure 3-4 Key vehicle attributes

Attribute	Vehicle type	Mean	Deviation	Minimum	Maximum
	Car	4.50 m	1.00 m	3.50 m	5.50 m
Length	Truck	12.00 m	4.00 m	8.00 m	16.00 m
	Bus	13.00 m	1.00 m	12.00 m	14.50 m
Speed acceptance	Car	1.00	0.10	0.90	1.10
	Truck	0.90	0.10	0.80	1.00
	Bus	0.90	0.10	0.80	1.00
	Car	1.00 m	0.50 m	0.50 m	1.50 m
Clearance	Truck	2.00 m	0.50 m	1.50 m	2.50 m
	Bus	2.00 m	0.50 m	1.50 m	2.50 m

3.6 Traffic zones/input

Traffic demands were informed by the STFM. The demand development procedure is discussed in **Section 3.12**. The STFM cordon included 96 centroids made up of:

- > 51 internal travel zones wholly or partially within the study area
- > 31 external gates
- > Three railway station centroids
- > Nine light rail stop centroids
- > One ferry wharf centroid
- > One container terminal centroid.

Figure 3-5 shows the location and numbering of the STFM centroids within the study area.

Zones for railway stations, light rail stops, ferry wharves and the container terminal were aggregated into the surrounding zone as their demands were low (refer to **Section 3.11**). The 51 internal travel zones were disaggregated into 114 zones in the Aimsun model. Proportions were based on land use assumptions and traffic survey counts (where available). **Figure 3-6** shows the Aimsun zone numbering system indicating how the STFM centroids were disaggregated and incorporated into the hybrid model.

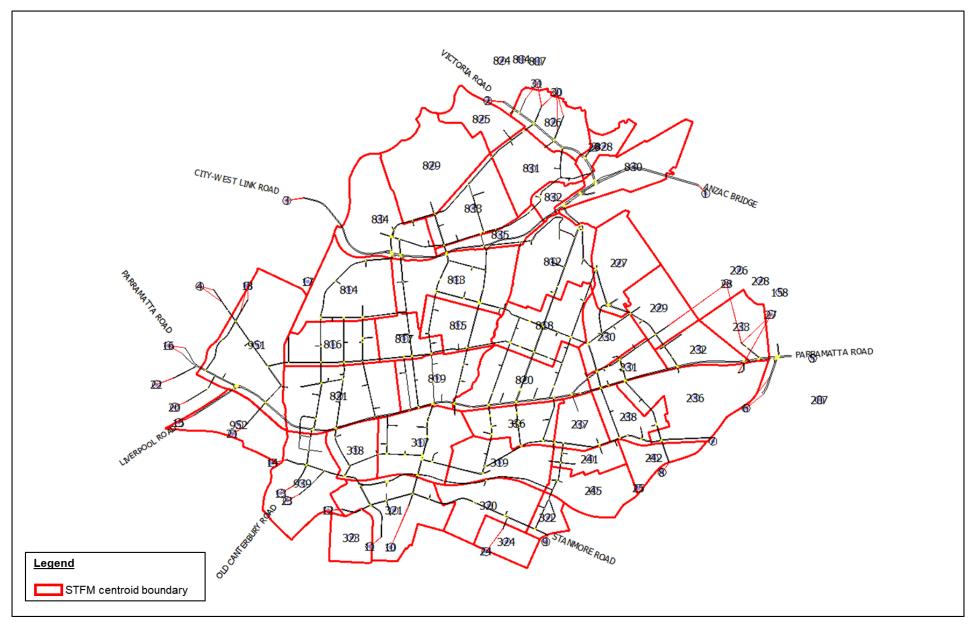


Figure 3-5 STFM centroid numbering and zone boundaries

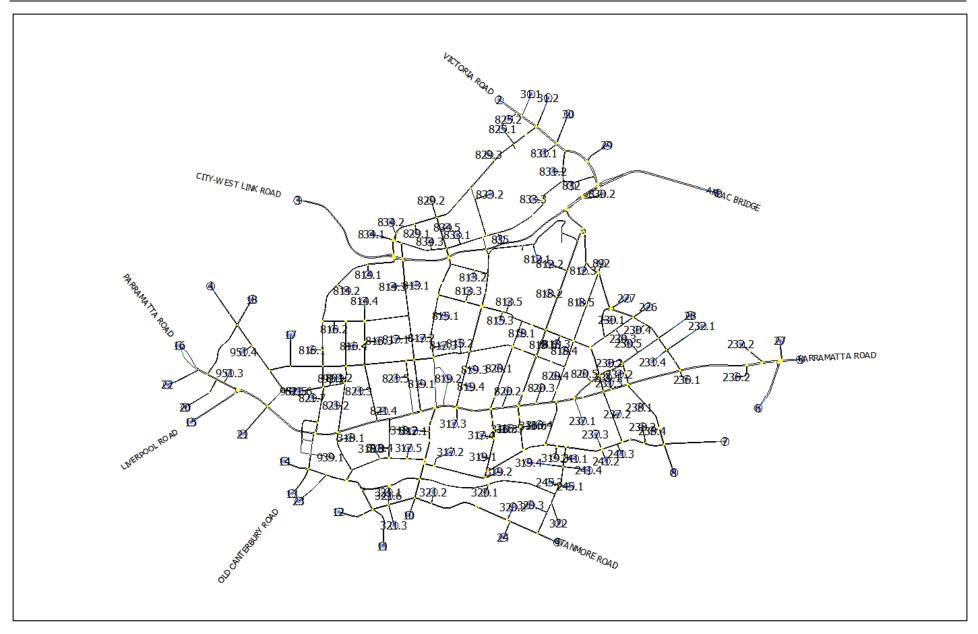


Figure 3-6 Aimsun centroid disaggregation and numbering

3.7 Road types

3.7.1 Modelled road types

Road types were inherited from the previous PRRP model, however upon review Cardno found inconsistencies in the capacities and speed limits of some sections from that model. Section capacities and road types were updated to provide consistency across the PRCUTS model and create more realistic vehicle assignment. **Table 2-3** shows the road types and section capacities adopted in the model.

Table 3-1 Road types and section capacities

Description	Road type	Capacity (PCU/In/hr)
Local	Sydney 01. LOCAL	700
Sub-arterial	Sydney 02. Sub-ART (non-commercial)	800
Arterial (undivided)	Sydney 04. ART (Undivided)	900
Arterial (divided)	Sydney 05. ART (Divided)	1100
State highway (undivided)	Sydney 06. SH(UD)	1200
State highway (divided)	Sydney 07. SH(D)	1200
Expressway ramp	Sydney 08. EXP RAMP	900
Expressway	Sydney 09. EXP	1800
Expressway bridge	Sydney 14. HARBOUR BRIDGES	1500

The capacities of individual sections were adjusted during the calibration stage based on observed conditions. Examples of factors that influenced the capacity adjustments included:

- > On street parking, clearways or lane closures (such as bus lanes)
- > Speed humps and other traffic calming
- > Driveways and access points, particular yin commercial/residential areas.

Figure 3-7 shows the modelled road types used in the model.

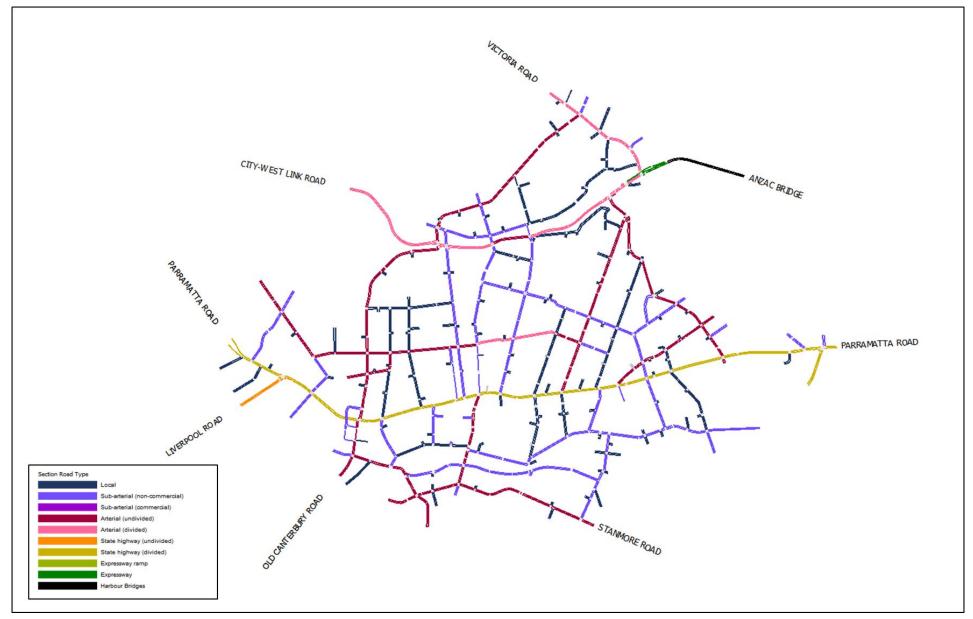


Figure 3-7 Modelled road types

3.7.2 Lane cooperation

Lane cooperation was maintained as default (50 per cent) for all sections except the following locations:

- > Parramatta Road (EB) approaching Tebbutt Street. Queues were observed to often spill back from the right turn into West Street and obstruct one of the through lanes on Parramatta Road. The cooperation was increased to 80 per cent so that vehicles were more likely to merge out of the partially-obstructed through lane into the kerbside lane. This was necessary to match observed queueing and travel times on this section
- City-West Link Road and Victoria Road approaching Robert Street. The right turn bay from Victoria Road into Robert Street is only accessible from the right lane of Victoria Road. Due to the high demand for this turn, queues in the model were observed to build up disproportionately in the right lane, whereas observed data suggested an even queueing pattern across all lanes. The cooperation was increased to 60-70 per cent to increase the number of vehicles using other lanes to turn right from City-West Link Road and then merging on the section of Victoria Road between City-West Link Road and Robert Street.

3.7.3 Acceleration factor

Acceleration factors were applied locally on side roads at some signalised intersections. The queue discharge rate at each location was able to be determined using the historical SCATS phase times and turn volumes from classified intersection counts. In some locations it was observed that default Aimsun queue dissipation resulted in a much lower intersection throughput than was recorded from the survey volumes. In such locations, the acceleration factor of the section was increased to account for the observed rate of queue dissipation.

Acceleration factors were used at the extremities of Parramatta Road to increase delay associated with congestion outside the modelled area. Acceleration factors were also used on Parramatta Road around Balmain Road / Catherine Street. Due to curves in the road, queues often extended further than the visibility of the traffic lights. Acceleration factors were used to account for the impacts of reduced visibility, parking manoeuvres, queue jumps at Crystal Street and Norton Street, and buses merging in and out of bus lanes.

3.8 Elevation and slope profile

Slopes have an impact on traffic behaviour, queue dispersion and travel times. A slope model was developed to factor the acceleration of each vehicle class within the model proportionally to the slope of the road at any given point. Higher penalties are imposed on heavier vehicles such as those belonging to the truck and bus classes.

Slope data was obtained from a five-metre resolution digital terrain model available from Department of Finance, Services and Innovation Spatial Services. The slope was calculated using the Slope Tool in ArcGIS (v10.6) from the digital terrain model. The slope was queried at the start and end points of the sections in the Aimsun model based on whether the point fell in a particular grid square of the slope map. The start and end altitude points were set for each section of the Aimsun model.

3.9 Speed profiles

All roads were coded with speed limit as it was posted in October 2018. **Figure 3-8** shows the posted speed limits in the model. Speed profiles for each vehicle type are given in **Section 3.5**.

3.9.1 Local roads

Local roads do not always have a speed limit posted. The speed limit on all local roads is 50 kilometres per hour unless otherwise indicated. Some local roads in Leichhardt, Annandale, Rozelle and Glebe have posted speed limits of 40 kilometres per hour.

3.9.2 School zones

School zones surround all schools in NSW. When in operation, the speed limit on signposted roads is reduced to 40 kilometres per hour. Generally, this is during 8:00AM-9:30AM and 2:30PM-4:00PM. Figure 3-9 shows the locations of school zones within the study area.

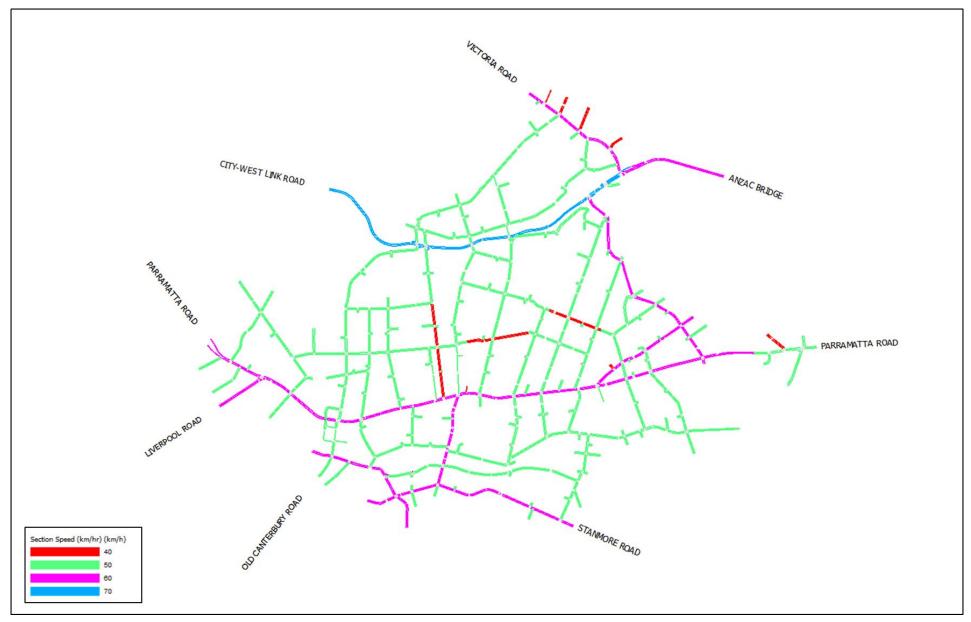


Figure 3-8 Posted speed limits

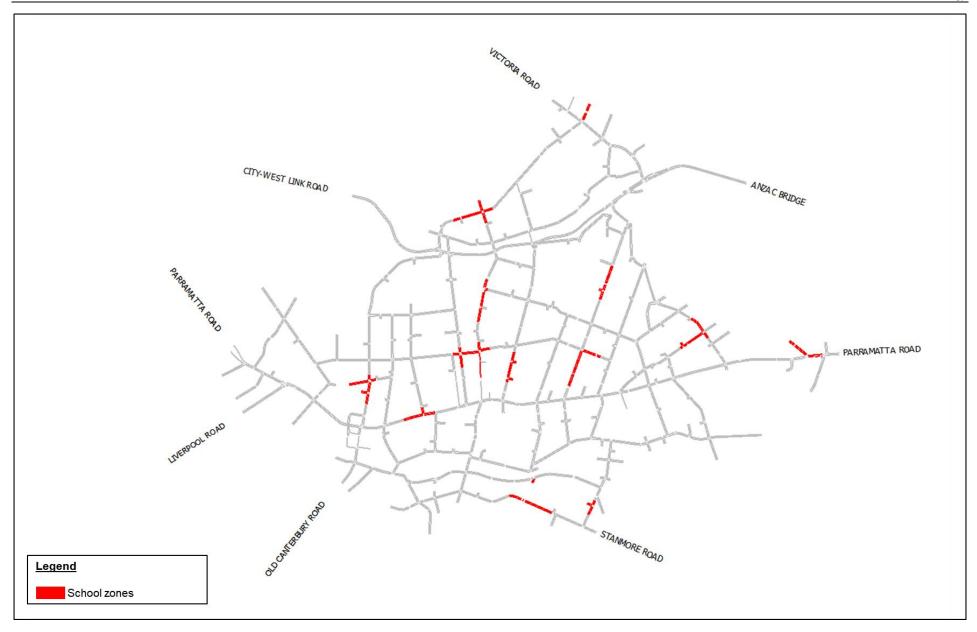


Figure 3-9 School zones

3.9.3 Local speed reductions

Aimsun supports detailed section speeds where the maximum speed on part of a section may be reduced, such as due to a speed hump, traffic calming, parking or other delays. However, as detailed speeds are not supported in mesoscopic simulations due to software limitations, to capture these delays, Cardno applied a reduction to the maximum desired speed on some key links in the mesoscopic portion of the model during the validation stage. **Table 3-2** lists the links on which a localised maximum desired speed reduction was applied. Generally, this reduction was only applied to sections where travel time data was available, so that the realism of the speed reduction could be verified.

Table 3-2 Local speed reductions

Road	Location	Posted speed limit (km/hr)	Maximum desired speed (km/hr)	Justification
Balmain Road	Parramatta Road – Marion Street	50	30	Balmain Road is a narrow one-way road with parking on both sides and traffic calming. The posted speed limit on the parallel Norton Street is 40 kilometres per hour. The maximum desired speed on Balmain Road was reduced to 30 kilometres per hour to capture the impacts of parking and traffic calming, and to reduce the attractiveness of Balmain Road as an alternative to Norton Street.
Brighton Street	West Street – Crystal Street	50	40	Brighton Street is a narrow local road with parking on both sides and a posted speed limit of 50 kilometres per hour. It has four wombat humps and two roundabouts along a stretch of approximately 500 metres. The maximum desired speed on Brighton Street was reduced to 40 kilometres per hour to capture delays associated with parking and traffic calming.
Elswick Street	Parramatta Road – Marion Street	50	40	Elswick Street is a narrow local road with a posted speed limit of 50 kilometres per hour. It has a wombat hump at either end and parking on both sides. Parking on one or both sides of the road is angle parking. No angle parking lines are marked and the angle of vehicles relative to the kerb was observed to vary from site visit observations and <i>Google Streetview</i> , which impacts the parking space length. Longer vehicles were observed to occasionally partially obstruct the traffic lanes so that through traffic would have to cross the centre line. Elswick Street was observed to be less utilised than the parallel Norton Street and Foster Street. The maximum desired speed on Elswick Street was reduced to 40 kilometres per hour to capture delays associated with parking and traffic calming, and to reduce the attractiveness of Elswick Street as an alternative to Norton Street or Foster Street.
Johnston Street	Parramatta Road – The Crescent	50	40	Johnston Street is a mostly-two-lane local road with a posted speed limit of 50 kilometres per hour. Parking on one or both sides of the road is angle parking. As noted for Elswick Street above, parked vehicles were often observed to partially obstruct through traffic lanes and it was observed that vehicles tended to use the centre lane in preference to the outside lane, likely due to parked cars. The maximum desired speed on Johnston Street was reduced to 40 kilometres per hour to capture delays associated with parking.

3.10 Traffic signals

Due to the complexity of the network, all signalised intersections were modelled as fixed-time based on intersection diagnostic monitor (IDM) data provided by TfNSW for the modelled date (17 October 2018). Average phase and cycle times for each intersection were calculated from the SCATS data and coded using:

- > Fixed-time signals in 15-minute intervals inside the microsimulation area
- > Fixed-time signals in 1-hour intervals outside the microsimulation area (mesoscopic simulation area).

Signal coordination offsets were extracted from the SCATS LX files. The signal offsets coordinate adjacent intersections to more realistically model the traffic flow. The signal offsets were calculated based on the average phase times in each 15-minute interval.

Intersections 721, 1873 and 1939 had no SCATS historical data for the survey date. Phase times were estimated based on modelled flows and SCATS phasing to achieve satisfactory calibration and validation results.

Figure 3-10 shows the locations of signalised intersections and pedestrian crossings in the study area.

Figure 3-11 shows the relationships between intersections and subsystems. These relationships were used to code the signal offsets to accurately model coordination between adjacent signalised intersections.

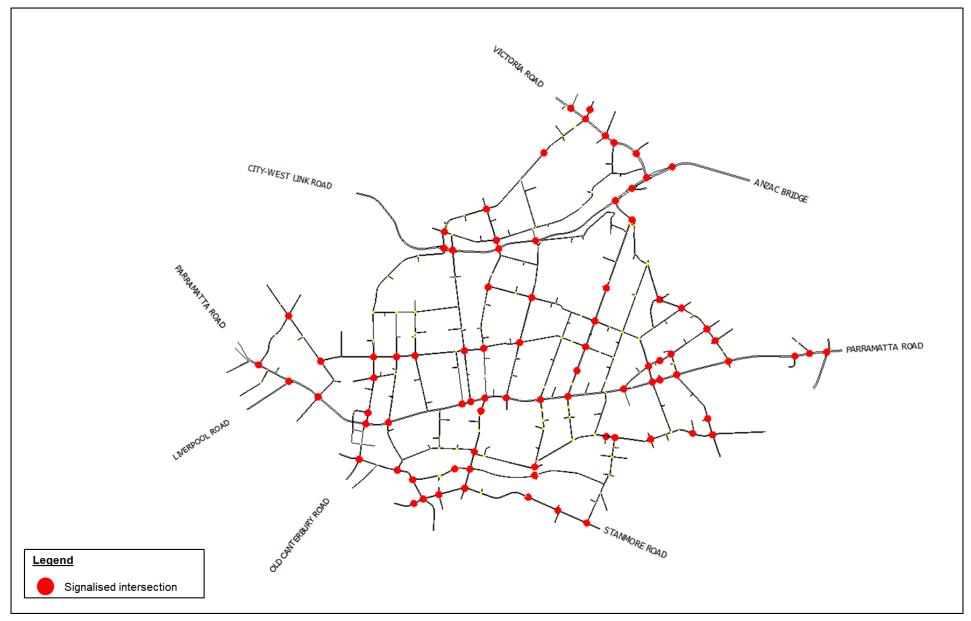


Figure 3-10 Signalised intersection locations

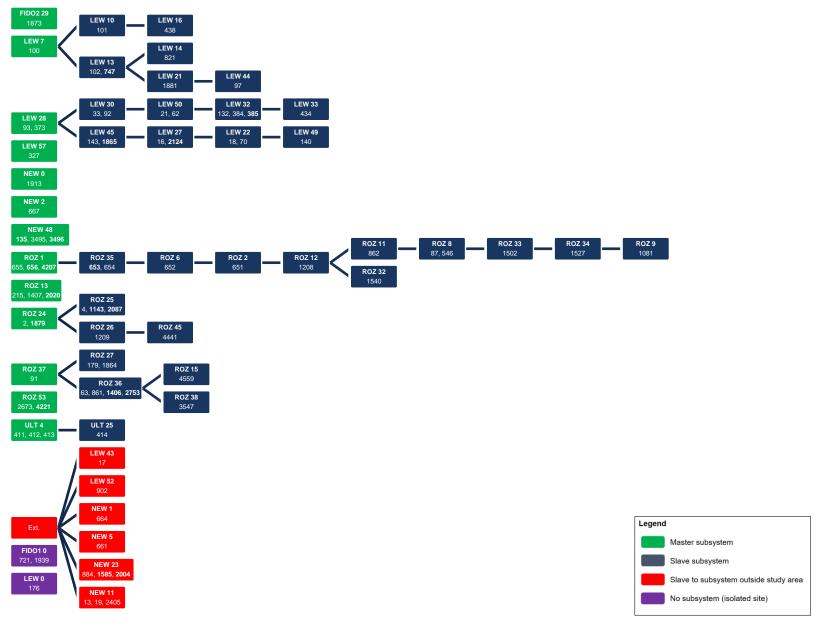


Figure 3-11 SCATS subsystem hierarchy

3.11 Public transport services

3.11.1 Train services

The Main Western Railway Line runs through the study area with stations at Stanmore, Petersham and Lewisham within the model boundary. The Main Western Railway Line is a six-track mainline that services the western, south-western and north-western areas of Sydney. The line has six tracks but only local trains stop at stations within the study area. Stanmore, Petersham and Lewisham are serviced by the Sydney Trains T2 Inner West Line which operates from the City Circle to Parramatta, Homebush and Leppington. Trains stop approximately every 15 minutes during off-peak periods and on weekends, with additional trains during peak hours.

All road-rail crossings in the study area are grade-separated, so there is no interaction between the trains and road vehicles.

Station barrier counts provide an indication of the number of trips made to and from a station by train on a typical weekday. **Table 3-3** shows the average number of station entries and exits during the modelled peak hours and across the entire day, calculated based on Opal data available from 21-25 November 2017.

Table 3-3 Station barrier counts (November 2017)

Station	AM Peak (7:15AM – 9:15AM)		PM Peak (4:30PM – 6:30PM)			Daily average			
	In	Out	Total	In	Out	Total	In	Out	Total
Stanmore Station	1770	315	2085	389	1216	1605	3834	3339	7173
Petersham Station	1183	528	1712	387	856	1244	3292	3152	6444
Lewisham Station	1164	278	1442	308	719	1027	2446	2090	4536

Table 3-4 indicates trip demand for the railway stations within the STM. The strategic model includes the railway stations are centroids separate from the surrounding zones.

Table 3-4 Vehicle trips to train stations from STM data (2016)

Station	Total t (7:15AM – 9		Total trips (4:30PM – 6:30PM)		
	То	From	То	From	
Stanmore Station	74	2	5	65	
Petersham Station	69	2	4	72	
Lewisham Station	85	2	4	82	

None of the three stations have commuter car park facilities and there is limited on-street parking in close proximity. The minimal number of trips in the STM demand suggests that the majority of train users take public transport (such as bus or light rail) or walk to the station. Consequently, due to their low demand, the railway stations were not included as separate centroids within the model and their trips were incorporated into the surrounding zone.

3.11.2 Bus services

The study area is in Region 6 of the Sydney bus network. Local bus services are primarily operated by Transit Systems. Some bus routes only operate at certain times such as peak hours or late at night. The bus routes that are wholly or partially within the study area are listed below:

>	L23	Kingsgrove to City Martin Place (Limited Stops)	>	433	Balmain Gladstone Park to Central Pitt Street		
>	L28	Canterbury to City Martin Place (Limited Stops)	>	436	Rodd Point and Chiswick to Central Pitt Street		
>	L37	Haberfield to City Town Hall (Limited	>	438	Abbotsford to Martin Place		
		Stops)	>	439	Mortlake to City Martin Place		
>	L38	Abbotsford to City Martin Place (Limited Stops)	>	440	Bondi Junction to Rozelle		
>	L39	Mortlake to City Martin Place (Limited Stops)	>	441	City Art Gallery to Birchgrove via QVB (Loop Service)		
>	M10	Maroubra Junction to Leichhardt via City	>	442	City QVB to Balmain East Wharf (Loop		
>	M30	Sydenham to Taronga Zoo	>	445	Service) Campsie to Balmain via Leichhardt		
>	M50	Coogee to Drummoyne		440	Marketplace		
>	M52`	Parramatta to City Circular Quay	>	447	Lilyfield to Leichhardt Marketplace (Loop		
>	N50	Liverpool to City Town Hall (NightRide)			Service)		
>	N60	Fairfield to City Town Hall (NightRide)	>	461	Burwood to City Domain		
>	N61	Carlingford to City Town Hall (NightRide)	>	470	Lilyfield to City Martin Place		
>	N80	Hornsby to City Town Hall via Strathfield (NightRide)	>	480	Strathfield to Central Pitt Street via Homebush Road		
>	N81	Parramatta to City Town Hall via Sydney Olympic Park (NightRide)	>	483	Strathfield to Central Pitt Street via South Strathfield		
>	X00	City to Ryde (Express Service)	>	500	Ryde to City Circular Quay		
>	X04	City Domain to Chiswick (Express Service)	>	501	West Ryde to Central Pitt Street via Pyrmont and Ultimo		
>		City Domain to East Ryde (Express	>	502	Five Dock to City Town Hall		
		Service)	>	504	Chiswick to City Domain		
>	X15	City Town Hall to Eastwood (Express	>	505	Woolwich to City Town Hall		
>	X18	Service) City Town Hall to Denistone East	>	506	Macquarie University to City Domain via East Ryde		
>	412	(Express Service) Campsie to City Martin Place via	>	507	Macquarie University to City Circular Quay via Putney		
		Earlwood	>	508	Drummoyne to City Town Hall		
>	413	Campsie to City Martin Place	>	510	Ryde to City Town Hall		
>	422	Kogarah to City via Newtown	>	515	Eastwood to City Circular Quay		
>	423	,		518	Macquarie University to City Circular		
>	426	Dulwich Hill to City Martin Place			Quay		
>	428	Canterbury to City Martin Place	>	520	Parramatta to City Circular Quay via West Ryde.		
>	431	Glebe Point to City Martin Place			west tyde.		

The major roads supporting the bus network within the model are Parramatta Road, Victoria Road, Norton Street, Marion Street and Balmain Road.

Bus routes and timetables were imported into the model using GTFS data. The purpose of the GTFS bus timetable feed is to publish in advance the schedule and route information of bus services operated under the Sydney Metropolitan and Outer Sydney Olympic Park Major Events Bus Contracts. GTFS data is typically used for TfNSW Transport Info, real-time transport apps and online map services such as Google Maps and Apple Maps. GTFS data is provided in the following nine data files:

- > agency.txt defines one or more transit agencies (operators) that provide the data in this feed
- > calendar.txt defines dates for service IDs using a weekly schedule; provides the start and end dates as well as the days of the week when the service is available
- > calendar_dates.txt defines exceptions for the service IDs defined in the calendar.txt file
- > routes.txt defines transit routes
- > shapes.txt defines rules for drawing lines on a map to represent a transit agency's routes
- stop_times.txt provides the times that a vehicle arrives at or departs from individual stops for each trip including dwell times
- > stops.txt provides individual locations where vehicles pick up or drop off passengers
- > trips.txt provides the trips for each route (a trip is a sequence of two or more stops that occurs at a specific time)
- notes.txt this file is an extension of the GTFS file set standard; it contains a list of notes references from trips.txt and stop_times.txt.

To utilise this data, Aimsun includes a GTFS importing function. GTFS data from November 2018 was sourced from the NSW Government Open Data Portal and used for the base model development for the AM and PM peak periods. Cardno undertook sanity-checks of the public transport routes to ensure that the import process did not produce incomplete routing. In cases where public transport lines were not properly imported or where links were not present in the model, manual adjustments were made to the routes.

3.11.3 Light rail

The L1 Dulwich Hill Line runs through the study area. The following seven light rail stops are present within the model boundary:

> Rozelle Bay

> Marion

> Lilyfield

> Taverners Hill

Leichhardt North

> Lewisham West.

> Hawthorne

The line operates between Central and Dulwich Hill Station. Although services do not run from the L1 Line onto the L2 Randwick and L3 Juniors Kingsford lines⁷, a new maintenance facility has been constructed at Lilyfield within the study area for the maintenance of vehicles used on these routes.

All road-light rail crossings in the study area are grade separated so there is no interaction between the light rail vehicles and road vehicles. Pedestrian crossings are present at most light rail stops and between some stops.

There are no carparks provided at any of the stops within the study area and limited on-street parking is available in close proximity. The minimal number of trips in the STM demand suggests that the majority of light rail users take public transport or walk to the stop. Consequently, due to the low demand, the light rail stops were not included as separate centroids within the model and their trips were incorporated into the surrounding zone.

⁷ Under construction during the modelled periods (October 2018) but subsequently opened in 2019 and 2020 respectively.

3.12 Demand assumptions and adjustment

3.12.1 Demand estimation procedure overview

The methodology to develop the Base Model demand is outlined below:

- The prior matrix for each scenario was extracted from the STFM
- 2. The prior matrix was disaggregated based on estimated vehicle splits based on observed land uses and classified intersection counts
- 3. The prior matrix was imported into Aimsun and run through a static assignment experiment. This experiment loads the demand into the network and allows for identification of areas where the trips are under- or over-estimated by the strategic model
- 4. The prior matrix was manually adjusted based on observed counts. Generally, the strategic model was observed to underestimate the trips generated by residential areas. Trips were generally adjusted proportionally to all centroids, except in instances where an exact number of trips could be derived (such as between two centroids with only one turn in between)
- 5. The static model was calibrated to eliminate unrealistic route choice. As the static model does not fully consider delays associated with intersections, traffic calming, parking, local streets or congestion, user-defined costs were introduced in some locations to simulate these delays and improve the static assignment
- 6. The Aimsun Static OD Adjustment tool was used to refine the matrix using the observed counts for each scenario. The matrix elasticity and trip distribution elasticity were constrained to ensure that the final matrix did not significantly deviate from the strategic demand. A one-hour warm-up was included to ensure that a realistic number of vehicles were pre-loaded in the network at the beginning of the first modelled interval
- 7. Some minor manual adjustments were made to the matrix to account for areas where the Static OD Adjustment process was found to have unrealistically increased or decreased the demand significantly
- 8. The profiled matrix was used in dynamic experiments
- 9. The final traffic demand and assignment from the stochastic route choice experiment were used in the calibration and validation process to ensure that the models accurately represent existing conditions.

The demand estimation procedure is iterative and involves continual refinement of the model parameters and demand matrix. **Figure 3-12** provides a diagrammatic representation of the demand estimation, calibration and validation process.

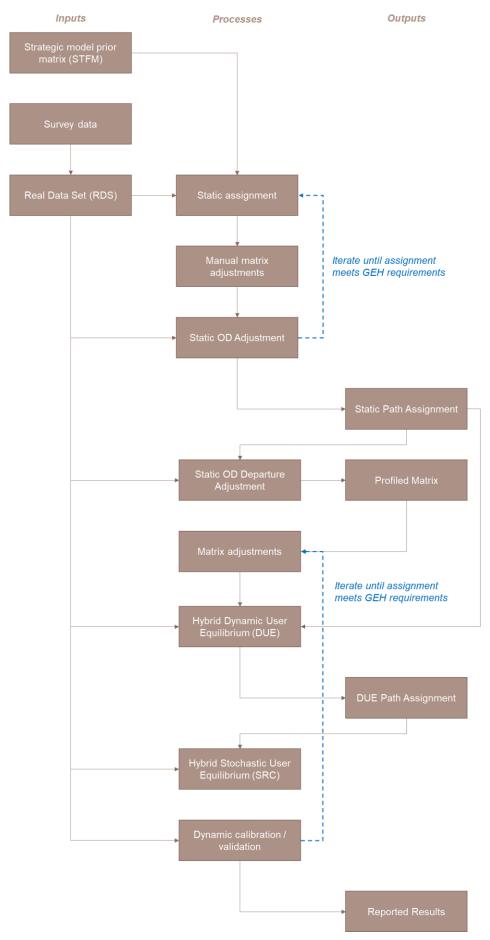


Figure 3-12 Multi-level modelling framework process

3.12.2 Demand adjustment

The following adjustments were made to the STFM demand:

- The initial STFM matrix was disaggregated and adjusted to account for unrealistic demands such as trips with the same origin and destination and trips between adjacent gates where there is a more direct route outside the modelled area
- > The AM STFM matrix was also found to be substantially lower than suggested by traffic survey volumes so was scaled up by 27.8 per cent
- This matrix was run through the Aimsun Static OD Adjustment process which adjusts the demand to match survey counts at intersections. The process was restricted using the matrix and trip length elasticity constraints in Aimsun
- > The adjusted demand was profiled using the Aimsun Static OD Departure Adjustment to match the surveyed traffic profile. Some manual adjustments were also made to the profiled demand to account for unrealistic inflation or deflation of demand during the Static OD Adjustment process.

Figure 3-13 provides a comparison of the total number of trips for each of the above steps in the demand estimation procedure.

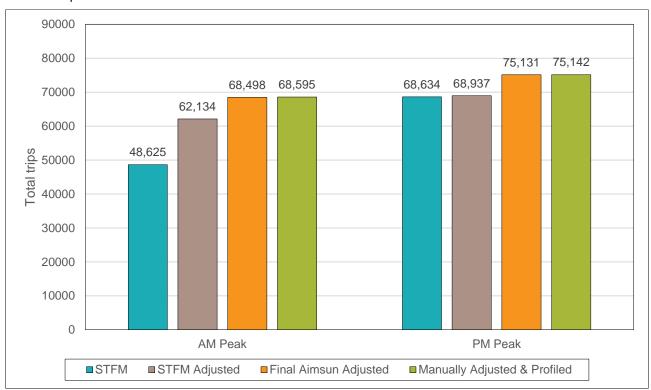


Figure 3-13 Total trips

3.12.3 OD adjustment and trip length distribution

Figure 3-14 and **Figure 3-15** show the trip length distribution outputs for all vehicles following the final Static OD Adjustment experiment for the AM Peak and PM Peaks respectively. There are no significant changes to the shape of the profile following the final adjustment.

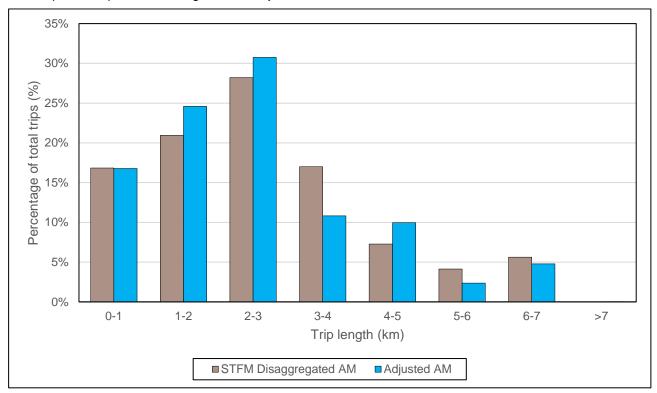


Figure 3-14 AM Peak trip length distribution

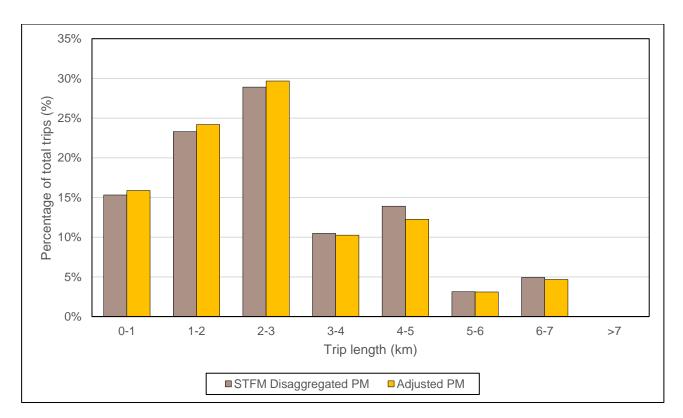


Figure 3-15 PM Peak trip length distribution

3.12.4 Departure adjustment

The two-hourly traffic demand was profiled using the Aimsun Static OD Departure Adjustment based on the profile of the RDS (refer to **Section 2.2.2**). This process was used to generate a profiled demand in 15-minute intervals.

Figure 3-16 and **Figure 3-17** show a comparison between the profile of the RDS and the profiled demand for the AM Peak and PM Peak respectively. All values are within 0.4 per cent of the total demand and there are no significant changes to the shape of the profile.

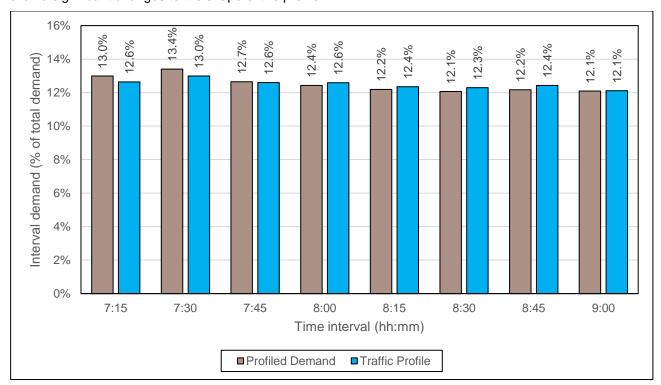


Figure 3-16 Profiled demand comparison (AM Peak)

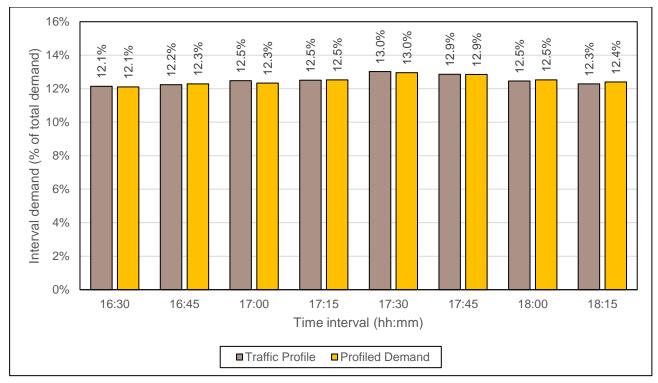


Figure 3-17 Profiled demand comparison (PM Peak)

3.12.5 Traffic demand composition

The traffic demands differentiated between light and heavy vehicles (refer to **Section 3.5**). **Table 3-5** summarises the traffic composition of the demand for each peak. Note that buses are part of the heavy vehicle class but are not included in the demand as they follow fixed routes and run to a fixed timetable.

Table 3-5 Profile demand traffic composition

Peak	Light v	ehicles	Heavy v	vehicles	All vehicles
	Demand (veh)	% of total demand	Demand (veh)	% of total demand	Total demand (veh)
AM Peak	65,185	95.0%	3409	5.0%	68,595
PM Peak	73,713	98.1%	1428	1.9%	75142

3.13 Pedestrians and cyclists

Consideration for pedestrian movements in the model was mainly at the intersection level due to the lack of information on mid-block pedestrian paths and walking destinations.

Cyclist volumes were not considered in the model.

3.14 Behaviour parameters

Aimsun defaults were generally adopted for all parameters. Cardno notes that the PRRP model inherited for this project contained substantial adjustment to many of the vehicle behavioural parameters. In some cases, these were restored to Aimsun defaults as the adjusted values were found to be unrealistic. **Figure 3-18** lists the key behavioural parameters that were adjusted based on observations during the calibration and validation process. Note that higher reaction times were utilised in the mesoscopic simulation area. In mesoscopic simulation, vehicles are assumed to accelerate and decelerate instantaneously. Increasing the reaction time factor in mesoscopic simulations is accepted best-practice to account for vehicle acceleration and deceleration time.

Figure 3-18 Key behavioural parameters

Vehicle type	Reaction time	Reaction time Reaction time at front vel stop traffic		Probability
Microsimulation area				
Car	0.9	1.1	1.3	1
Truck	0.8	1.2	1.5	1
Bus	0.8	1.2	1.5	1
Mesoscopic simulation	on area			
Car	1.3	-	1.7	1
Truck	1.3	-	1.7	1
Bus	1.3	-	1.7	1

3.15 End constraints at model boundary

To correctly represent queue spillback into the model area as a means of reflecting broader network congestion in the microsimulation model area, dummy signals were included on Parramatta Road in the eastbound direction (east of City Road). The green time on the dummy signals was adjusted to ensure a good match with travel time data and generate variable queue on the edge of the model.

Note that although the signals are located at the Broadway / Mountain Street intersection, they are not intended to represent queue spillback from this intersection but rather queues propagating back along Broadway in the eastbound travel direction caused by congestion on Broadway and George Street that was observed during the site visit and from *Google Traffic* data.

3.16 Calibration criteria

The Base Model was calibrated in accordance with the criteria outlined in *Traffic Modelling Guidelines* (Roads and Maritime Series, 2013) to ensure that the existing traffic conditions are replicated to a statistically high level of accuracy.

The recommended method of calibration is the modified Chi-Square empirical formula developed by Geoffrey E. Harves in the 1970s, known as the GEH-statistic. The GEH-statistic measures the degree of divergence of the modelled value from the observed value while accounting for the relative scale of each movement, that is, movements with higher volumes are more important to match than those with lower volumes.

The GEH-statistic is given by **Equation 1**:

$$GEH = \sqrt{\frac{(V_o - V_m)^2}{0.5(V_o + V_m)}}$$
 Equation 1

where:

 V_o = the observed traffic flow V_m = the modelled traffic flow.

The GEH-statistic is used for individual flows and the R-squared (R²) statistical measure is used for correlation of the entire data set.

A GEH less than five is considered a good match between the modelled and observed traffic flows while a GEH value of greater than 10 requires further explanation. *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013) recommends the following criteria for model calibration:

- > 85 per cent of turn and link flow comparisons to have a GEH less than five
- > 100 per cent of turn and link flow comparisons to have a GEH less than 10
- > The R-square (R²) statistic to be greater than 0.95 for a flow plot of observed versus modelled turn volumes (where R² = 1.0 indicates a perfect correlation).

Due to the size of the model and time constraints during the calibration stage, a reduced GEH criteria was agreed with DPIE for the mesoscopic area. The relaxed criteria was 80 per cent of turns to have a GEH less than five and 95 per cent of turns to have a GEH less than 10.

3.17 Validation criteria

Validation ensures that factors that influence traffic (other than traffic volumes) such as road capacity, driver behaviour and responsiveness are adequately captured in the model. The Base Model was validated in accordance with the criteria outlined in *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013) to ensure accurate replication of driver behaviour and road conditions. Two validation criteria were used for the Base Model:

- > Travel time validation
- > Signal validation
- > Congestion hotspot validation.

These are outlined below.

3.17.1 Travel time validation

The validation of travel time on key routes confirms that the model is accurately replicating observed congestion and driver behaviour. *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013) recommends the following criteria for travel time validation:

- Average modelled journey time to be within 15 per cent or one minute (whichever is greater) of the average observed journey time for the full length of the route
- > Average modelled time for each section to be within 15 per cent of the observed journey time for that section.

The travel time routes are shown in **Section 2.2.3**.

3.17.2 Signal validation

Traffic Modelling Guidelines (Roads and Maritime Services, 2013) recommends the following criteria for signal timing validation:

- Average modelled cycle time for each one-hour period to be within 10 per cent of the observed average cycle time for the same one-hour period
- > Total of green time over each one-hour period to be within 10 per cent of the observed equivalent for each phase
- > Call frequency of demand-dependent phases (including pedestrian call phases) to be compared with observed data to ensure phase activation occurs to a similar level over each hour period.

3.17.3 Congestion hotspot validation

Modelled average speed by section was plotted for each peak and compared to the average speed data extracted from TomTom (refer to **Section 2.3**). This provided an additional layer of verification that the average speeds in the model were reflective of those in reality.

4 Model stability

The stochasticity of a microsimulation model can cause instability. This can undermine the reliability of the model to forecast future traffic conditions. It is important that the Base Model is stable and has an appropriate degree of accuracy for future options assessment. To determine the stability of a model, a total of five seed values and the default time-step value in Aimsun are initially used to iteratively determine the number of runs, as recommended by *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013).

Vehicle hours travelled (VHT) was the statistic chosen to determine the model stability. The VHT results are a single-figure summary that provide an indication of whole-network performance by identifying whether the model has unrealistic gridlocks and/or excessive delays. VHT is calculated by summing the individual travel time for each vehicle across the whole network. In Aimsun, VHT is only calculated using vehicles which complete a trip from their origin to their destination; any vehicles remaining in the network at the conclusion of the simulation period are excluded from the VHT.

4.1 Seeds run

To analyse the model stability, each peak period model was assessed using the five seed values recommended in *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013). The different seeds introduce slight variations to the number of vehicles in the network for regular intervals throughout the simulation. The seed values used were:

- > 560
- > 28
- > 7771
- > 86524
- > 2849.

4.2 Stability assessment

Figure 4-1 and **Figure 4-2** show the variation in VHT per 15-minute interval for the AM Peak and PM Peak respectively. The results show that the model performs similarly across the five seeds run.

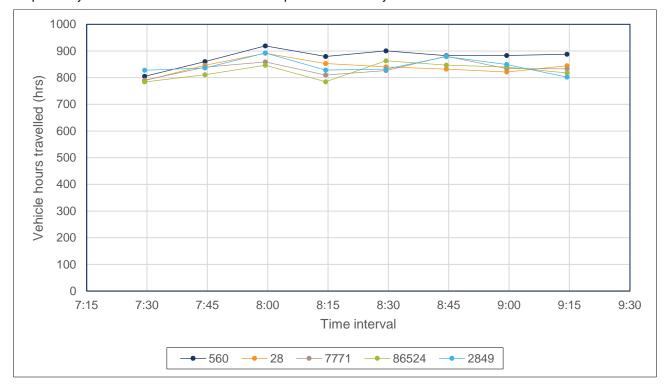


Figure 4-1 Vehicle hours travelled (VHT) across all seeds (AM Peak)

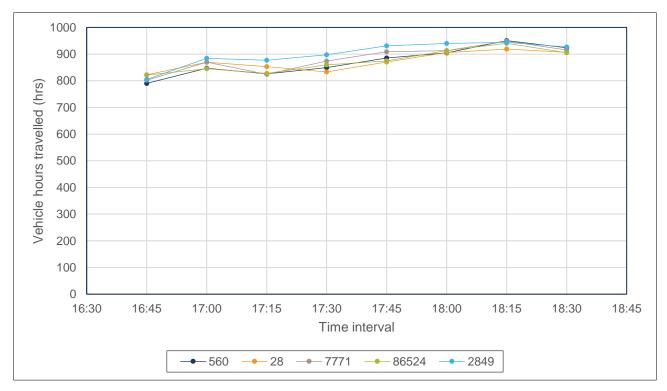


Figure 4-2 Vehicle hours travelled (VHT) across all seeds (PM Peak)

The number of seed runs required to determine the stability of the model is calculated iteratively using **Equation 2**:

$$N = \left(\frac{t\sigma}{\Delta}\right)^2$$
 Equation 2

where:

N = number of runs required

t = two-tailed inverse of Student's t-distribution

 σ = standard deviation

 Δ = acceptable error (produce of precision and sample mean).

The t-value required for a confidence interval of 95 per cent given five initial seeds is 2.776. The number of runs required for each peak period are shown in **Table 4-1**.

Table 4-1 Number of simulation runs required

Parameter	AM peak	PM peak
t	2.776	2.776
σ	160.3	97.4
X	6750	7041
Δ	337.51	352.04
N	1.74	0.59

The number of simulation runs required (N) is less than the initial five seeds used in both peaks, therefore it is sufficient to retain the initial five seeds for a confidence interval of 95 per cent. **Table 4-2** shows the VHT bounds and the median seed for each peak.

Table 4-2 Median seed values

		All seeds		Media	n seed
Peak	VHT lower bound	Mean VHT	VHT upper bound	VHT	Seed value
AM Peak	6594	6750	7012	6718	28
PM Peak	6976	7041	7205	6988	86524

The results reported in the remainder of this report for calibration and validation are based on the median seed values for each peak shown in **Table 4-2**.

5 Model calibration and validation

5.1 Convergence

As outlined in Section 3.4.2, DUE is an iterative procedure that involves shifting users to the shortest path given the travel times on each path in the previous iteration. The relative gap (RGap) is a measure of the difference between the modelled travel times and the travel times if all vehicles were using the shortest path. It provides an indication of whether the DUE assignment has converged to the optimal solution. Due to the size of the model and required run time for DUE convergence, a stopping RGap of 1.0 per cent was adopted.

Figure 5-1 and **Figure 5-2** show the DUE convergence for the AM Peak and PM Peak respectively. Both peaks converge within four iterations.

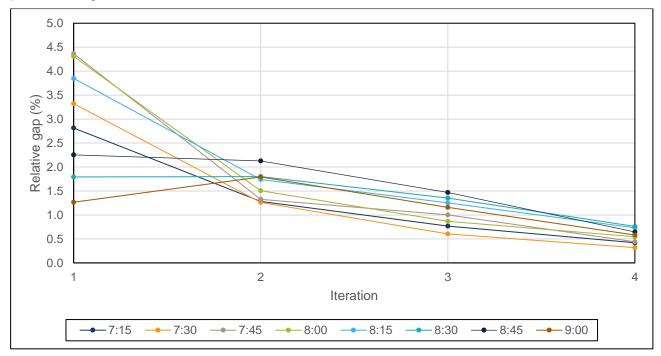


Figure 5-1 AM Peak DUE convergence

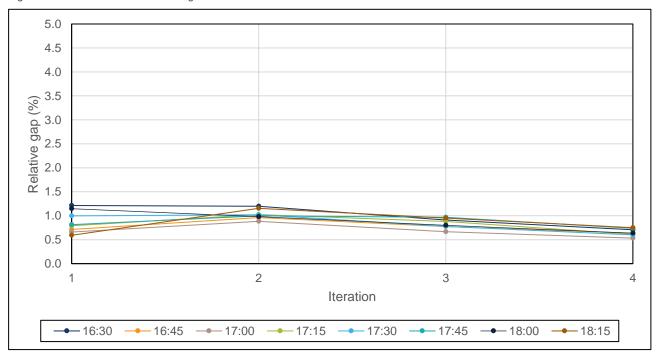


Figure 5-2 PM Peak DUE convergence

5.2 Calibration results

This section outlines the calibration results. **Table 5-1** provides a summary of the GEH criteria and for turning counts and the number of compliant counts for each hour of each peak.

Table 5-1 Summary of GEH statistics for each modelled hour

l able 5-1	Summary of GER statis	tics for each modelled he	oui 		
Model	Criteria	AM	Peak	PM I	Peak
area	Officia	7:15AM – 8:15AM	8:15AM – 9:15AM	4:30PM - 5:30PM	5:30PM - 6:30PM
Light ve	hicles				
	Towns with OFU 5	133 / 142	131 / 142	129 / 142	127 / 142
	Turns with GEH < 5	93.7%	92.3%	90.8%	89.4%
Micro	Turns with GEH < 10	142 / 142	142 / 142	142 / 142	142 / 142
	Tullis willi GEH < 10	100.0%	100.0%	100.0%	100.0%
	Calibration achieved?	✓	✓	✓	✓
	Turns with GEH < 5	412 / 462	410 / 462	424 / 462	417 / 462
	Tullis with GETT < 5	89.2%	88.7%	91.8%	90.3%
Meso	Turns with GEH < 10	459 / 462	461 / 462	456 / 462	458 / 462
	Tunis with OLIT < 10	99.4%	99.8%	98.7%	99.1%
	Calibration achieved?	✓	✓	✓	✓
	Turns with GEH < 5	545 / 604	541 / 604	553 / 604	544 / 604
	Tullis Will OLIT < 5	90.2%	89.6%	91.6%	90.1%
All	Turns with GEH < 10	601 / 604	603 / 604	598 / 604	600 / 604
	Tunio min ozni i no	99.5%	99.8%	99.0%	99.3%
	Calibration achieved?	✓	✓	✓	✓
Heavy v	ehicles				
	Turns with GEH < 5	142 / 142	140 / 142	140 / 142	140 / 142
	Tunis with GETT C	100.0%	98.6%	98.6%	98.6%
Micro	Turns with GEH < 10	142 / 142	142 / 142	142 / 142	142 / 142
		100.0%	100.0%	100.0%	100.0%
	Calibration achieved?	✓	√	√	✓
	Turns with GEH < 5	458 / 462	452 / 462	457 / 462	450 / 462
		99.1%	97.8%	98.9%	97.4%
Meso	Turns with GEH < 10	462 / 462	462 / 462	462 / 462	462 / 462
		100.0%	100.0%	100.0%	100.0%
	Calibration achieved?	✓	✓	✓	✓
	Turns with GEH < 5	600 / 604	592 / 604	597 / 604	590 / 604
		99.3%	98.0%	98.8%	97.7%
All	Turns with GEH < 10	604 / 604	604 / 604	604 / 604	604 / 604
		100.0%	100.0%	100.0%	100.0%
	Calibration achieved?	✓	✓	✓	✓

Across the four modelled hours, a total 11 different turns have a GEH greater than 10. **Table 5-2** lists the locations of these turns and the modelled hours for which the GEH exceeds 10. All such turns are in the mesoscopic area of the model so only indirectly impact the calibration of the Parramatta Road corridor. Nevertheless, a short explanation of each turn and the reason/s that the GEH exceeds 10 in the given modelled hours is provided in the table.

In most cases the GEH did not significantly exceed 10. The average GEH of turns with a GEH above 10 was 11.25 and the maximum value across all modelled hours was 13.83. Furthermore, the total number of turns with GEH exceeding 10 was not more than six in any modelled hour, which represents less than one per cent of the total number of comparisons. Due to the low number of turns with GEH exceeding 10 and their location outside the Parramatta Road corridor (the key focus of the model), the impact of this on the calibration of the model is considered to be negligible. Most of the turns with GEH greater than 10 were concentrated in two areas for the following reasons:

- > Near Lilyfield Road and City-West Link Road due to a large number of local roads that were not modelled and scarcity of survey data in this area to understand OD patterns and vehicle routing behaviour
- > Moore Street / Booth Street caused by limited survey data along Moore Street and Booth Street and a lack of local roads that may be used as shortcuts.

Table 5-2 Turns with GEH greater than 10

Table 5-2	rurns with GEH greater th	all IU			
Turn ID	Description	GEH	Model area	Modelled hours with GEH > 10	Notes
3NR	Right turn from Catherine Street to City- West Link Road	10.70	Meso	4:30PM – 5:30PM	Underrepresented in the model with 58 vehicles (surveyed volume was 173 vehicles). This is likely caused by the high density of local roads in this area of the model that have not been modelled and the scarcity of survey data in this area to identify routes to a high degree of accuracy. The GEH for this turn is also not substantially above 10.
5ER	Right turn from Moore Street to Catherine Street	13.83 13.40	Meso	4:30PM – 5:30PM 5:30PM – 6:30PM	Underrepresented in the model due to a lack of vehicles on Moore Street and Booth Street. Only limited survey data was available on Moore Street
7SR	Right turn from Balmain Road to Moore Street	12.74	Meso	8:15AM – 9:15AM	and Booth Street so vehicle routing and OD patterns could not be modelled to a high level of accuracy.
15NL	Left turn from Johnston Street to Collins Street	11.93	Meso	7:15AM – 8:15AM	Overrepresented in the model. This is likely due to an overestimation of the demand for destinations in this area as this route does not provide a shortcut to any other key destinations in the model.
16WR	Right turn from Booth Street to Johnston Street	10.04	Meso	7:15AM – 8:15AM	Overrepresented in the model due to uncertainty surrounding vehicle routing and OD patterns on Booth Street / Moore Street due to scarcity of survey data in this vicinity. The GEH for this turn is also not substantially above 10.
16SL	Left turn from Johnston Street to Booth Street	11.30 12.09	Meso	4:30PM – 5:30PM 5:30PM – 6:30PM	Underrepresented in the model due to uncertainty surrounding vehicle routing and OD patterns on Booth Street / Moore Street due to scarcity of survey data in this vicinity.

Turn ID	Description	GEH	Model area	Modelled hours with GEH > 10	Notes
33NT	Through movement from James Street to Darley Road	10.79	Meso	5:30PM – 6:30PM	Overrepresented in the model. It was observed that vehicles tended to use Darley Street rather than Catherine Street or Norton Street as major north-to-south connectors. Subsequently traffic volumes on Darley Road were higher than observed while those on Catherine Street and Norton Street were lower. This is likely caused by the high density of local roads in the area that have not been modelled and the scarcity of survey data to accurately identify routes and OD patterns. The GEH for this turn is also not substantially above 10.
35EL	Left turn from Lilyfield Road to James Street	10.03	Meso	4:30PM – 5:30PM	Underrepresented in the model due to uncertainty surrounding traffic volumes on Lilyfield Road (see above). The GEH for this turn is also not substantially above 10.
41NL	Left turn from Tebbutt Street to Railway Terrace	10.10 10.20	Meso	4:30PM – 5:30PM 5:30PM – 6:30PM	Underrepresented in the model due to the zoning system. The GEH for this turn is also not substantially above 10.
42ET	Through movement on Lilyfield Road at Balmain Road	10.09	Meso	4:30PM – 5:30PM	Underrepresented in the model due to uncertainty surrounding traffic volumes on Lilyfield Road (see above). The GEH for this turn is also not substantially above 10.
56NL	Left turn from Dalhousie Street to Ramsay Street	10.28	Meso	7:15AM – 8:15AM	Overrepresented in the model with more vehicles tending to turn left onto Ramsay Street rather than going through then turning left at Parramatta Road. The GEH for this turn is also not substantially above 10.

Figure 5-3 and **Figure 5-4** show the results of a regression analysis of the results for the AM Peak. **Figure 5-5** and **Figure 5-6** show the results of a regression analysis of the results for the PM Peak.

Table 5-3 provides a summary of the regression analysis results. For each modelled hour, the results indicate a strong correlation between the modelled and observed flows. The coefficient of determination (R²) exceeds the required value of 0.95 for all hours.

Table 5-3 Regression analysis summary

Modelled hour	Slope	Coefficient of determination (R ²)	Calibration achieved?
7:15AM – 8:15AM	1.0155	0.9922	✓
8:15AM – 9:15AM	0.9708	0.9894	✓
4:30PM – 5:30PM	0.9965	0.9946	✓
5:30PM - 6:30PM	0.9849	0.9940	✓

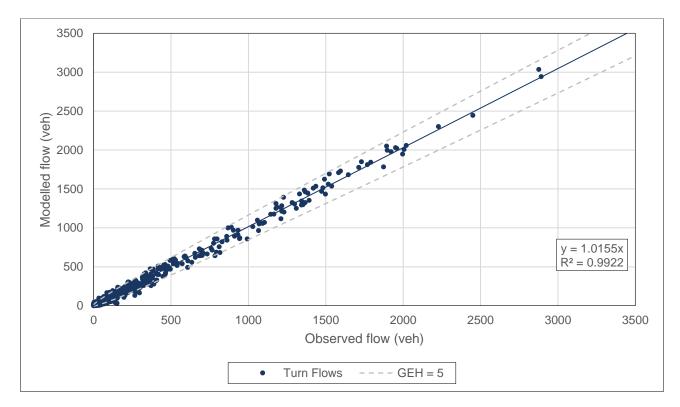


Figure 5-3 AM Peak (7:15AM – 8:15AM) regression plot

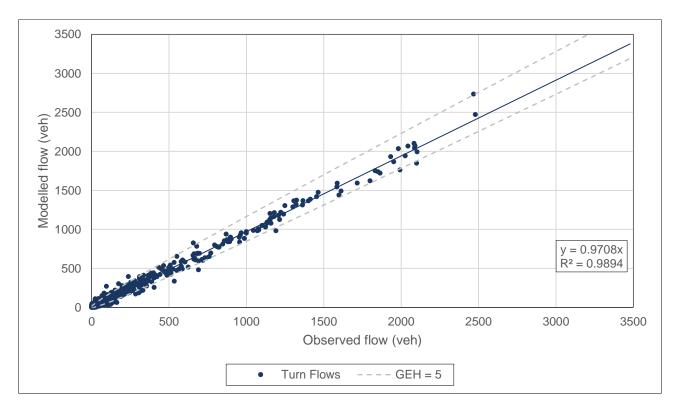


Figure 5-4 AM Peak (8:15AM – 9:15AM) regression plot

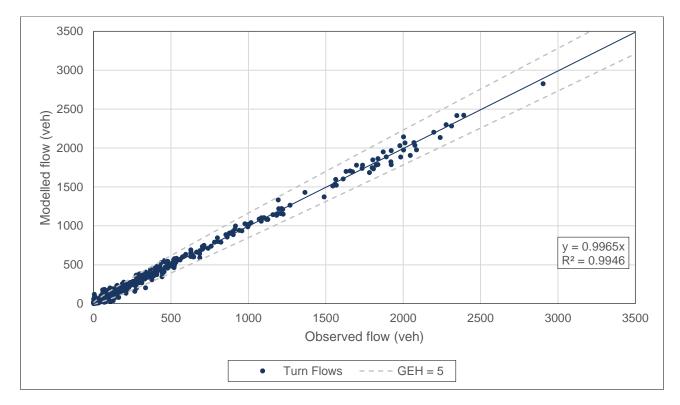


Figure 5-5 PM Peak (4:30PM – 5:30PM) regression plot

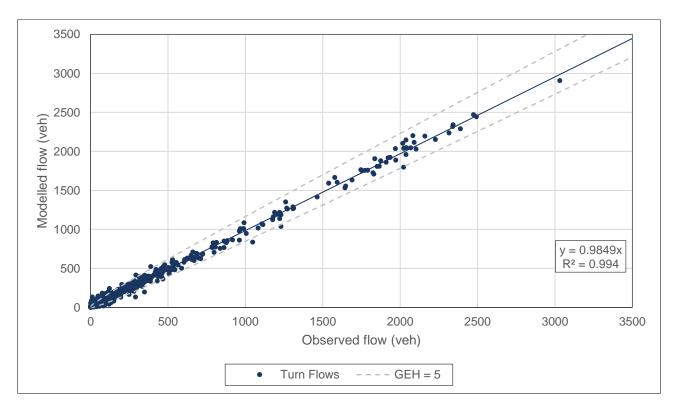


Figure 5-6 PM Peak (5:30PM – 6:30PM) regression plot

5.3 Validation results

5.3.1 Travel time validation

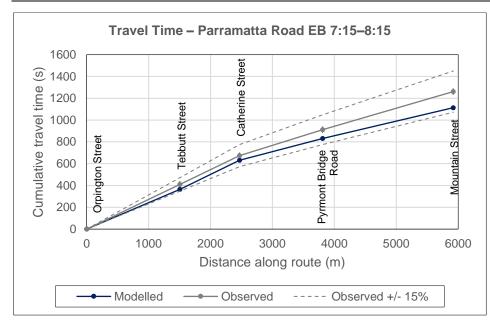
This section outlines the travel time validation results. Six bi-directional routes were used for travel time validation as discussed in **Section 2.2.3**. **Table 5-4** shows the travel time validation results for each route for each modelled hour. All routes are within 60 seconds or 15 per cent of the observed value as required by *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013).

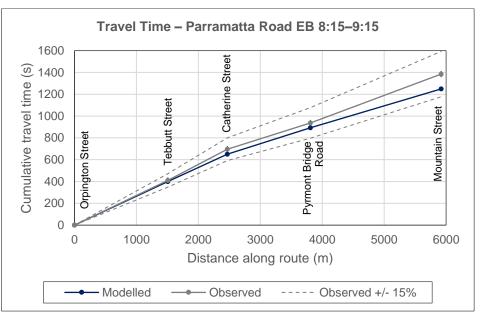
Table 5-4 Travel time validation results by route

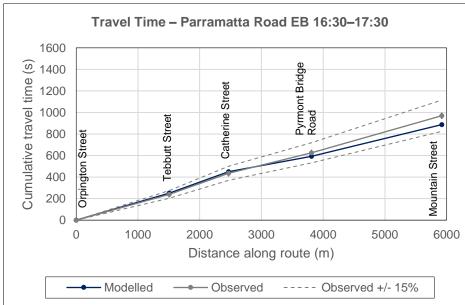
Modelled hour	Modelled (s)	Observed (s)	Difference (s)	Difference (%)	Validation
Parramatta Road (eas	tbound)				
7:15AM – 8:15AM	1113	1261	-148	-11.7%	✓
8:15AM – 9:15AM	1249	1385	-136	-9.8%	✓
4:30PM – 5:30PM	887	970	-83	-8.5%	✓
5:30PM - 6:30PM	950	1086	-136	-12.5%	✓
Parramatta Road (wes	stbound)				
7:15AM – 8:15AM	836	866	-30	-3.5%	✓
8:15AM – 9:15AM	833	967	-134	-13.9%	✓
4:30PM - 5:30PM	916	908	+8	+0.9%	✓
5:30PM - 6:30PM	933	1006	-72	-7.2%	✓
Crystal Street (northb	ound)				
7:15AM – 8:15AM	173	147	+26	+17.5%	✓
8:15AM – 9:15AM	185	152	+33	+21.9%	✓
4:30PM – 5:30PM	216	209	+7	+3.3%	✓
5:30PM - 6:30PM	179	218	-39	-17.8%	✓
Crystal Street (southb	ound)				
7:15AM – 8:15AM	257	304	-47	-15.5%	✓
8:15AM – 9:15AM	293	339	-46	-13.7%	✓
4:30PM – 5:30PM	207	264	-56	-21.4%	✓
5:30PM - 6:30PM	233	289	-56	-19.4%	✓
Balmain Road (northb	ound)				
7:15AM – 8:15AM	337	363	-25	-6.9%	✓
8:15AM – 9:15AM	314	344	-30	-8.9%	✓
4:30PM – 5:30PM	301	321	-20	-6.3%	✓
5:30PM - 6:30PM	283	303	-20	-6.7%	✓
Balmain Road (southb	oound)				
7:15AM – 8:15AM	173	218	-45	-20.8%	✓
8:15AM – 9:15AM	179	221	-42	-18.8%	✓
4:30PM – 5:30PM	178	174	+4	+2.4%	✓
5:30PM - 6:30PM	154	176	-22	-12.4%	✓

Modelled hour	Modelled (s)	Observed (s)	Difference (s)	Difference (%)	Validation
Brighton Street - Dou	ıglas Street – Salis	bury Road (eastbo	ound)		
7:15AM – 8:15AM	458	457	+1	+0.3%	✓
8:15AM – 9:15AM	444	497	-53	-10.6%	✓
4:30PM – 5:30PM	371	371	0	0.0%	✓
5:30PM – 6:30PM	368	381	-13	-3.4%	✓
Salisbury Road - Dou	ıglas Street – Brigl	nton Street (westb	ound)		
7:15AM – 8:15AM	311	277	+35	+12.5%	✓
8:15AM – 9:15AM	300	278	+23	+8.2%	✓
4:30PM – 5:30PM	321	280	+41	+14.5%	✓
5:30PM - 6:30PM	312	295	+17	+5.8%	✓
Marion Street (eastbo	und)				
7:15AM – 8:15AM	310	308	+2	+0.6%	✓
8:15AM – 9:15AM	317	333	-16	-4.7%	✓
4:30PM – 5:30PM	223	278	-55	-19.8%	✓
5:30PM – 6:30PM	212	181	+31	+17.0%	✓
Marion Street (westbo	ound)				
7:15AM – 8:15AM	211	199	24	12.5%	✓
8:15AM – 9:15AM	218	213	+5	+2.3%	✓
4:30PM – 5:30PM	206	203	+3	+1.7%	✓
5:30PM - 6:30PM	220	207	+13	+6.1%	✓
Johnston Street (nort	hbound)				
7:15AM – 8:15AM	321	297	+26	+8.7%	✓
8:15AM – 9:15AM	276	299	-23	-7.7%	✓
4:30PM – 5:30PM	261	290	-29	-9.9%	✓
5:30PM - 6:30PM	286	290	-3	-1.2%	✓
Johnston Street (sout	thbound)				
7:15AM – 8:15AM	246	270	-24	-8.9%	✓
8:15AM – 9:15AM	256	303	-47	-15.5%	✓
4:30PM – 5:30PM	313	312	+1	+0.2%	✓
5:30PM - 6:30PM	275	319	-44	-13.8%	✓

Table 5-5 compares the observed and modelled travel time for each segment of each route for each modelled hour. Following the table, **Figure 5-7** to **Figure 5-18** provide a comparison between the modelled and observed travel time for each segment of each route. The results show an acceptable replication of the travel time along each route. Consequently, the Base Models are considered to accurately replicate traffic and congestion patterns along key routes in the study area.


Table 5-5 Modelled versus observed travel time by segment


Table 5-5	Modelled vers	sus observed tre	aver time by seg	IIIGIIL									
			AM F	Peak					PM F	Peak			
Segment	7:	15AM – 8:15 <i>A</i>	AM.	8:	15AM – 9:15 <i>A</i>	AM .	4:	30PM – 5:30F	PM .	5:	5:30PM - 6:30PM		
	Modelled (s)	Observed (s)	Difference (s)	Modelled (s)	Observed (s)	Difference (s)	Modelled (s)	Observed (s)	Difference (s)	Modelled (s)	Observed (s)	Difference (s)	
Parramatta	a Road (eastk	oound)											
1	365	410	-46	400	410	-10	251	239	12	277	299	-22	
2	267	264	3	250	286	-36	199	196	3	242	225	17	
3	200	238	-38	242	241	1	143	190	-48	165	189	-24	
4	283	349	-67	357	448	-91	295	345	-50	266	373	-108	
Parramatta	a Road (west	bound)											
1	298	323	-26	294	365	-71	371	370	1	319	388	-69	
2	203	202	1	223	248	-26	186	196	-10	237	234	3	
3	125	128	-3	129	155	-26	160	149	11	143	142	1	
4	210	212	-2	187	199	-12	200	193	7	234	241	-7	
Crystal St	reet (northbo	und)											
1	71	54	17	88	57	31	70	44	26	60	44	16	
2	102	94	8	97	94	2	145	165	-19	119	173	-54	
Crystal St	reet (southbo	und)											
1	144	174	-29	169	212	-43	100	158	-58	94	167	-73	
2	112	130	-18	124	128	-3	107	106	2	139	122	17	
Balmain R	oad (northbo	und)											
1	123	126	-2	149	164	-15	108	127	-19	114	129	-15	
2	91	95	-5	81	92	-11	100	92	9	61	79	-18	
3	123	141	-18	84	89	-5	93	102	-9	108	96	12	
Balmain R	oad (southbo	ound)											
1	54	81	-27	55	69	-13	66	78	-12	65	74	-9	
2	119	137	-18	124	152	-28	112	96	16	90	103	-13	



	AM Peak							PM Peak				
Segment	7:	15AM – 8:15 <i>A</i>	M	8:15AM – 9:15AM			4:30PM - 5:30PM			5:30PM - 6:30PM		
oogc	Modelled (s)	Observed (s)	Difference (s)	Modelled (s)	Observed (s)	Difference (s)	Modelled (s)	Observed (s)	Difference (s)	Modelled (s)	Observed (s)	Difference (s)
Brighton S	Street – Doug	las Street – S	Salisbury Roa	d (westbound	d)							
1	218	146	72	196	147	49	176	149	27	168	137	30
2	72	82	-11	63	82	-19	55	67	-12	56	73	-17
3	116	163	-46	137	185	-48	103	111	-9	107	124	-17
4	52	66	-14	47	82	-35	38	45	-7	37	47	-10
Salisbury	Road - Doug	las Street – E	Brighton Stree	et (eastbound	i)							
1	31	31	-1	30	33	-2	40	33	7	42	36	6
2	113	103	10	109	100	8	99	98	1	103	106	-3
3	101	61	41	96	62	34	113	65	48	95	69	26
4	33	38	-5	33	39	-6	33	38	-5	33	38	-5
5	33	43	-10	33	44	-11	35	46	-11	39	46	-7
Marion Str	reet (eastbou	nd)										
1	149	167	-18	141	169	-28	112	120	-8	98	92	6
2	160	141	19	177	164	13	111	158	-47	114	90	25
Marion Str	reet (westbou	nd)										
1	121	96	26	121	114	8	114	116	-2	132	113	19
2	90	92	-2	96	99	-3	92	87	5	88	95	-6
Johnston	Street (northl	bound)										
1	71	83	-12	68	88	-21	69	85	-16	73	78	-5
2	47	44	4	49	55	-5	34	54	-19	59	49	10
3	203	169	34	159	156	3	158	151	7	154	163	-8
Johnston	Street (south	bound)										
1	128	142	-14	134	165	-31	139	152	-13	141	143	-1
2	30	33	-3	28	34	-6	60	32	28	36	33	3
3	88	95	-7	95	105	-10	114	128	-14	98	143	-45

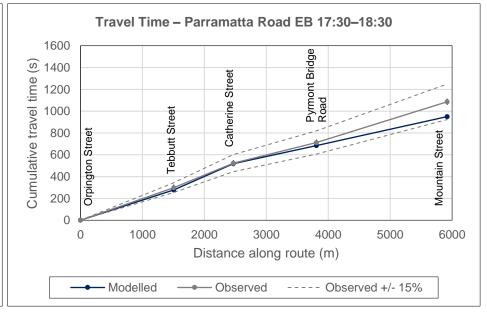
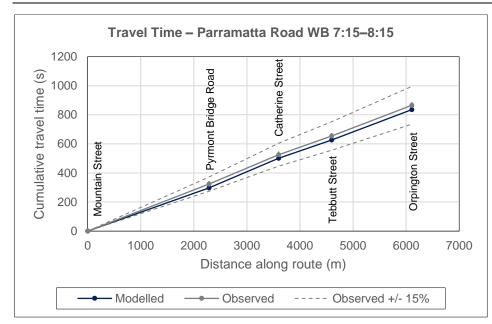
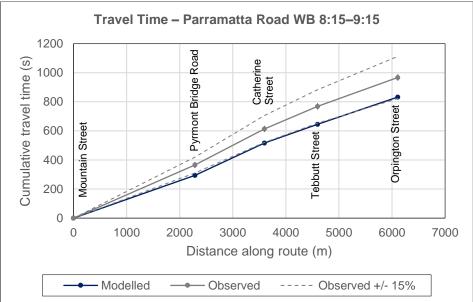
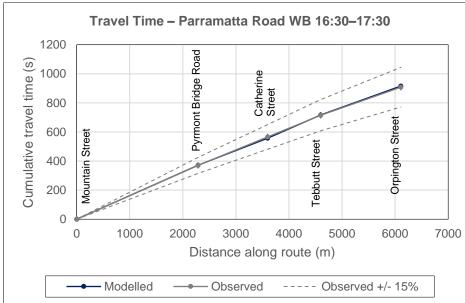





Figure 5-7 Travel times on Parramatta Road (eastbound)

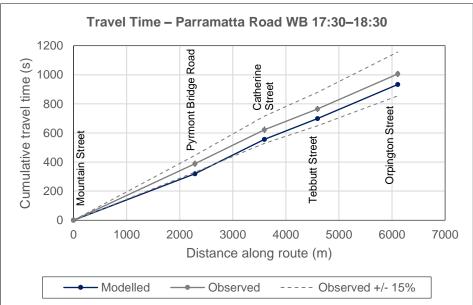
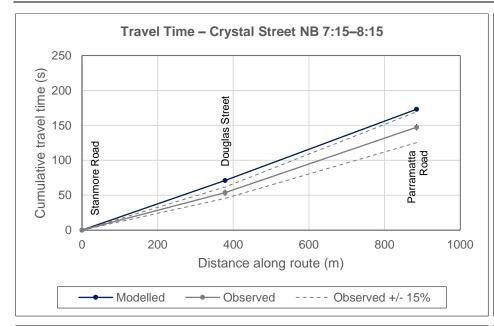
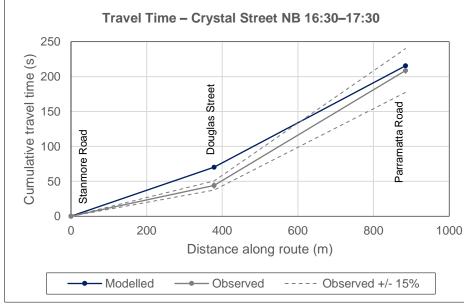




Figure 5-8 Travel times on Parramatta Road (westbound)

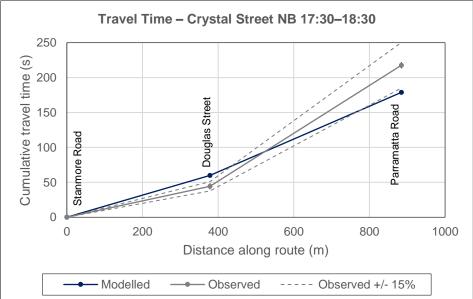
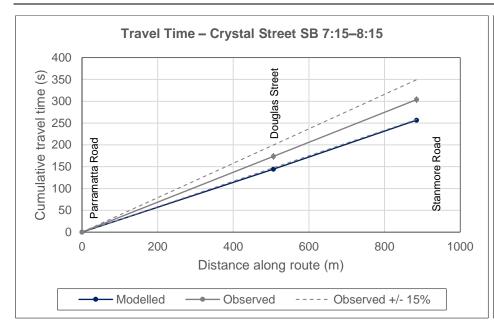
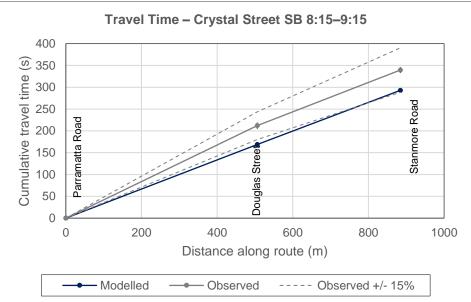
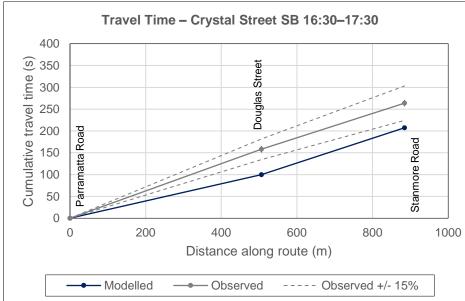





Figure 5-9 Travel times on Crystal Street (northbound)

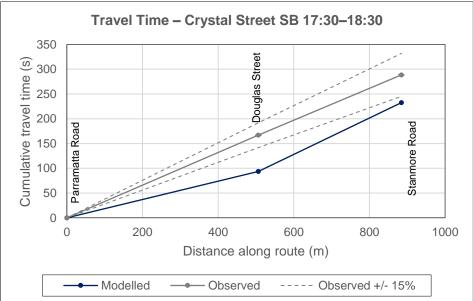
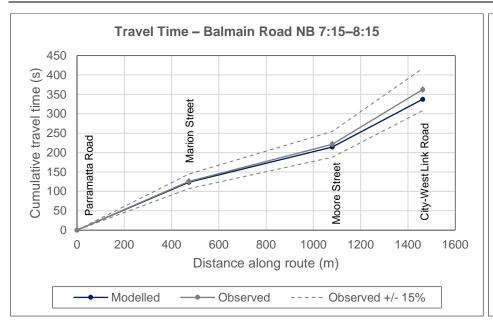
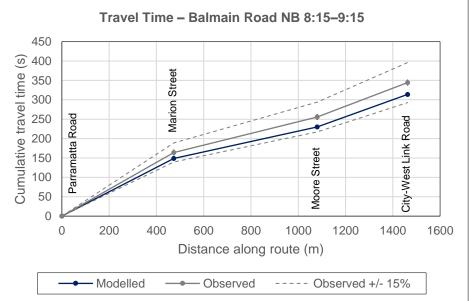
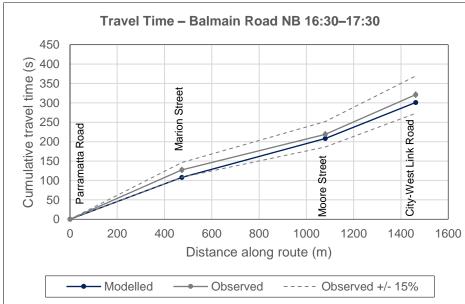





Figure 5-10 Travel times on Crystal Street (southbound)

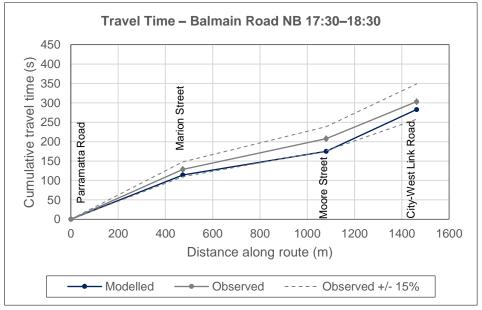
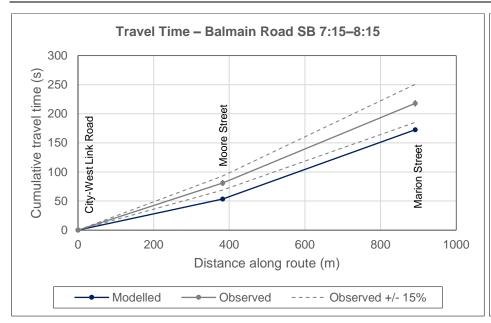
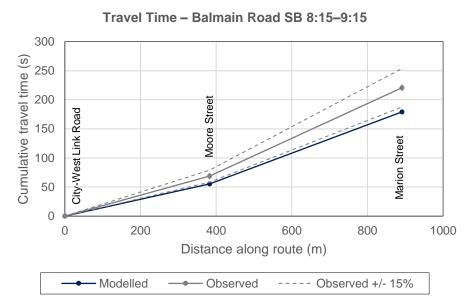
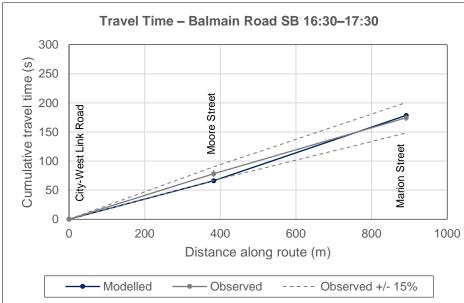





Figure 5-11 Travel times on Balmain Road (northbound)

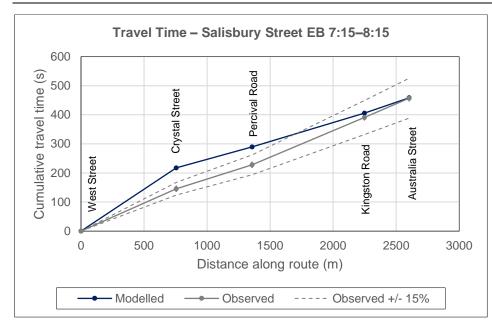



Figure 5-12 Travel times on Balmain Road (southbound)

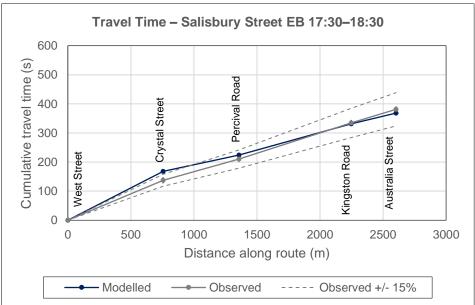
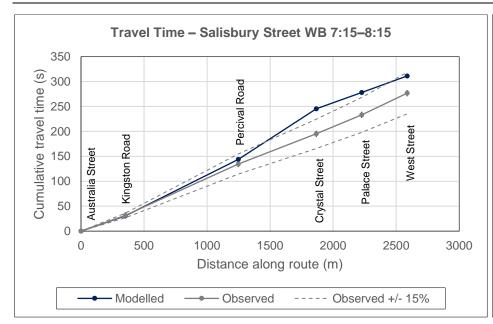
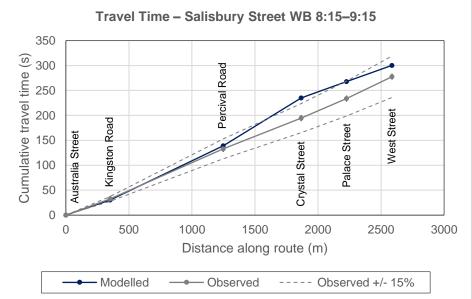





Figure 5-13 Travel times on Salisbury Street (eastbound)

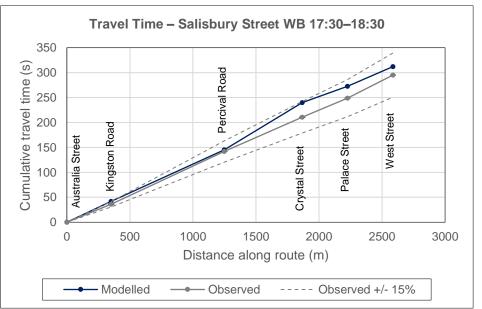
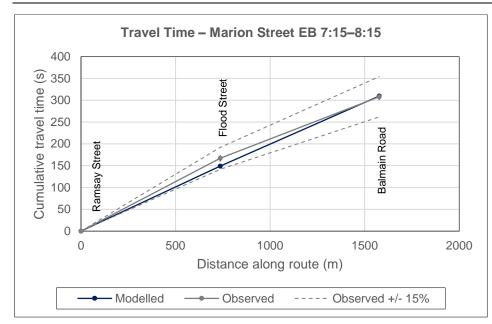
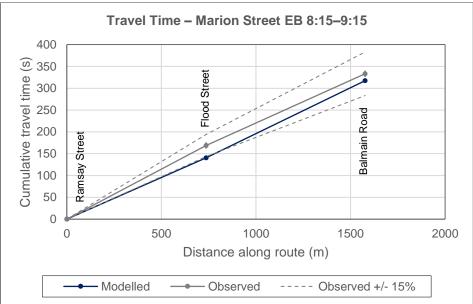
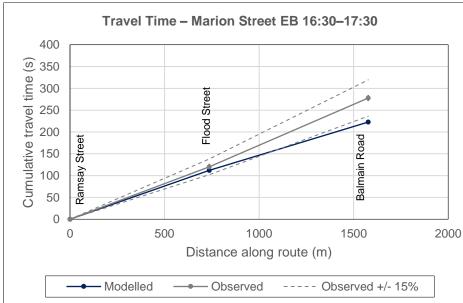





Figure 5-14 Travel times on Salisbury Street (westbound)

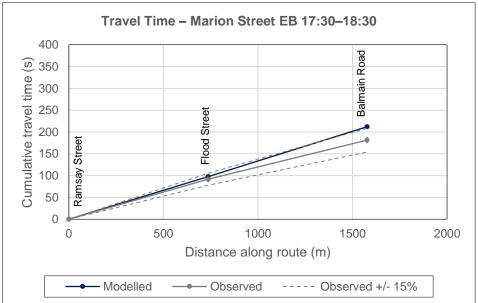
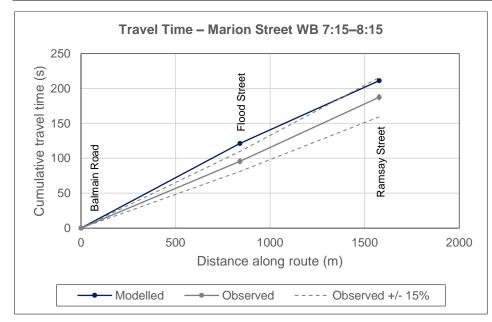
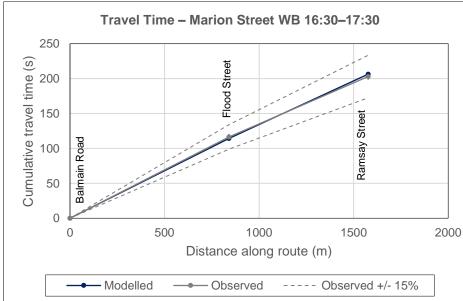




Figure 5-15 Travel times on Marion Street (eastbound)

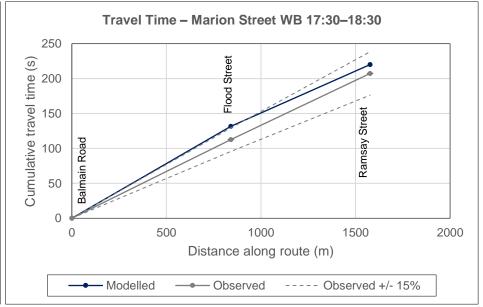
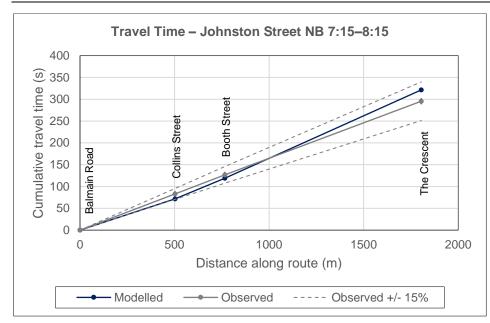



Figure 5-16 Travel times on Marion Street (westbound)

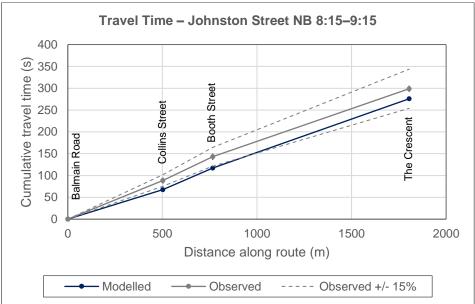
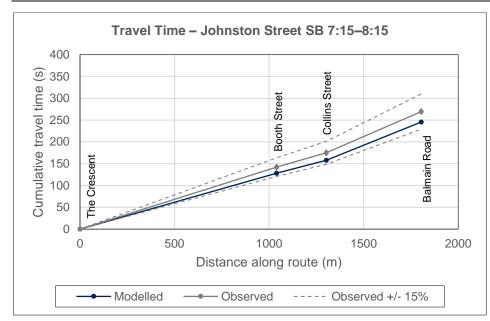



Figure 5-17 Travel times on Johnston Street (northbound)

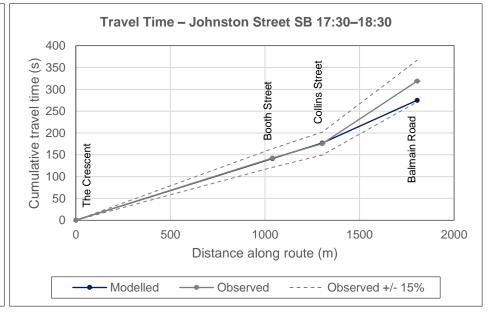


Figure 5-18 Travel times on Johnston Street (southbound)

Table 5-6 shows segments where the modelled travel time was significantly outside the recommended 15 per cent tolerance and provides an explanation for each instance.

Table 5-6 Segments with travel times exceeding 15 per cent of the observed value

Route	Segment	Applicable modelled hours	Notes
Crystal Street (southbound)	1	5:30PM – 6:30PM	Travel time is underrepresented on Crystal Street in the southbound direction in the second hour of the PM Peak. This is attributable to frictional effects of parking and driveways that are not considered in the model. On-street parking is permitted on Crystal Street after 6:00PM.
Salisbury Road (westbound)	2	7:15AM – 8:15AM 8:15AM – 9:15AM 4:30PM – 5:30PM	Travel times were generally overestimated on this segment of Salisbury Road in the westbound direction. In the model this is likely caused by queueing on Crystal Street in the southbound direction that was necessary to meet observed travel times in both the AM and PM peaks.

5.3.2 Travel time variability

Figure 5-19, **Figure 5-20**, **Figure 5-21** and **Figure 5-22** show a comparison between the modelled and observed travel times on each route. The bars show the 10th and 90th percentile for both the modelled (calculated based on the standard deviation assuming a normal distribution of travel times) and observed (extracted from TomTom travel time data).

Traffic Modelling Guidelines (Roads and Maritime Services, 2013) recommends the use of the 5th/95th percentile for this comparison. Cardno has used the 10th/90th percentile due to a small number of significant outliers in the TomTom data that are likely caused by parking manoeuvres, stopped vehicles and pedestrians.

The graphs indicate that all modelled travel times fit within the 10th and 90th percentile of the observed data for all routes. For all routes the modelled percentiles were within the observed percentiles. This is because the TomTom data captures vehicles circulating for on-street parking, parking manoeuvres and vehicles that are stopped for short periods of time.

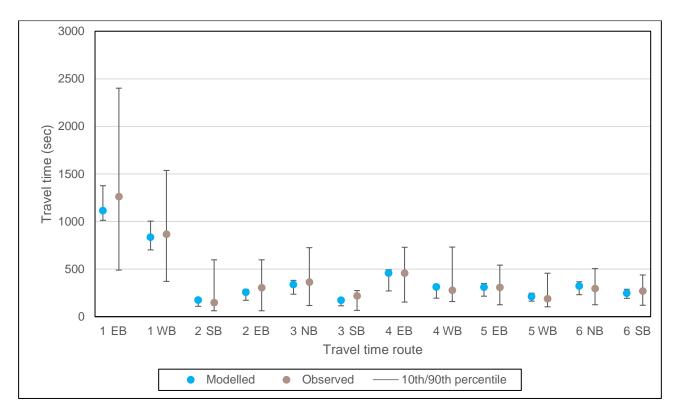


Figure 5-19 Travel time variability (7:15AM – 8:15AM)

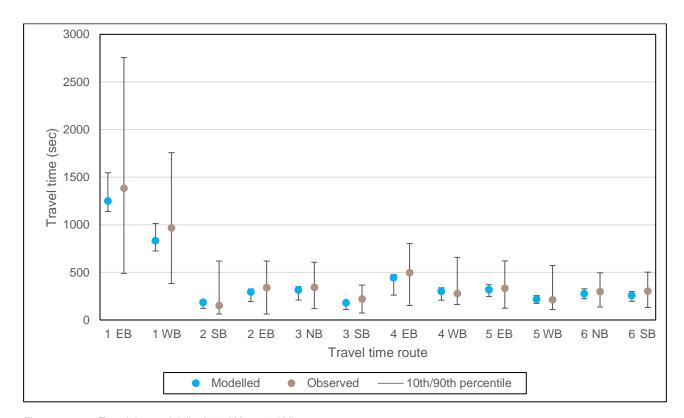


Figure 5-20 Travel time variability (8:15AM – 9:15AM)

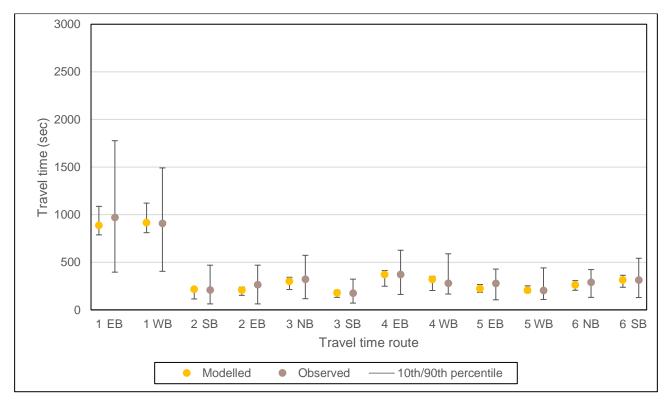


Figure 5-21 Travel time variability (4:30PM – 5:30PM)

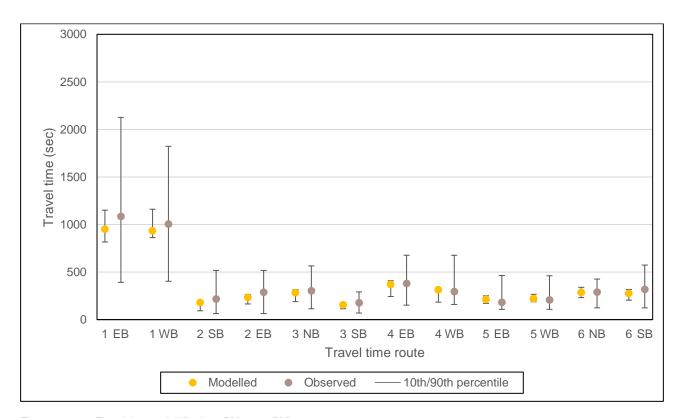


Figure 5-22 Travel time variability (5:30PM – 6:30PM)

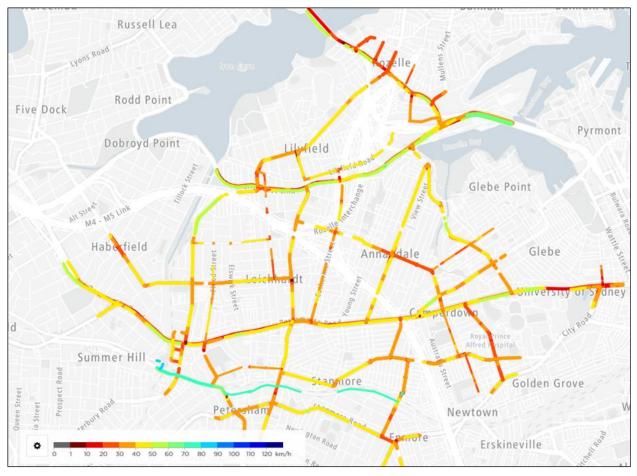
5.3.3 Signal timing validation

Cycle times were coded in the model based on historical cycle times from SCATS data. Phase times were based on historical phase times scaled proportionally to account for reduced call frequency of some phases. All signals were coded as fixed so all phases were called in each cycle. Offsets were calculated based on the signal LX files and were applied to the model to ensure realistic coordination between adjacent intersections.

5.3.4 Congestion hotspot validation

Figure 5-23 and **Figure 5-24** show a comparison between the observed and modelled average speed on key links. The model generally shows an adequate replication of observed speeds on key routes.

In the AM Peak:


- > There is good correlation between the modelled and observed speeds on Parramatta Road in the eastbound (peak) direction. The most congested sections in the model are approaching West Street and Catherine Street. The model also replicates slow-moving vehicles at the Parramatta Road / City Road intersection on the eastern extent of the study area
- > In the opposite direction, the model generally replicates observed average speeds along Parramatta Road with the modelled speed typically between 40 and 50 kilometres per hour which is consistent with the data from TomTom
- Slow-moving vehicles on Victoria Road and on the approaches to Victoria Road from the north (Rozelle) are well-replicated in the model with both modelled and observed average speeds being about 20-30 kilometres per hour
- > The model also mostly replicates congestion on City-West Link Road approaching the Anzac Bridge and there is good correlation between average speeds on James Street approaching City-West Link Road
- Most congestion is well-replicated on north-south routes between Parramatta Road and City-West Link Road including on Johnston Street, Catherine Street and Balmain Road
- > Slow-moving vehicles on Booth Street approaching Wigram Street and Pyrmont Bridge Road are also replicated in the model
- > The model appears to over-estimate the number of slow-moving vehicles on Crystal Street with apparently more queueing approaching Stanmore Road than was observed. However, as the TomTom data is the aggregate of vehicles in both directions, and this route was validated using directional travel time data, it is considered to be an accurate representation of average speeds on Crystal Street

In the PM Peak:

- > There is good correlation between the modelled and observed speeds on Parramatta Road in the westbound (peak) direction. The model replicates slow-moving vehicles around City Road as well as congestion on Parramatta Road approaching Johnston Street and Catherine Street
- > In the opposite direction, there is good correlation between the modelled and observed speeds with congestion replicated in key locations including approaching West Street, Catherine Street and City Road
- > Queueing on Victoria Road and on the approaches to Victoria Road from the north (Rozelle) is captured in the model with observed and modelled speeds being between 20 and 40 kilometres per hour
- > The model also mostly replicates congestion on City-West Link Road with queueing approaching Victoria Road in the westbound direction and approaching James Street, but mostly free-flowing traffic between these intersections
- > Congestion is mostly well-replicated on north-south routes between Parramatta Road and City-West Link Road including on Johnston Street, Catherine Street and Balmain Road
- > Slow-moving vehicles on Booth Street approaching Wigram Street and Pyrmont Bridge Road are also replicated in the model.

As noted in **Section 2.3**, for minor roads the TomTom data is the aggregate of both directions, so in some locations the average speed may appear higher in the observed plot than the modelled outputs. Notwithstanding, the model appears to replicate the observed average speeds on key links including Parramatta Road, City-West Link Road and Victoria Road.

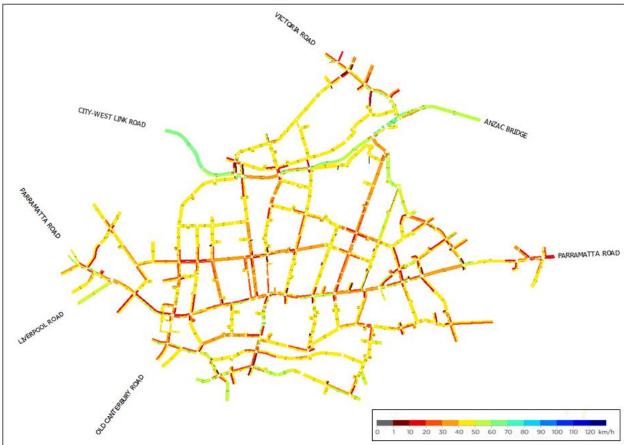
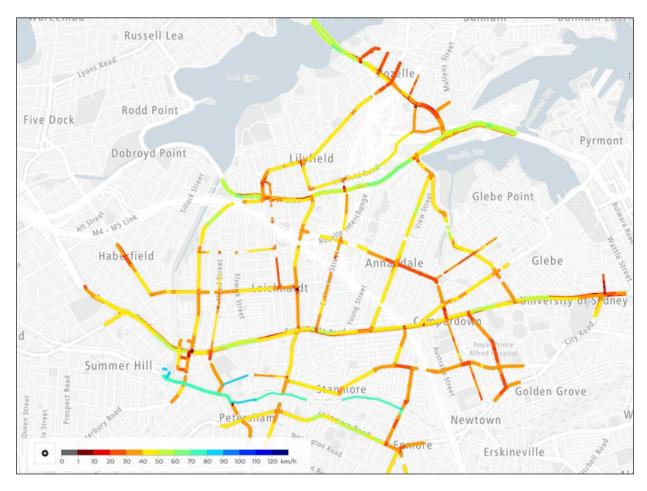



Figure 5-23 Observed (top) and modelled (bottom) average speed plots (AM Peak)

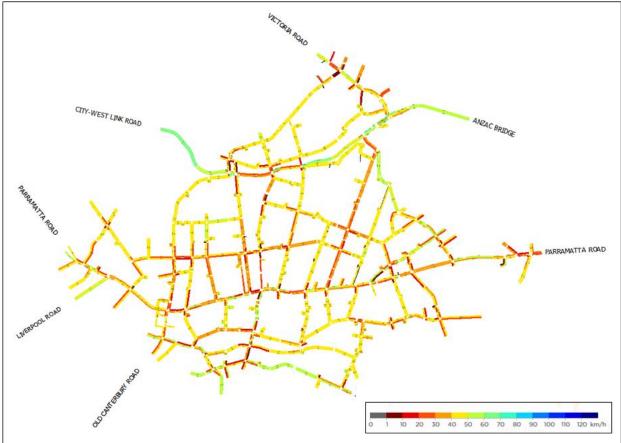


Figure 5-24 Observed (top) and modelled (bottom) average speed plots (PM Peak)

6 Model limitations

The Base Model has been developed in accordance with *Traffic Modelling Guidelines* (Roads and Maritime Services, 2013). Notwithstanding, the main assumptions and limitations of the modelling are outlined below:

- > Fixed signal timings were used in the Base Models due to the size and complexity of the network. Control plans were coded in 15-minute intervals in the microsimulation area and one-hour intervals in the mesoscopic simulation area
- Signal timings were adjusted to meet minimum green time requirements and include pedestrian walk times at major intersections
- Empty running buses were not included in the model as the GTFS data used to code public transport does not include these vehicles
- > The modelled road network does not include all the roads and intersections within the study area. The internal road network reduction was assumed to minimise path allocation and route choice to roads that could not be verified using survey counts
- > The model should not be used to assess intersections that were not calibrated to the survey data
- > Consideration for pedestrians was limited to an intersection level. Pedestrian walk times were included at signalised intersections
- > Cyclist volumes and infrastructure were not considered in the model
- > The impact of congestion on Broadway in the eastbound direction outside the study area (represented by dummy signals in the Base Model) should be considered in future options
- > The models do not consider the impact of on-street parking.

7 Conclusions

This report documents the development of the hybrid microscopic-mesoscopic model for the Parramatta Road Corridor Urban Transformation Study (PRCUTS) project.

The existing traffic conditions were analysed from traffic data collected in October 2018, SCATS historical timings and TomTom travel time data. Strategic demands were extracted from the Sydney Traffic Forecasting Model (STFM) and used as the starting point for demand estimation for the Base Models. These were adjusted manually and using the matrix adjustment procedures available in Aimsun to match the observed traffic counts.

The Base Models were calibrated to represent two peaks:

- > Wednesday 17 October 2018, 7:15AM 9:15AM
- > Wednesday 17 October 2018, 4:30PM 6:30PM.

The Base Models were developed in accordance with the relevant traffic modelling guidelines for NSW. A statistical analysis of stability indicated that the models are stable with less than five seeds required to ensure a confident statistical result. The calibration and validation results indicate that the Base Models have:

- Acceptable calibration of the microsimulation area with greater than 89 per cent of turns having a GEH less than five in the AM Peak and greater than 90 per cent in the PM Peak
- > Twelve turns had a GEH greater than 10 across the four modelled hours, representing less than one per cent of the total number of count locations for each peak. All turns with GEH greater than 10 were outside the microsimulation area
- > High statistical correlation between modelled and observed turning volumes with R² > 0.98 across all modelled hours
- > Modelled travel time on key routes fits well with the observed data.

The Base Models are considered fit-for-purpose for assessing existing and future network performance. They are considered to provide a realistic replication of existing traffic conditions across the study area and provide a robust foundation on which to base the future-year assessment.

These models are designed to assist DPIE, TfNSW, IWC and other relevant stakeholders in understanding the current operation of the Parramatta Road corridor, and future planning to support land use changes along the corridor in the future.

A

GEH SUMMARY

										AM	Peak							
Turn Name	Aimsun ID	Area			.v		5-815		IV			L			5-915		v	
30ST	61436	Meso	Modelled 101	Observed 61	Difference 40	GEH 4.44	Modelled 1	0	Difference 1	GEH 1.41	Modelled 102	Observed 63	39	GEH 4.29	Modelled 0	3	Difference -3	GEH 2.45
30ER 30NT	61437 61438		254 61	246 64	-3	0.51 0.38	17 1	12 0	5 1	1.31 1.41	203 68	212 87	-9 -19	0.62 2.16	14 0	18 0	-4 0	1.00 0.00
30EL 30NL	61439 61440		29 867	29 854	0 13	0.00 0.44	1 43	1 38	0 5	0.00 0.79	24 838	38 843	-14 -5	2.51 0.17	0 64	0 34	0 30	0.00 4.29
30SR 29WT	61441 61459	Meso	190 907	190 876	0 31	0.00 1.04	2 25	4 34	-2 -9	1.15 1.66	216 862	176 821	40 41	2.86 1.41	4 30	1 21	3 9	1.90 1.78
29NL	61460	Meso	13	12	1	0.28	0	0	0	0.00	15	9	6	1.73	0	1	-1	1.41
29SR 29WL	61461 61462	Meso	226 39	181 45	45 -6	3.15 0.93	4 0	12 0	-8 0	2.83 0.00	166 29	191 24	-25 5	1.87 0.97	8 1	6	1	0.76 1.41
29ER 29ST	61463 61464	Meso	10 75	9 95	-20	0.32 2.17	2	0	2	0.00 2.00	9 100	1 88	8 12	3.58 1.24	0 15	2	0 13	0.00 4.46
29WR 29EL	61465 61466		84 143	42 91	42 52	5.29 4.81	7	0	6	0.00 3.00	65 146	55 163	10 -17	1.29	6 3	1	6 2	3.46 1.41
29NT 31WR	61467 69795	Meso Micro	96 248	90 184	6 64	0.62 4.35	5 8	0 13	5 -5	3.16 1.54	72 254	138 247	-66 7	6.44 0.44	2 16	3 21	-1 -5	0.63 1.16
31SR 31WT	69796 69797	Micro	741 1215	644 1296	97 -81	3.69 2.29	52 115	42 138	10 -23	1.46 2.04	618 1341	448 1351	170 -10	7.36 0.27	72 123	34 123	38 0	5.22 0.00
76ET 76NR	69812 69813	Micro	1133 110	1130 113	3 -3	0.09	82 13	82 11	0 2	0.00	1053	979	74 -7	2.32	77	96 5	-19 3	2.04
76WT	69814	Micro	1418	1388	30	0.80	120	148	-28	2.42	1449	1457	-8	0.21	138	134	4	0.34
76NL 76WL	69815 69816	Micro	62 81	116 62	-54 19	5.72 2.25	3 11	5	6	1.41 2.12	122 94	153 59	-31 35	2.64 4.00	1 22	7	-6 19	3.00 5.37
76ER 56WT	69817 70256		265 464	265 441	23	0.00 1.08	11 32	12 28	-1 4	0.29 0.73	254 501	290 318	-36 183	2.18 9.04	9 33	6 18	3 15	1.10 2.97
56NL 56SR	70257 70258		265 75	122 112	143 -37	10.28 3.83	1 10	10	-9 8	3.84 3.27	169 79	147 108	-29	1.75 3.00	0 26	5 3	-5 23	3.16 6.04
56ET 56NR	70259 70260		237 24	260 27	-23 -3	1.46 0.59	14 0	9	5 -1	1.47 1.41	204 20	234 28	-30 -8	2.03 1.63	12 0	17 0	-5 0	1.31 0.00
56SL 56ER	70261 70262	Meso	72 25	42 19	30 6	3.97 1.28	0	2	-2 -3	2.00	68 21	48 29	20	2.63 1.60	0	1 5	-1 -5	1.41 3.16
56WL	70263	Meso	14	12	2	0.55	0	1	-1	1.41	20	19	1	0.23	0	0	0	0.00
56ST 56EL	70264 70265	Meso	199 94	178 69	21 25	1.53 2.77	11 5	1	3 4	0.97 2.31	199 83	193 73	6 10	1.13	6 2	0	2	2.00
56WR 56NT	70266 70267	Meso	77	15 160	-15 -83	5.48 7.62	3 8	7	1	1.41 0.37	0 148	16 151	-16 -3	5.66 0.25	1 6	6	-1 0	0.82 0.00
28NL 28SR	71068 71069		11 110	12 89	-1 21	0.29 2.11	1	1 5	0 -4	0.00 2.31	7 88	17 104	-10 -16	2.89 1.63	2	1	0	0.00 0.82
28WT 28ST	71070 71071	Meso	910 370	945 457	-35 -87	1.15 4.28	23 16	23 11	0 5	0.00 1.36	845 452	821 434	24 18	0.83 0.86	35 22	20 18	15 4	2.86 0.89
28WL 28EL	71072 71073	Meso	276 56	207 60	69 -4	4.44 0.53	13 0	5 8	8 -8	2.67 4.00	288 63	250 59	38 4	2.32 0.51	19 0	8 5	11 -5	2.99 3.16
28NT	71074	Meso	204	283	-79	5.06	16	12	4	1.07	165	291	-126	8.34	9	12	-3 7	0.93
28WR 28ET	71075 71076	Meso	225 245	272 261	-47 -16	2.98	10 14	10	4	0.32 1.15	247 203	266 244	-19 -41	1.19 2.74	14	7 16	-5	2.16 1.36
28NR 28SL	71077 71078	Meso	40 81	40 62	0 19	0.00 2.25	3	1	-1 2	0.82 1.41	42 94	42 74	0 20	0.00 2.18	0	3 2	-2	0.53 2.00
39WT 39NL	71093 71094	Micro Micro	1654 169	1666 176	-12 -7	0.29 0.53	136 0	176 10	-40 -10	3.20 4.47	1781 192	1727 202	54 -10	1.29 0.71	171 1	140 7	31 -6	2.49 3.00
39ET 39EL	71095 71097		1318 209	1420 202	-102 7	2.76 0.49	101 8	88 10	13 -2	1.34 0.67	1260 210	1197 208	63 2	1.80 0.14	102 5	116 4	-14 1	1.34 0.47
41ET 41SL	71099 71100	Meso	464 47	492 66	-28 -19	1.28 2.53	16 0	15 1	1 -1	0.25 1.41	503 55	464 47	39 8	1.77 1.12	22 3	29 2	-7 1	1.39 0.63
41WT 41NL	71101 71102	Meso	342 81	383 71	-41 10	2.15 1.15	26 33	21	5 15	1.03	366 136	391 60	-25 76	1.29 7.68	21 27	23	-2 23	0.43
41EL	71104	Meso	26	26	0	0.00	1	2	-1	0.82	21	23	-2	0.43	0	3	-3	2.45
41NT 41WL	71105 71106	Meso	567 58	606 58	-39 0	1.61 0.00	17 4	22	-5 2	1.13 1.15	497 68	525 69	-28 -1	1.24 0.12	11 4	16 4	-5 0	1.36 0.00
41ST 1NT	71108 73126		884 227	948 209	-64 18	2.11 1.22	19 14	20 17	-1 -3	0.23 0.76	943 214	932 263	11 -49	0.36 3.17	23 16	24 19	-1 -3	0.21 0.72
1EL 1SL	73127 73128	Meso Meso	48 250	59 180	-11 70	1.50 4.77	9 10	5 15	-5	1.51 1.41	51 232	67 192	-16 40	2.08 2.75	13 11	6 11	7	2.27 0.00
1ET 1ST	73129 73130	Meso Meso	1155 214	1135 234	20 -20	0.59 1.34	75 7	67 20	-13	0.95 3.54	909 190	859 261	50 -71	1.68 4.73	90 7	92 17	-2 -10	0.21 2.89
1ER 1NL	73132 73134		125 210	101 156	24 54	2.26 3.99	18 11	13 13	5 -2	1.27 0.58	120 182	129 148	-9 34	0.81 2.65	8 14	9 12	-1 2	0.34 0.55
23EL 23NT	73152 73153	Meso	646 2756	695 2800	-49 -44	1.89 0.83	37 136	34 142	3 -6	0.50 0.51	636 2356	745 2345	-109 11	4.15 0.23	43 123	39 127	4 -4	0.62 0.36
23SR 23NL	73154 73155	Meso	571	541 44	30 -24	1.27 4.24	37 0	35	2 -3	0.33	517	617	-100 -22	4.20 4.09	33 0	38	-5 -1	0.84
23ST	73156	Meso	20 1249	1212	37	1.05	93	81	12	1.29	18	40 1015	30	0.93	105	108	-3	0.29
3NL 3WT	73175 73176	Meso	193 1482	198 1580	-5 -98	0.36 2.50	11 100	9 129	-29	0.63 2.71	187 1024	202 1004	-15 20	1.08 0.63	3 110	7 89	-4 21	1.79 2.11
3NR 3ET	73177 73178	Meso	99 1264	86 1238	13 26	1.35 0.74	0 128	0 114	0 14	0.00 1.27	110 1191	93 1155	17 36	1.69 1.05	4 109	7 133	-3 -24	1.28 2.18
3SL 3NT	73179 73180		128 256	176 194	-48 62	3.89 4.13	26 26	11 17	15 9	3.49 1.94	81 256	150 275	-69 -19	6.42 1.17	22 24	11 23	11 1	2.71 0.21
42ET 42SL	73195 73196	Meso	57 39	54 34	3 5	0.40 0.83	1 2	2 2	-1 0	0.82 0.00	46 40	49 54	-3 -14	0.44 2.04	1	2	-1 1	0.82 1.41
42WL 42ER	73197 73198	Meso	3	18 14	-15 -13	4.63 4.75	0 3	0	0	0.00 2.45	13 3	16 7	-3 -4	0.79 1.79	0 4	0	0 4	0.00 2.83
42ST 42WT	73199 73200	Meso	329 218	295 209	34	1.92	11 9	8 2	3 7	0.97	271 228	327 250	-56 -22	3.24 1.42	7 4	13 11	-6 -7	1.90 2.56
42NL	73201	Meso	65	50	15	1.98	6	1	5	2.67	59	66	-7	0.89	1 34	1	0	0.00
42SR 42WR	73202 73203	Meso	383 9	298 35	-26	4.61 5.54	25 0	30 0	-5 0	0.95	334 10	367 39	-33 -29	1.76 5.86	5	16 0	18 5	3.60 3.16
42NT 42EL	73204 73205	Meso	183 6	217 23	-34 -17	2.40 4.46	11 4	5 0	6 4	2.12 2.83	158 10	195 38	-37 -28	2.79 5.72	4	7 1	-5 3	2.36 1.90
63EL 63WR	73214 73215		185 72	192 51	-7 21	0.51 2.68	13 3	5 2	8 1	2.67 0.63	186 57	171 63	15 -6	1.12 0.77	1	7 2	-5 -1	2.36 0.82
63SR 63WT	73216 73217		246 318	252 381	-6 -63	0.38 3.37	7 8	9 26	-2 -18	0.71 4.37	206 342	253 386	-47 -44	3.10 2.31	4 23	12 23	-8 0	2.83 0.00
63SL 63ET	73218 73219	Meso	49 200	46 217	3 -17	0.44	4	0 23	4 -9	2.83	55 248	87 238	-32 10	3.80 0.64	5 21	0	5 2	3.16 0.45
35SR	73221	Meso	75	82	-7	0.79	9	2	7	2.98	84	99	-15	1.57	3	0	3	2.45
35EL 35NT	73223 73224	Meso	138	139	-28 -1	6.79 0.08	11	12	-1 -1	1.41 0.29	6 179	23 153	-17 26	4.46 2.02	18	6	1 12	1.41 3.46
35ER 35ST	73225 73226	Meso	71 258	98 274	-27 -16	2.94 0.98	6 10	16 12	-10 -2	3.02 0.60	83 306	113 307	-30 -1	3.03 0.06	4 21	15 9	-11 12	3.57 3.10
11ET 11SL	73238 73239		282 23	211 39	71 -16	4.52 2.87	11 7	8 7	3	0.97 0.00	257 34	253 65	-31	0.25 4.41	7 4	11 12	-4 -8	1.33 2.83
11NR 11WT	73240 73241	Meso	42 849	32 822	10	1.64 0.93	1 13	3 19	-2 -6	1.41	37 807	51 760	-14 47	2.11	1 16	1 13	0	0.00
11SR	73242	Meso	7	33	-26	5.81	1	0	1	1.41	5	24	-19	4.99	6	1	5	2.67
11NL 11WR	73243 73244	Meso	105 145	52 166	53 -21	5.98 1.68	0	19	-19	6.16	148 152	69 164	79 -12	7.58 0.95	5	14	-9	2.83
11EL 11NT	73245 73246	Meso	92 162	123 181	-31 -19	2.99 1.45	0 18	3 21	-3 -3	2.45 0.68	94 165	163 185	-69 -20	6.09 1.51	0 17	20	-1 -3	1.41 0.70
11WL	73247	Meso	71	62	9	1.10	5	7	-2	0.82	57	69	-12	1.51	3	3	0	0.00

11ER	73248		0	36	-36	8.49	3	0	3	2.45	3	40	-37	7.98	1	1	0	0.00
11ST 13ET	73249 73258		83 224	97 206	-14 18	1.48 1.23	10 7	20 3	-10 4	2.58 1.79	86 205	84 227	-22	0.22 1.50	8 6	23 6	-15 0	3.81 0.00
13SL 13NR	73259 73260		20 138	43 157	-23 -19	4.10 1.56	1 5	1 5	0	0.00	18 127	67 187	-49 -60	7.52 4.79	1	1 5	0 -4	0.00 2.31
13WT	73261	Meso	702	665	37	1.42	7	6	1	0.39	721	627	94	3.62	20	6	14	3.88
13SR 13NL	73262 73263		42 30	24 18	18 12	3.13 2.45	0	0	0	0.00	43 30	39 42	-12	0.62 2.00	0	0	0	0.00
13WL 13ER	73264 73265	Meso Meso	256 23	250 21	6 2	0.38 0.43	8	15 1	-7 0	2.06 0.00	242 23	210 22	32 1	2.13 0.21	6	6	0	0.00
13ST	73266	Meso	207	184	23	1.64	0	5	-5	3.16	176	199	-23	1.68	0	2	-2	2.00
7NL 7SR	73268 73269	Meso Meso	49 122	77 182	-28 -60	3.53 4.87	1	13 11	-12 -10	4.54 4.08	49 93	67 263	-18 -170	2.36 12.74	2	3 7	-2 -5	1.41 2.36
7ER 7ST	73270 73271		111 383	102 432	9 -49	0.87 2.43	9	11 9	-2 -9	0.63 4.24	126 334	148 348	-22 -14	1.88 0.76	12 3	13 7	-1 -4	0.28 1.79
7EL	73272	Meso	115	79	36	3.66 1.07	1	6	-5	2.67 2.45	108	150	-42	3.70	1	5	-4	2.31
7NT 5SL	73273 73275	Meso	100 40	111 25	-11 15	2.63	3	3	-3 0	0.00	84 56	122 37	-38 19	3.74 2.79	0 1	4	-4 -3	2.83 1.90
5NR 5ET	73276 73277		0 166	23 143	-23 23	6.78 1.85	0 4	14	-2 -10	2.00 3.33	0 181	34 236	-34 -55	8.25 3.81	0 15	1 11	-1 4	1.41
5NT 5EL	73279 73280		104 47	107 25	-3 22	0.29 3.67	10 0	2	8 -1	3.27 1.41	118 33	113 37	5 -4	0.47 0.68	4 2	10 2	-6 0	2.27 0.00
5WL	73281	Meso	49	30	19	3.02	4	4	0	0.00	55	45	10	1.41	5	1	4	2.31
5ST 5ER	73282 73283	Meso Meso	65 100	87 89	-22 11	2.52 1.13	6 10	4 8	2	0.89 0.67	66 65	87 75	-21 -10	2.40 1.20	8 13	3 8	5 5	2.13 1.54
5WT 5SR	73284 73285		280 33	245 87	35 -54	2.16 6.97	4 5	21 3	-17 2	4.81 1.00	256 50	290 79	-34 -29	2.06 3.61	12 3	10 1	2	0.60 1.41
16NT	73288	Meso	226	265	-39	2.49	10	10	0	0.00	222	247	-25	1.63	6	7	-1	0.39
16EL 16WR	73289 73290	Meso	86 130	77 38	9 92	10.04	1 9	1	-1 8	0.82 3.58	77 105	75 48	2 57	0.23 6.52	9	2	-2 7	2.00 2.98
16ST 16ER	73291 73292		536 91	507 69	29 22	1.27 2.46	3	9	-6 -2	2.45 2.00	483 64	403 87	80 -23	3.80 2.65	3	9	-6 2	2.45 1.41
16WL 16SR	73293 73294		76 285	69 192	7 93	0.82	1	3	-2 -2	1.41	63 308	97	-34 101	3.80 6.29	1 10	2	-1 6	0.82
16NL	73295	Meso	49	67	-18	2.36	6	11	-5	1.71	60	57	3	0.39	2	8	-6	2.68
16WT 16SL	73296 73297	Meso Meso	366 1	331 40	35 -39	1.87 8.61	7 1	24 3	-17 -2	4.32 1.41	397 1	394 47	-46	0.15 9.39	17 1	20	-3 -1	0.70 0.82
16NR 16ET	73298 73299		63 235	51 216	12 19	1.59 1.27	4 10	2 12	2 -2	1.15 0.60	89 229	88 306	-77	0.11 4.71	5 24	7 15	-2 9	0.82 2.04
15WL	73301	Meso	369	255	114	6.45	1	2	-1	0.82	394	253	141	7.84	10	4	6	2.27
15ST 15NR	73302 73303	Meso	454 68	469 71	-15 -3	0.70 0.36	4 2	14 2	-10 0	3.33 0.00	410 64	388 72	-8	1.10 0.97	1	10 0	-6 1	2.27 1.41
15SL 15NT	73304 73305		82 225	55 285	27 -60	3.26 3.76	7 8	2	5 -3	2.36 0.97	83 230	73 279	10 -49	1.13 3.07	1 6	4 10	-3 -4	1.90 1.41
15WR	73306	Meso	186	221	-35	2.45	1	0	1	1.41	185	216	-31	2.19	4	4 2	0	0.00
6NR 6SL	73315 73316	Meso	42 66	26 48	16 18	2.74 2.38	0	0	-1 0	1.41 0.00	24 61	36 81	-12 -20	2.19 2.37	1	0	1	0.00 1.41
6ET 6WL	73317 73318	Meso Meso	145 82	116 42	29 40	2.54 5.08	7 5	6 3	2	0.39 1.00	140 109	164 39	-24 70	1.95 8.14	4 9	1	8	1.15 3.58
6ST 6ER	73319 73320		54 2	73 2	-19 0	2.38 0.00	8	0	6	2.68 0.00	63 0	92 5	-29 -5	3.29 3.16	3	0	1 0	0.63
6WR	73321	Meso	26	4	22	5.68	1	0	1	1.41	18	5	13	3.83	0	0	0	0.00
6NT 6EL	73322 73323		97 11	134 8	-37 3	3.44 0.97	9	8	2	0.34 2.00	109 14	112 10	-3 4	0.29 1.15	4 1	6 1	-2 0	0.89
6WT 6NL	73324 73325		689 15	712	-23 12	0.87 4.00	2	4 0	-2 1	1.15 1.41	685 17	689 8	-4 9	0.15 2.55	11 0	5 0	6	2.12 0.00
6SR	73326	Meso	15	11	4	1.11	0	1	-1	1.41	23	10	13	3.20	2	0	2	2.00
18ST 18WL	73344 73345		650 62	661 48	-11 14	0.43 1.89	4	11	-7 3	2.56 1.90	572 52	575 64	-3 -12	0.13 1.58	6 1	12 5	-6 -4	2.00
18NT 18WR	73346 73347	Meso Meso	324 2	355 12	-31 -10	1.68 3.78	19 0	24 2	-5 -2	1.08 2.00	341 4	334 23	-19	0.38 5.17	16 0	21 0	-5 0	1.16 0.00
18NR 18SL	73348	Meso	37	38	-1 20	0.16	0	2	-2	2.00	47	35	12 -58	1.87	0	2	-2 -1	2.00
75SL	73349 73351	Meso	53 71	33 78	-7	3.05 0.81	0	0	-3 0	2.45 0.00	35 67	93 56	11	7.25 1.40	0	1	-1	1.41 1.41
75ET 75EL	73352 73354		422 7	452 12	-30 -5	1.44 1.62	17 0	19 2	-2 -2	0.47 2.00	456 10	415 16	-6	1.96 1.66	21 3	29 2	-8 1	1.60 0.63
75WT 75SR	73355 73356	Meso Meso	425 16	445 5	-20 11	0.96 3.39	60 0	42 0	18 0	2.52 0.00	502 11	443 6	59 5	2.71 1.71	47 3	30 0	17 3	2.74 2.45
22ET	73381		408	380	28	1.41	11	19	-8	2.07	396	393	3	0.15	15	13	2	0.53
22SL 22WT	73382 73383		141 810	91 795	50 15	4.64 0.53	3 20	7 24	-4 -4	1.79 0.85	98 831	122 791	-24 40	2.29 1.40	2 16	6 22	-4 -6	2.00 1.38
22NL 22NT	73384 73385		68 331	69 356	-1 -25	0.12 1.35	2 5	3 10	-1 -5	0.63 1.83	73 387	73 431	-44	0.00 2.18	0 12	1 11	-1 1	1.41 0.29
22WL 22ER	73386 73387	Meso	36	32 29	4 14	0.69	3	4 0	-1	0.53	31 27	44 46	-13	2.12	4	2 4	2 -3	1.15
22ST	73388	Meso	43 139	115	24	2.33 2.13	0 4	3	1	0.00 0.53	137	171	-19 -34	3.14 2.74	4	5	-1	1.90 0.47
67NR 67ET	73421 73422		73 992	44 957	29 35	3.79 1.12	0 93	5 103	-5 -10	3.16 1.01	61 987	68 949	-7 38	0.87 1.22	0 114	5 101	-5 13	3.16 1.25
67WL 67ER	73423 73424	Micro	33 194	39 160	-6 34	1.00	0	1	-1 12	1.41 2.40	28 206	39 234	-11 -28	1.90	0 21	2	-2 -10	2.00
67WT	73425	Micro	1855	1783	72	1.69	141	163	-22	1.78	1892	1909	-17	0.39	152	158	-6	0.48
67NL 66WT	73426 73434	Micro	273 1740	239 1619	34 121	2.13 2.95	39 133	35 163	-30	0.66 2.47	304 1844	316 1639	-12 205	0.68 4.91	39 148	37 122	2 26	0.32 2.24
66NL 66ET	73435 73436		129 862	88 783	41 79	3.94 2.75	7 82	5 86	2 -4	0.82 0.44	113 862	104 836	9 26	0.86 0.89	10 98	6 88	4 10	1.41 1.04
66NR	73437	Micro	110	161	-51	4.38	0	4	-4	2.83	147	152	-5	0.41	4	3	1 -2	0.53
66ER 66WL	73438 73439	Micro	106 196	113 238	-7 -42	0.67 2.85	5 4	5 4	0	0.00	85 237	131 387	-46 -150	4.43 8.49	6	8	-8	0.76 4.00
78NL 78SR	73441 73442		60 61	53 58	7 3	0.93 0.39	0 6	7	0 -1	0.00 0.39	56 87	93 76	-37 11	4.29 1.22	5 1	2 8	3 -7	1.60 3.30
78WT 78ST	73443 73444	Meso	1795	1815 113	-20 -18	0.47	127 5	163	-36 2	2.99	1945	1919 100	26 -2	0.59	141	124	17	1.48
78WL	73445	Meso	95 29	14	15	3.23	2	0	2	2.00	98 27	13	14	3.13	4	1	3	1.90
78EL 78NT	73446 73447		111 187	127 192	-16 -5	1.47 0.36	6	10 4	-10 2	4.47 0.89	142 176	120 164	22 12	1.92 0.92	5	11 8	-9 -3	3.53 1.18
78WR 78ET	73448 73449	Meso	150 859	184 776	-34 83	2.63 2.90	2 83	12 86	-10 -3	3.78 0.33	144 888	214 800	-70 88	5.23 3.03	7 99	8 83	-1 16	0.37 1.68
78NR	73450	Meso	13	5	8	2.67	4	0	4	2.83	12	10	2	0.60	4	1	3	1.90
78SL 24WL	73451 73460	Meso	84 63	113 55	-29 8	2.92 1.04	4 11	9	-5 9	1.96 3.53	81 67	86 60	-5 7	0.55 0.88	7	4 5	-4 2	2.83 0.82
24ER 24ST	73461 73462		128 187	130 104	-2 83	0.18 6.88	7 9	11	-4 7	1.33 2.98	124 124	147 121	-23 3	1.98 0.27	22 8	12	10 6	2.43 2.68
24ET	73463	Meso	234	227	7	0.46	13	9	4	1.21	216	225	-9	0.61	10	15	-5	1.41
24SL 24NL	73464 73465	Meso	23 289	16 229	7 60	1.59 3.73	2 21	2 27	0 -6	0.00 1.22	13 300	14 204	-1 96	0.27 6.05	0 31	0 16	0 15	0.00 3.09
24WT 24SR	73466 73467		444 90	508 99	-64 -9	2.93 0.93	17 0	20 0	-3 0	0.70 0.00	438 116	468 74	-30 42	1.41 4.31	14 1	18 1	-4 0	1.00 0.00
24NT	73468	Meso	378	274	104	5.76	11	3	8	3.02	337	264	73	4.21 2.63	18	11	7	1.84
24EL 64WL	73469 73471	Micro	29 483	59 572	-30 -89	4.52 3.88	0 29	0 23	6	1.18	38 480	56 503	-18 -23	1.04	3 26	2 25	1	0.63 0.20
64NL 64WT	73472 73473		0 1871	17 1843	-17 28	5.83 0.65	0 134	1 163	-1 -29	1.41 2.38	4 1948	18 1944	-14 4	4.22 0.09	0 141	1 128	-1 13	1.41 1.12
64NR	73474		224	226	-2	0.13	11	11	0	0.00	226	233	-7	0.46	5	15	-10	3.16

Company Comp	64ET	73475		998	961	37	1.18	93	96	-3	0.31	978	906	72	2.35	96	92	4	0.41
Green																			0.39 0.66
Section Sect																			1.41 0.00
Section Sect	61WL	73481	Micro	63	36	27	3.84	2	4	-2	1.15	57	31	26	3.92	2	4	-2	1.15 1.41
The Company	61ET	73483	Micro	988	963	25	0.80	82	87	-5	0.54	987	891	96	3.13	92	99	-7	0.72
Section 1988																			1.41 0.00
Section Column																			1.79 0.00
Section Sect	46NR	73489		105	102	3	0.29	1		0	0.00	95	101	-6	0.61	4	5	-1	0.47 1.50
Mary	46NL	73491	Micro	35	27	8	1.44	1	1	0	0.00	25	19	6	1.28	0	3	-3	2.45
																			0.17 1.41
Sect March March																			2.83 0.42
MATERIAL 1988 1989 198	45SR	73497	Micro	145	171	-26	2.07	23	14	9	2.09	156	161	-5	0.40	11	15	-4	1.11 2.45
	45WR	73501	Micro	208	289	-81	5.14	14	15	-1	0.26	215	213	2	0.14	7	20	-13	3.54
March Control March Ma	47WT													51		110	121	-11	0.74 1.02
Index 1990																			1.89 0.22
Mar. 1979 1985 13 17 18 18 18 19 19 19 19 19		73508	Micro			56								38				0	0.00 2.67
MATERIAL PROPERTY PROPERTY	44EL	73510	Micro	3	17	-14	4.43	3	2	1	0.63	11	23	-12	2.91	0	3	-3	2.45
	44WT	73512	Micro	1258	1350	-92	2.55	103		-30	2.76	1487	1311	176	4.71	111	128	-17	3.77 1.56
Sect Property Sect Sec																			0.00 4.43
Sect Probable Sect Sec				_															3.54 0.66
	34NT	73518	Meso	343	454	-111	5.56	22	18	4	0.89	318	394	-76	4.03	17	18	-1	0.24 4.92
Sept 1988 1989	43ER	73536	Micro	188	189	-1	0.07	24	27	-3	0.59	195	191	4	0.29	13	35	-22	4.49
Sect Post More 1999	43NL					-33	2.07		31	-6	1.13			44	2.66	26	32	-6	2.00 1.11
Description 1985 1990 1990 1990 41 144 48 48 48 42 28 38 1398 1398 10 222 27 40 1-13 25 1-1																			0.89 0.32
SMIT TOTAL More ST SMIT S	50ST	73543	Meso	1320	1279	41	1.14	46	44	2	0.30	1338	1328	10	0.27	27	40	-13	2.25 1.62
	50NT	73546	Meso	437	504	-67	3.09	16	18	-2	0.49	426	479	-53	2.49	8	33	-25	5.52
Sect 17800 New 143 159 14 188 1 2 -1 182 2 15 18 3 3 3 3 0 0											1.71								0.00
							0.0.												2.31 0.00
																			0.63 3.57
Month 1985 Month 1986	49EL	73555	Meso	159	217	-58	4.23	2	4	-2	1.15	194	209	-15	1.06	8	8	0	0.00
MESTER 75950 Meso 922 986 9.4 983 983 944 4.0 9.4 9.6 884 4.8 9.4 183 23 34 6.2 23 34 187 7885	49SR	73557	Meso	678	630	48	1.88	15	14	1	0.26	718	625	93	3.59	13	10	3	0.88
Fame Table Marco 149 173 2,4 189 3 4 -1 0.53 169 179 -10 0.08 10 0 0 0 0 0 0 0 0																			1.41 3.92
Table Tabl																			2.45 0.00
Table Tabl																			1.41 1.07
Table Part Part	73ER	73651	Meso	138	121	17	1.49	0	1	-1	1.41	109	147	-38	3.36	4	3	1	0.53
Sent 7986 Meso 299 297 2 0.12 25 13 12 278 304 303 1 0.06 15 16 1-1 0.05	73NL	73653	Meso	56	62	-6	0.78	3	0	3	2.45	47	43	4	0.60	1	1	0	0.00
Sent 79880 Marco 128 1093 25 233 6 3 3 141 122 1011 21 199 3 2 1 0 0 0 0 0 0 0 0 0																			0.43 0.25
SEER 77869 Meso 354 308 46 253 11 13 -2 0.08 313 347 -34 187 10 10 0 0 0 0 0 0 0																			0.79 0.63
FSEEL 73888 Meso 41 40 1 0.16 2 0 2 2.00 45 56 .11 155 2 0 2 2 1 1 1 1 1 1 1 1	58ER	73669	Meso	354	308	46	2.53			-2	0.58	313	347	-34	1.87	10			0.00 1.15
SSEL 73887 Maco 114 133 .19 1.71 0 1 .1 1.41 113 138 .23 2.06 3 2 1 0 0 0 0 0 0 0 0 0	55EL	73684	Meso	41	40	1	0.16	2	0	2	2.00	45	56	-11	1.55	2	0	2	2.00
SIMPL 73890 Meso 663 623 40 1.88 20 18 2 0.46 667 672 .5 0.19 16 22 .6 1	55SL	73687	Meso	114	133	-19	1.71	0	1	-1	1.41	113	136	-23	2.06	3	2	1	1.38 0.63
SINIT 73862 Meso 249 216 33 216 2 3 -1 0.53 217 233 -16 1.07 2 5 -3 3 1.5																			3.00 1.38
Siele 73894 Moso				_															0.00 1.60
515 73696 Meso 2 0 2 2.00 0 0 0 0 0.00 2 0 2 2.00 0 0 0 0 0 0 0 0 0	51EL	73693	Meso	34	3	31	7.21	2	0	2	2.00	27	8	19	4.54	1	0	1	1.41
SINUT 73869 Meso 102 125 -23 2.66 6 8 -2 0.76 122 100 22 200 2 18 -16 5	51SL	73695	Meso	2	0	2	2.00	0	0	0	0.00	2	0	2	2.00	0	0	0	0.00
EASEL 73701 Meso 17 25 -8 175 4 3 1 0.53 16 17 -1 0.25 3 8 -5 2 SAET 73702 Meso 302 295 7 0.41 25 18 7 1.51 291 303 -12 0.70 19 27 -8 1 SANT 73703 Meso 244 288 -44 270 72 51 21 2.68 277 312 -35 204 76 31 45 6 54EL 73704 Meso 18 13 5 1.27 2 1 1 0.82 12 24 -12 283 1 4 -3 1 5 54ST 73706 Meso 34 39 -5 0.83 2 0.22 20 46 45 1 0.15 0 4 4 4 3 1 10 0.26 8 1 20	51NL	73697	Meso	102	125	-23	2.16	6	8	-2	0.76	122	100	22	2.09	2	18	-16	0.92 5.06
SANT 73703 Meso 244 288 -44 2.70 72 51 21 2.68 2.77 312 -35 2.04 76 31 45 6 54EL 73704 Meso 18 13 5 1.27 2 1 1 0.82 12 24 -12 283 1 4 -3 1 54ST 73706 Meso 33 388 -15 0.77 31 33 -2 0.05 313 310 3 0.17 33 33 30 0 0 54WT 73707 Meso 152 158 -6 0.48 6 9 -3 1.10 172 123 49 4.03 15 17 -2 0																			3.61 2.13
EAEL 73704 Meso 18 13 5 127 2 1 1 0.82 12 24 -12 2.83 1 4 -3 1 54WL 73705 Meso 34 39 -5 0.83 2 0 2 200 46 45 1 0.15 0 4 -4 2 54ER 73707 Meso 152 158 -6 0.48 6 9 -3 1.10 172 123 49 403 15 17 -2 0 54WT 73707 Meso 152 158 -6 0.48 6 9 -3 1.10 172 123 49 403 15 17 -2 0 54WT 73707 Meso 111 64 47 5.02 6 8 -2 0.76 97 78 19 2.03 6 9 -3 1 32WT 79337 Meso	54ET	73702	Meso	302	295	7	0.41		18	7	1.51	291	303	-12	0.70	19	27	-8	1.67 6.15
54ST 73706 Meso 373 388 -15 0.77 31 33 -2 0.35 313 310 3 0.17 33 33 0 0 54ER 73707 Meso 152 158 -6 0.48 6 9 -3 1.10 172 123 49 4.03 15 17 -2 0 54NT 73708 Meso 1299 1292 7 0.19 45 52 -7 1.01 1283 1324 -61 1.70 61 50 11 5MN 5MN 73708 Meso 111 64 47 502 6 8 -2 0.76 97 78 19 203 6 9 -3 1 12 12 11 64 47 502 6 8 -2 0.76 97 78 19 203 6 9 -3 1 12 12 12	54EL	73704	Meso	18	13	5	1.27	2	1	1	0.82	12	24	-12	2.83	1	4	-3	1.90
SAMT	54ST	73706	Meso	373	388	-15	0.77	31	33	-2	0.35	313	310	3	0.17	33	33	0	0.00
32WT 79337 Meso 514 549 -35 1.52 15 36 -21 4.16 506 545 -39 1.70 27 31 -4 0 32ET 78339 Meso 394 448 -54 263 24 24 0 0.00 447 437 10 0.48 23 30 -7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						7	0.19			-7	1.01			-61	1.70	61		11	0.50 1.48
12EL 79539 Meso 394 448 -54 263 24 24 0 0 000 447 437 10 0 0 48 23 30 -7 1 12NL 79573 Meso 296 163 133 8.78 0 0 0 0 0 000 284 171 113 7.49 0 1 -1 1 1 1 1 1 1 1																			1.10 0.74
12EL 79575 Meso 10 8 2 2.67 0 0 0 0 0.00 8 15 -7 2.06 0 1 -1 1 1 1 1 1 1 1	32ET	79339	Meso	394	448	-54	2.63	24	24	0	0.00	447	437	10	0.48	23	30	-7	1.36 1.41
12ST 79577 Meso 110 105 5 0.48 3 0 3 2.45 115 133 -18 1.62 0 3 -3 2 2.45 1.55	12EL	79575	Meso	10	8	2	0.67	0	0	0	0.00	8	15	-7	2.06	0	1	-1	1.41
BAWL BOOSE Meso 0 17 -17 5.83 0 0 0 0.00 0 35 -35 8.37 0 0 0 0 64ER 80099 Meso 18 14 4 1.00 1 2 -1 0.82 30 25 5 0.95 0 2 -2 2 2 64NT 80100 Meso 87 86 1 0.11 12 10 2 0.60 97 134 -37 3.44 10 13 -3 0 0 0 0 0 0 2 -2 2 2 8 4 10 11 2 0 60 97 134 -37 3.44 10 13 -3 0<	12ST	79577	Meso	110	105	5	0.48	3	0	3	2.45	115	133	-18	1.62	0	3	-3	1.41 2.45
B4ER 80099 Meso 18 14 4 1.00 1 2 -1 0.82 30 2.5 5 0.95 0 2 -2 2 2 B4NT 80100 Meso 87 86 1 0.11 12 10 2 0.60 97 134 -37 3.44 10 13 -3 0 B4WR 80101 Meso 105 87 18 1.84 4 1 3 1.90 107 98 9 0.89 1 4 -3 1 84SL 80103 Meso 43 23 20 3.48 13 17 -4 1.03 44 64 -20 2.72 8 3 5 2 84ET 80104 Meso 1358 1398 -40 1.08 123 115 8 0.73 1288 1245 43 1.21 112 120 -8 0 BANL 80105																			2.36 0.00
84WR 80101 Meso 105 87 18 1.84 4 1 3 1.90 107 98 9 0.89 1 4 -3 1 84SL 80103 Meso 43 23 20 3.48 13 17 -4 1.03 44 64 -20 2.72 8 3 5 2 84FL 80104 Meso 1358 1398 -40 1.08 123 115 8 0.73 1288 1245 43 1.21 112 120 -8 0 84NL 80105 Meso 5 12 -7 2.40 4 0 4 2.83 3 3 0 0.00 0 </td <td>84ER</td> <td>80099</td> <td>Meso</td> <td>18</td> <td>14</td> <td>4</td> <td>1.00</td> <td>1</td> <td>2</td> <td>-1</td> <td>0.82</td> <td>30</td> <td>25</td> <td>5</td> <td>0.95</td> <td>0</td> <td>2</td> <td>-2</td> <td>2.00 0.88</td>	84ER	80099	Meso	18	14	4	1.00	1	2	-1	0.82	30	25	5	0.95	0	2	-2	2.00 0.88
B4ET 80104 Meso 1358 1398 -40 108 123 115 8 0.73 1288 1245 43 1.21 112 120 -8 0 84NL 80106 Meso 5 12 -7 2.40 4 0 4 2.83 3 3 0 0.00 0 <td< td=""><td>84WR</td><td>80101</td><td>Meso</td><td>105</td><td>87</td><td>18</td><td>1.84</td><td>4</td><td>1</td><td>3</td><td>1.90</td><td>107</td><td>98</td><td>9</td><td>0.89</td><td>1</td><td>4</td><td>-3</td><td>1.90</td></td<>	84WR	80101	Meso	105	87	18	1.84	4	1	3	1.90	107	98	9	0.89	1	4	-3	1.90
84SR 80106 Meso 140 158 -18 1.47 5 4 1 0.47 104 99 5 0.50 6 3 3 1 84WT 80107 Meso 1422 1434 -12 0.32 94 127 -33 3.14 1007 941 66 2.11 116 89 27 2 59ER 80121 Meso 101 62 39 4.32 2 3 -1 0.63 81 104 -23 2.39 0 6 -6 -6 3 59ST 80122 Meso 161 134 27 2.22 5 6 -1 0.43 118 180 -62 5.08 6 4 2 0	84ET	80104	Meso	1358	1398	-40	1.08	123	115	8	0.73	1288	1245	43	1.21	112	120	-8	2.13 0.74
BAWIT B0107 Meso 1422 1434 -12 0.32 94 127 -33 3.14 1007 941 66 2.11 116 89 27 2 59ER 80121 Meso 101 62 39 4.32 2 3 -1 0.63 81 104 -23 2.39 0 6 -6 -3 59ST 80122 Meso 161 134 27 222 5 6 -1 0.43 118 180 -62 5.06 6 4 2 0																			0.00 1.41
59ST 80122 Meso 161 134 27 222 5 6 -1 0.43 118 180 -62 5.08 6 4 2 0	84WT	80107	Meso	1422	1434	-12	0.32	94	127		3.14	1007	941	66	2.11	116	89	27	2.67 3.46
	59ST	80122	Meso	161	134	27	2.22	5	6	-1	0.43	118	180	-62	5.08	6	4	2	0.89
59SR 80124 Meso 115 57 58 6.25 2 0 2 2.00 134 122 12 1.06 1 0 1 1	59SR	80124	Meso	115	57	58	6.25	2	0	2	2.00	134	122	12	1.06	1	0	1	0.49 1.41
																			0.26 2.00

Set 1	62WT	80256	Micro	1749	1873	-124	2.91	144	177	-33	2.60	1837	1897	-60	1.39	145	137	8	0.67
Series Bernell 1989 1889 1899 1899 1899 1899 1899 18	62SR 62ET																		
Column	62SL																		
1972 March Sant Person	62WR																		
132	33NR 33FT																		
1302 Sept. 1920 Sept. 1920 Sept. 1921 Sept. 1921 Sept. 1921 Sept. 1921 Sept. 1921 Sept. 1922 Sept.	33SL	80649	Meso	6	19	-13	3.68	7	0	7	3.74	4	8	-4	1.63	1	0	1	1.41
Section Sect	33ST 33WT																		
1982 19	33NL	80653	Meso	8		5	2.13	0	0			11	10	1		0	0	0	
Section Property	33NT																		
Section Property	2WL 2FR																		
Section Part Section Part Section Part	2ST	80663	Meso	351	309	42	2.31	7	19	-12	3.33	300	385	-85	4.59	9	9	0	0.00
See	2NR 2ET																		
Part	2SL					8		0			4.24								
Section Sect	2WT						1.77				3.00				1.25	103	84	19	1.96
Section Sect	2SR 2NT																		
Section Sect	2EL	80671	Meso	41	66	-25	3.42		2	-2		27	69	-42	6.06		1	-1	
Ref	60NL																		
Second S	60SR																		
March Marc	60NR	80705	Micro	91	59	32	3.70	1	2	-1	0.82	80	71	9	1.04	0	1	-1	1.41
REST																-			
Section Sect	60ST	80708	Micro	144	149	-5	0.41	0	2	-2	2.00	126	130	-4	0.35	0	2	-2	2.00
THE THE STATE OF T	60NT	80710	Micro	196	177	19	1.39	0	0	0	0.00	168	136	32	2.60	3	0	3	2.45
March Marc	74SR 74WT																		
229. 1	74WR	80750	Meso	69	56	13	1.64	0	8	-8	4.00	86	81	5	0.55	2	3	-1	0.63
NAME 1972 1980 1980 1981	74ET 21EL																		
Section Sect	21WR	82728	Meso	0	5	-5	3.16	0	0	0	0.00	0	17	-17	5.83	0	0	0	0.00
2005 1	21SL	82733	Meso	11	18	-7	1.84	1	0	1	1.41	6	33	-27		5	0	5	3.16
Section Sect	21ET 21NR																		
2007 2008 2009 2009 2019 10 10 2019	21ST	82736	Meso	162	134	28	2.30	6	6	0	0.00	143	164	-21	1.69	4	10	-6	2.27
SECT SECTION	21ER 21WL																		
SETTE Mary	69WT																		
SMATE MATERIAL MATERIAL MATERIAL	65ST	82760	Micro	261	193	68	4.51	5	2	3	1.60	231	183	48	3.34	6	2	4	2.00
September Sept																			
988ET 6776 More 198 33 -14 978 2 1 1 1 682 23 24 -1 921 2 1 1 1 988EST 6776 More 1990 999 1 50 181 998 990 18 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65EL	82763	Micro	32	33	-1				1	1.41	40	53	-13		7	0	7	3.74
SMSK	65SL																		
Separate	65ET 65NL																		
Test	65SR								2										
TYPE																			
Tright	65WT 77ST	82769		1826	1867	-41	0.95	125	162	-37	3.09	1945	1974	-29	0.66	138	128	10	0.87
	77ST 77ER	82769 82771 82772	Meso Meso	1826 167 60	1867 199 68	-41 -32 -8	0.95 2.37 1.00	125 11 0	162 13 3	-37 -2 -3	3.09 0.58 2.45	1945 181 60	1974 180 73	-29 1 -13	0.66 0.07 1.59	138 7 1	128 13 2	10 -6 -1	0.87 1.90 0.82
141 141 141 141 143 143 144 145	77ST 77ER 77WL 77NT	82769 82771 82772 82773 82774	Meso Meso Meso	1826 167 60 58 153	1867 199 68 62 153	-41 -32 -8 -4 0	0.95 2.37 1.00 0.52 0.00	125 11 0 3 6	162 13 3 5 19	-37 -2 -3 -2 -13	3.09 0.58 2.45 1.00 3.68	1945 181 60 62 153	1974 180 73 69 148	-29 1 -13 -7 5	0.66 0.07 1.59 0.86 0.41	138 7 1 2 10	128 13 2 6 14	10 -6 -1 -4 -4	0.87 1.90 0.82 2.00 1.15
TYPE	77ST 77ER 77WL	82769 82771 82772 82773 82774 82775	Meso Meso Meso Meso Meso	1826 167 60 58 153 16	1867 199 68 62 153	-41 -32 -8 -4 0	0.95 2.37 1.00 0.52 0.00 0.25	125 11 0 3 6 0	162 13 3 5 19 2	-37 -2 -3 -2 -13 -2	3.09 0.58 2.45 1.00 3.68 2.00	1945 181 60 62 153 34	1974 180 73 69 148 27	-29 1 -13 -7 5 7	0.66 0.07 1.59 0.86 0.41 1.27	138 7 1 2 10	128 13 2 6 14 0	10 -6 -1 -4 -4 0	0.87 1.90 0.82 2.00 1.15 0.00
775E. 8278 Meso	77ST 77ER 77WL 77NT 77EL 77WR 77NL	82769 82771 82772 82773 82774 82775 82776 82777	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13	1867 199 68 62 153 17 48	-41 -32 -8 -4 0 -1 -35	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03	125 11 0 3 6 0 1	162 13 3 5 19 2 2	-37 -2 -3 -2 -13 -2 -1 -7	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98	1945 181 60 62 153 34 14 78	1974 180 73 69 148 27 51	-29 1 -13 -7 5 7 -37	0.66 0.07 1.59 0.86 0.41 1.27 6.49	138 7 1 2 10 0 4 3	128 13 2 6 14 0 1 8	10 -6 -1 -4 -4 0 3 -5	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13
77ET 827E2 Marco 219 215 22 0.14 0 0 0 0 0.00 206 199 7 0.49 5 5 0 0.00 77ET 84211 Marco 47 28 19 3.10 0 2 2 2 20 38 46 -8 133 102 177 15 143 77SL 84211 Marco 47 28 19 3.10 0 2 -2 200 38 46 -8 123 0 3 3 -3 2.45 77SL 84211 Marco 1011 1845 -44 1.03 186 173 -15 177 1902 1693 200 43 198 196 156 42 3.16 77NL 84211 Marco 0 29 28 -19 442 0 0 0 0 0 0 0 0 0 77EL 84216 Marco 9 28 -19 442 0 0 0 0 0 0 0 0 0	77ST 77ER 77WL 77NT 77EL 77WR 77NL 77SR 77WT	82769 82771 82772 82773 82774 82775 82776 82777 82778 82778	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0	1867 199 68 62 153 17 48 124 0	-41 -32 -8 -4 0 -1 -35 -41 0 66	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28	125 11 0 3 6 0 1 1 2	162 13 3 5 19 2 2 9 0	-37 -2 -3 -2 -13 -2 -1 -7 0 6	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45	1945 181 60 62 153 34 14 78 0	1974 180 73 69 148 27 51 143 0	-29 1 -13 -7 5 7 -37 -65 0	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00	138 7 1 2 10 0 4 3 0 6	128 13 2 6 14 0 1 8 1 6	10 -6 -1 -4 -4 0 3 -5 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00
375IR 8421 More 9 7 28 19 310 0 2 -2 20 38 46 8 8 123 0 3 3 -3 245 377R 8421 More 9 20 28 1 1 0.09 1 1 1 0 0 000 28 41 -15 259 0 1 1 -1 141 377	77ST 77ER 77WL 77NT 77EL 77WR 77NL 77SR 77WT 77NR	82769 82771 82772 82773 82774 82775 82776 82777 82778 82779 82780	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438	1867 199 68 62 153 17 48 124 0 372 46	-41 -32 -8 -4 0 -1 -35 -41 0 66 -13	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07	125 11 0 3 6 0 1 2 0 9	162 13 3 5 19 2 2 9 0 3	-37 -2 -3 -2 -13 -2 -1 -7 0 6 -3	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90	1945 181 60 62 153 34 14 78 0 397 47	1974 180 73 69 148 27 51 143 0 372 66	-29 1 -13 -7 5 7 -37 -65 0 25 -19	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53	138 7 1 2 10 0 4 3 0 6 0	128 13 2 6 14 0 1 8 1 6 3	10 -6 -1 -4 -4 0 3 -5 -1 0	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45
STATE SALTS Merco 1801 1845 -44 1.03 158 173 -15 1.17 1902 1903 200 4.93 198 156 42 3.16	77ST 77ER 77WL 77NT 77EL 77NR 77NL 77NR 77NL 77NR 77NR 77NR 77SL 77SL 77ET	82769 82771 82772 82773 82774 82775 82776 82777 82778 82779 82780 82781	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213	1867 199 68 62 153 17 48 124 0 372 46 127 215	-41 -32 -8 -4 0 -1 -35 -41 0 66 -13 62 -2	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14	125 11 0 3 6 0 1 1 2 0 9 1 5	162 13 3 5 19 2 2 9 0 3 4 2	-37 -2 -3 -2 -13 -2 -1 -7 -0 6 -3 3 0	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00	1945 181 60 62 153 34 14 78 0 397 47 145 206	1974 180 73 69 148 27 51 143 0 372 66 115	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49	138 7 1 2 10 0 4 3 0 6 0 6 5	128 13 2 6 14 0 1 1 8 1 6 3 2	10 -6 -1 -4 0 3 -5 -1 0 -3 4	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00
37NL 88121 Micro 0 29 4.29 7.62 0 2 2 22 200 13 42 -29 5.53 0 2 2 -2 203 37EL 84216 Micro 9 28 -199 4.42 0 0 0 0 0 0 0 0 0 10 29 1.19 4.30 4 0 0 4 2.33 37NT 84126 Micro 80 93 1.13 1.40 1 0 0 1 1.141 84 79 5 0 0.55 0 0 0 0 0 0 0.03 37ST 84121 Micro 177 Micro 97 108 -111 1.09 5 3 2 1.10 1.07 108 11 0.10 2 2 2 0 0 0.00 37ST 84128 Micro 165 226 -611 4.38 1 2 1-1 0.82 156 184 -28 2.15 0 0 3 .3 .3 2.4 37ENL 84220 Meso 150 170 170 170 170 170 170 180 1 1 0 0 1 1 1.41 84 1 79 5 0 0.55 0 0 0 0 0 0.00 37ST 84128 Micro 165 226 -611 4.38 1 2 1-1 0.82 156 184 -28 2.15 0 0 3 .3 .3 2.4 37ENL 84220 Meso 170 170 170 170 170 170 170 170 170 170	77ST 77ER 77WL 77WL 77NL 77EL 77NR 77NL 77SR 77NT 77NR 77SR 77NT 73NR 77SL 77ET 37SL	82769 82771 82772 82773 82774 82775 82776 82777 82778 82780 82781 82782 82782 82781 82782 82781 82782 82781	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47	1867 199 68 62 153 17 48 124 0 372 46 127 215 1593 28	-41 -32 -8 -4 0 -1 -35 -41 0 66 -13 62 -174	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48	125 11 0 3 6 0 1 2 0 9 1 5 0	162 13 3 5 19 2 2 9 0 3 4 2 0	-37 -2 -3 -2 -13 -2 -1 -7 0 6 -3 3 0 4	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7 49	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35	138 7 1 2 10 0 4 3 0 6 0 6 5 102 0	128 13 2 6 14 0 1 8 1 6 3 2 5 117	10 -6 -1 -4 -4 0 3 -5 -1 0 -3 4 0 -15 -3	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00
37HV	77ST 77ER 77WL 77NT 77EL 77WR 77NL 77SR 77NR 77SR 77NR 77SL 77ET 37ET 37ET 37NR	82769 82771 82772 82773 82774 82775 82776 82776 82777 82778 82780 82781 82781 82782 82782 82782 82782 82782 82782 82782	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419	1867 199 68 62 153 17 48 124 0 372 46 127 215 1593 28 28	-41 -32 -8 -4 0 -1 -35 -41 -66 -13 -62 -2 -17 -19 1	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10	125 11 0 3 6 0 1 1 2 0 9 1 1 5 0 0	162 13 3 5 19 2 2 9 0 3 4 4 2 0 99 2	-37 -2 -3 -2 -13 -2 -1 -7 0 6 -3 -3 3 0 4 -2	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.40 0.00	1945 181 60 62 153 34 78 0 397 47 145 206 1351 38 26	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35	138 7 1 2 10 0 4 3 0 6 6 5 102 0	128 13 2 6 14 0 1 8 1 6 3 2 5 5 1 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1	10 -6 -1 -4 0 3 -5 -1 0 -3 4 0 -15 -3 -4	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41
37ML 84271 Marc 97 108 -11 109 5 3 2 100 107 106 1 0.10 2 2 0 0 0.00 37ST 84278 Marc 155 226 -61 4 38 1 2 -1 0.22 37ST 84271 Marc 155 226 -61 4 38 1 2 -1 0.22 37ST 84271 Marc 155 226 -61 1 5 0 2.87 176 184 -8 0.80 19 3 -3 -3 245 37ST 84271 Marc 155 150 141 9 0.75 6 1 1 5 0 2.87 176 184 -8 0.80 19 3 16 48.22 37ST 84271 Marc 155 226 -61 1 5 0 2.87 176 184 -8 0.80 19 3 16 48.22 37ST 84271 Marc 155 227 Marc 155 227 176 184 -8 0.80 19 3 16 48.22 38ST 84271 Marc 1780 34 15 19 3.84 0 0 0 0 0 0.00 33 9 24 524 0 1 1 -1 1 44 38ST 84274 Marc 1780 37 1.34 33 16 177 3.43 788 756 32 118 22 23 1 1 0.21 38WR 88661 Marc 169 21 48 7.16 0 3 3 -3 -3 2.45 78 30 48 653 0 2 2 -2 20 38WR 88661 Marc 102 165 -63 5.45 0 5 5 -5 3.16 124 181 -57 4.62 1 5 -4 231 38WL 88662 Marc 178 78 78 78 78 1.34 122 21 14 7 7 1.87 794 753 41 147 26 19 7 7 1.48 38WL 88663 Marc 1784 788 3-34 122 21 14 7 7 1.87 794 753 41 147 26 19 7 7 1.48 38WR 88664 Marc 166 51 15 196 19 18 1 10 2.2 10 10 5 2 6 6 6.26 22 3 19 5 33 38WR 88666 Marc 102 14 73 14 14 14 77 1.87 794 753 41 14 147 26 19 7 7 1.48 38WR 88666 Marc 102 14 73 14 15 196 19 18 11 10 2.74 355 40 45 19 7 1 14 11 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	77ST 77ER 77WL 77NT 77EL 77NT 77SR 77NT 77SR 77WT 77NR 77EL 37ET 37SL 37NR 37NL	82769 82771 82772 82773 82774 82775 82776 82777 82778 82777 82788 82781 82781 82781 824210 84211 84212 84213 84214	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0	1867 199 68 62 153 17 48 124 0 372 46 127 215 1593 28 28 28 28 29	-41 -32 -8 -8 -4 -0 -1 -355 -41 -0 -66 -13 -62 -2 -174 -19 -1 -44 -29	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 3.28 2.07 4.93 0.14 4.48 3.10 0.19	125 111 0 3 6 0 1 1 2 0 9 1 1 5 0 0 9 1 1 5 0 0 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0	162 13 3 5 19 2 2 9 0 3 4 4 2 0 99 2 1 173 2 2	-37 -2 -3 -2 -13 -2 -13 -2 -1 -7 -0 -3 -3 -3 -0 -4 -2 -1 -15 -2	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.11 1.77 2.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42	-29 1 1 -13 -7 5 7 -65 0 25 -19 30 7 49 -8 -15 209 -29	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53	138 7 1 2 10 0 4 3 0 6 0 6 5 102 0 0 198 0	128 13 2 6 14 0 11 8 1 6 3 2 5 5 117 3 1 156 2	10 -6 -1 -4 -4 0 3 -5 -1 0 -3 4 0 -15 -3 -1 4 2 -2	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41 3.16
Table	77ST 77ER 77WL 77WL 77NT 77EL 77WR 77NL 77SR 77WT 77NR 77SR 77SL 77ET 37ET 37SL 37NR 37WT	82769 82771 82772 82773 82774 82776 82776 82777 82778 82789 82781 82782 82782 8282 82421 84211 84212 84213	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9	1867 199 68 62 153 17 48 124 0 372 46 127 215 28 28 1845 29 28	-41 -32 -8 -4 0 -1 -35 -41 0 66 -13 62 -2 -174 19 1 -444 -29 -19	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42	125 11 0 0 3 6 0 1 1 2 0 9 1 5 0 103 0 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	162 13 3 5 19 2 2 9 0 3 3 4 2 0 9 9 9 2 1 1 1 7 1 7 1 9 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-37 -2 -3 -2 -13 -2 -13 -2 -1 -7 -0 -6 -3 -3 -3 -0 -15 -2 -0 -115 -2 -0	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.40 2.00 1.17 2.00 1.41	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29	-29 1 -13 -7 5 7 -65 7 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 2.59 4.93	138 7 1 2 10 0 4 3 0 6 0 6 5 102 0 0 6 5 102 0 4 4 3 0 6 0 6 4 4 4 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	128 13 2 6 14 0 11 8 1 6 3 2 5 117 3 1 156 2 0	10 -6 -1 -4 -4 0 3 3 -5 -1 0 -3 4 0 -15 -3 -1 4 2 4 4 4 4 4 4 4 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 2.00 1.43 2.45 2.00 2.45 2.00 2.45 2.00 2.45 2.00 2.45 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0
T2SL 84224 Meso 34 15 19 3.84 0 0 0 0 0 0 0 33 9 24 5.24 0 1 -1 1.41	775T 77ER 77FR 77FR 77WL 77NT 77EL 77NNL 77SR 77NL 77SS 77WT 75SL 77FET 37FL 37FL 37NL 37NL 37NL 37NL 37NL 37NL	82769 82771 82772 82773 82774 82775 82776 82776 82779 82780 82780 82781 82782 84210 84211 84212 84214 84215 84216 84216	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 29 1801 0 9	1867 199 68 62 153 17 48 124 0 372 46 127 215 28 28 28 28 29 29 3	-41 -32 -8 -8 -4 0 -1 -35 -41 0 66 -13 62 -2 -174 19 1 -44 -29 -19 -13 -11	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09	125 11 0 3 6 0 0 1 1 2 0 9 1 5 0 0 1 0 0 1 1 2 0 0 0 1 0 0 0 0 0 0 0 0	162 13 3 5 19 2 2 2 9 0 3 4 4 2 0 9 9 2 1 1 173 2 0 9 9 2 0 0 9 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 3 0 4 -2 0 -15 -2 0 1 1 2	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 41 42 29 79 106	-29 1 1-13 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 -29 -19 5 1	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.53 2.63 0.49 1.35	138 7 1 2 10 0 4 3 0 6 0 6 5 102 0 0 4 3 0 6 0 6 0 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	128 13 2 6 14 0 11 8 11 6 3 2 5 1117 3 1 156 2 0 0 2	10 -6 -1 -4 -4 -0 0 3 -5 -1 0 -3 -4 0 -1 -1 -4 0 -3 -1 -1 -1 -2 -4 0 0 0	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41 1.41 2.00 2.45 1.41 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Secondary Seco	775T 77ER 77WL 77WL 77WT 77EL 77WR 77NL 77SR 77WT 77NR 77SL 37EL 37EL 37KL 37KL 37KL 37KL 37KL 37KL 37KL 37K	82769 82771 82772 82773 82773 82774 82775 82776 82778 82779 82780 82781 82782 84211 84211 84214 84215 84216 84217 84218	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 29 1801 0 9 9 165 165 165 165	1867 199 68 62 153 17 48 124 0 372 246 127 215 1593 28 28 28 29 28 29 28 108 29 2108 2108 2108 2108 2108 2108 2108 2108	-41 -32 -8 -4 -4 -0 -1 -355 -411 -0 -66 -13 -62 -2 -174 -44 -29 -19 -11 -61 -9	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.40 4.42 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	125 11 0 0 3 6 0 1 1 2 0 9 1 5 0 11 5 0 0 1 15 1 158 0 0 1 1 5 1 6	162 13 3 5 5 19 2 2 9 0 3 4 4 2 0 99 2 1 173 2 0 0 3 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 -3 -3 -0 -115 -2 0 1 2 -15 -2 -15 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 1351 1902 13 10 84 107 156 176	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19 5 1 -28 -8 -8	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 0.10 0.10	138 7 1 2 10 0 4 3 0 6 0 0 6 5 102 0 0 4 3 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	128 13 2 6 14 0 11 8 11 6 3 2 5 1117 3 1 156 2 0 0 2 3 3	10 -6 -1 -4 -4 -0 0 3 -5 -1 0 -15 -3 -1 4 0 0 -15 -3 -1 -1 -15 -3 -1 -1 -15 -3 -1 -1 -15 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.115 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41 2.00 2.83 0.00 0.00 0.00
38WR 8866 Meso 77 28 -21 502 0 4 4 -4 283 44 55 -11 1.56 0 3 3 -3 2.45 38WL 8866 Meso 754 788 -34 122 21 14 7 7 1.67 794 753 41 1.47 26 19 7 1.48 38SL 8864 Meso 66 51 15 196 19 18 1 0.23 108 52 56 6.26 22 3 19 5.37 38WR 8866 Meso 404 473 -69 330 29 16 13 2.74 355 402 4.7 2.42 19 16 3 0.3 3.43 38WR 8866 Meso 404 473 -69 330 29 16 13 2.74 460 451 9 0.42 37 19 18 3.40 38WR 8866 Meso 209 204 5 0.35 8 9 -1 0.34 210 204 6 0.42 5 6 -1 0.43 40NT 88670 Meso 649 671 -22 0.86 50 40 10 1.49 631 685 Meso 28 28 26 2 0.38 7 1 6 8 300 37 46 9 1.40 4 0 4 0 4 2.83 88WT 92165 Meso 409 460 32 147 80 78 22 52 58 40 140 4 0 4 0 4 2.83 88WT 92165 Meso 92 29 46 10 0.33 118 148 -30 28 0.50 1122 1181 -59 1.74 126 124 2 0.18 88SR 92169 Meso 92 29 46 0.32 147 80 78 22 0.23 584 531 53 22 48 6 86 0 0 0.00 68WT 92165 Meso 92 10 0.50 10 0.03 118 148 -30 2.60 1122 1181 -59 1.74 126 124 2 0.18 88SR 92169 Meso 732 807 7.75 2.70 49 49 0 0 0.00 603 562 41 1.70 57 57 0 0.00 68WL 92160 Meso 930 783 147 5.02 62 74 -12 1.88 28 28 24 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 4 0.78 116 2.0 6 0.4 5 0.5 5 0.3	775T 77ER 77WL 77MT 77WL 77NL 77NR 77NR 77NR 77SL 77SE 37EL 37EL 37SL 37NL 37NL 37NL 37NL 37NL 37NL 37NL 37N	82769 82771 82772 82773 82774 82775 82776 82776 82777 82778 82781 82781 82781 82781 82781 82782 84210 84211 84212 84213 84214 84215 84216 84217 84218 84218	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 29 1801 0 9 80 97 165 150 750	1867 199 68 68 62 153 17 48 124 0 372 46 127 215 1593 28 28 28 1845 29 28 3 108 226	-41 -32 -8 -8 -4 0 -1 -35 -41 0 66 -13 62 -2 -174 19 1 -44 -29 -19 -11 -61 9 50	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86	125 11 0 3 6 0 1 1 2 0 9 1 5 0 1 15 0 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 6 1 5 1 1 5 1 6 1 1 5 1 1 6 1 1 5 1 1 1 1	162 13 3 5 19 2 2 2 9 0 3 4 4 2 0 9 9 2 1 173 2 0 0 3 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 3 0 4 -2 0 -15 -2 0 1 1 2 -1 1 2 -1 5 2	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.11 1.00 0.00 0.00 1.00 0.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 10 84 107 156 645	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 42 29 79 106 184 184 810	-29 1 1-13 -17 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 209 -19 5 1 -28 -8 -165	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0	138 7 1 2 10 0 4 3 0 6 0 6 5 102 0 0 198 0 0 198 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17	10 -6 -1 -4 -4 -0 3 -5 -1 0 0 -15 -3 -1 0 -15 -3 -1 -1 -2 -2 -2 -1 -1 -3 -3 -1 -5 -3 -1 -5 -5 -5 -5 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41 3.16 2.00 2.83 0.00 2.45 4.62 1.41 2.45 1.41 3.16 4.45 1.41 4.45 1.45 1.45 1.45 1.45 1.45
38WL 88663 Meso 754 788 -34 122 21 14 7 167 794 753 41 147 26 19 7 148 3681 88664 Meso 66 51 15 1.96 19 18 1 0.23 108 52 56 6.26 22 3 19 7 148 3681 88664 Meso 404 473 -69 3.30 29 16 13 2.74 355 402 47 242 19 16 3 0.72 38WR 88667 Meso 404 473 -69 3.30 29 16 13 2.74 355 402 47 242 19 16 3 0.72 38WR 88667 Meso 467 521 -54 243 49 32 17 267 460 451 9 0.42 37 19 18 3.40 38W1 88668 Meso 2.99 204 5 0.35 8 9 -1 0.34 210 204 6 0.42 5 6 6 -1 0.43 40NT 88670 Meso 649 671 -22 0.86 50 40 10 149 631 585 46 18.7 38 23 15 2.72 40NL 88670 Meso 649 671 -22 0.86 50 40 10 149 631 585 46 18.7 38 23 15 2.72 40NL 88670 Meso 28 26 2 0.38 7 1 6 3.00 37 46 -9 140 4 0 4 2.83 88WT 92158 Mero 492 460 32 1.47 80 78 2 0.23 584 531 53 2.24 86 86 0 0.00 88WT 92158 Mero 1026 1025 1 0.03 118 148 -30 2.00 1122 1181 59 174 126 124 2 0.18 88FR 92159 Mero 732 807 -75 2.70 49 49 0 0 0.00 603 562 41 170 57 57 57 0 0.00 88WL 92160 Mero 24 19 5 1.08 1 2 -1 0.82 28 24 4 0.78 1 4 -3 1.00 88WR 92161 Mero 930 783 147 5.02 62 74 -12 146 894 778 116 4.01 62 59 3 0.39 88WT 92163 Mero 1492 343 -1 0.05 39 35 4 0.66 340 362 -22 117 35 30 5 5 .88 88WT 92163 Mero 164 124 40 3.33 2 7 7 -5 2.36 174 159 150 150 16 2 1 1 0.05 39 35 4 0.66 340 362 -22 117 35 30 5 5 .88 88WT 92163 Mero 164 124 40 3.33 2 7 7 -5 2.86 174 116 4.01 62 59 3 0.39 88WL 92163 Mero 164 124 40 3.33 2 7 7 -5 5 2.36 174 159 150 150 140 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	775T 77ER 77FER 77FER 77FUR 77FUR 77FUR 77FUR 77FUR 77FUR 77FSL 77ET 37ET 37ET 37FT 37FT 37FUT 72FUT 72SL 72SL	82769 82771 82772 82773 82774 82776 82776 82778 82779 82780 8288 82781 84211 84211 84214 84214 84215 84216 84217 84218 84212 84213	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 97 165 150 750 34 34 37 38 37 38 38 38 38 38 38 38 38 38 38	1867 199 68 62 153 17 48 124 0 372 215 1593 28 28 28 1845 29 28 108 226 141 700	-41 -32 -8 -4 0 -1 -355 -41 0 66 -13 -62 -2 -174 -19 -14 -44 -29 -19 -11 -61 9 -50 -37	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	125 111 0 0 3 6 0 0 1 1 2 0 9 1 1 5 0 0 1 1 5 0 0 1 1 5 0 0 1 1 5 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 0 9 9 2 1 173 2 0 0 3 2 1 13 0 16	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 -3 -3 0 4 -2 0 115 -2 0 1 2 -115 -2 0 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.00 0.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 131 10 84 107 156 176 645 33 33 38 26 39 39 39 40 40 40 40 40 40 40 40 40 40	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 42 29 106 184 184 810 9 756	-29 1 -13 -17 5 7 -7 -5 0 -25 -19 30 7 49 -8 -15 -209 -19 5 1 -28 -165 -8 -165 -8 -165 -8 -165 -8 -165 -8 -165 -8 -165 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -165 -8 -8 -8 -165	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 0.60 6.12	138 7 1 2 10 0 4 3 0 6 0 0 6 5 102 0 0 4 3 0 6 0 0 6 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 2 3 3 17 17 1 23	10 -6 -1 -4 -4 -9 -0 -3 -5 -1 -1 -1 -4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.45 1.41 3.16 2.00 0.00 0.00 0.00 1.43 2.45 1.41 2.00 2.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
38SL 88664 Meso 66 51 15 196 19 18 1 023 108 52 56 6.26 22 3 19 537 36NR 88665 Meso 404 473 -69 330 29 16 13 274 355 402 -47 242 19 16 3 0.72 38NR 88667 Meso 467 521 -54 243 49 32 17 267 460 451 9 0.42 37 19 18 3.4 40NT 88668 Meso 209 204 5 0.35 8 9 -1 0.34 210 204 6 0.42 5 6 -1 0.43 40NT 88668 Meso 28 26 2 0.86 50 40 10 1.49 631 585 46 1.87 38 23 15 2.72 40NL 88676 Meso 28 26 2 0.38 7 1 6 3.00 37 46 -9 14.0 4 0 0 4 2.88 68ET 92156 Micro 492 460 32 14.7 80 78 2 0.23 584 531 53 2.24 86 86 0 0.00 68SNR 92158 Micro 1026 1025 1 0.03 118 148 -30 2.60 1122 1181 -59 1.74 126 124 2 0.18 68SR 92159 Micro 732 807 -75 270 49 49 0 0.00 603 562 41 17.0 57 57 0 0.00 68NL 92160 Micro 24 19 5 1.08 1 2 -1 0.82 28 24 4 0.78 1 4 -3 190 68BL 92161 Micro 300 783 147 50.2 62 74 -12 146 894 778 116 401 62 59 3 0.98 68BL 92162 Micro 342 343 -1 0.05 39 35 4 0.66 340 362 -22 1.17 35 30 5 0.88 68ST 92163 Micro 342 343 -1 0.05 39 35 4 0.66 340 362 -22 1.17 35 30 5 0.88 68BL 92163 Micro 1040 Micro 1040 Micro 105 15 1.0 0.05 119 157 -38 324 197 1363 134 3.54 114 129 -15 136 68BL 92162 Micro 1040 Micro 105 -1 1 0.05 119 157 -38 32 3 1497 1363 134 3.54 114 129 -15 136 68BT 104065 Micro 1136 1197 -61 179 79 86 -7 0.77 1124 1039 85 258 90 86 4 0.43 68BT 104064 Micro 1040 Micro 105 -1 1 0.00 15 25 -1 10 224 97 123 -26 224 13 22 -9 215 68BT 104065 Meso 104 105 -1 1 0.00 15 25 -1 10 224 97 123 -26 224 13 22 -9 215 68BT 104068 Meso 21 36 149 30 3.75 14 5 9 2.92 65 49 16 2.12 10 1 1 1 0 0 0.00 68BL 104068 Meso 22 1 36 -15 281 0 1 1 -1 141 127 126 1 1 0.09 8 1 1 7 3.30 68BT 104068 Meso 29 21 116 -24 2.35 0 1 1 -1 141 127 126 1 0.09 8 1 1 7 3.30 68BT 104068 Meso 29 21 116 -24 2.35 0 1 1 -1 141 127 126 1 1 0.09 8 1 1 7 3.30	775T 77ER 77WL 77WL 77WT 77FL 77WR 77NL 77SR 77WT 77NR 77SL 37EL 37EL 37KL 37KL 37ML 37KL 37WL 37WL 37WL 37WL 37WL 37WL 37WL 37W	82769 82771 82772 82773 82774 82775 82776 82776 82779 82780 82781 82781 82781 824211 84211 84212 84213 84214 84215 84216 84216 84216 84216 84216 84216 84216 84216 84216 84216 84216 84216 84218	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 97 165 155 155 155 167 189 189 189 189 189 189 189 189	1867 199 68 68 62 153 17 48 124 0 372 215 1593 28 1845 29 28 1845 29 108 206 141 700 15 741 21 165	-41 -32 -8 -8 -4 0 -1 -355 -41 0 66 -13 62 -2 -174 19 -13 -41 -44 -29 -19 -13 -11 -61 -9 -50 -9 -37 -48 -63	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16	125 11 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 1 1 5 1 6 15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	162 13 3 5 19 2 2 9 0 3 4 2 2 0 99 2 1 173 2 0 0 3 1 173 2 0 0 16 3 5 5	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 -3 0 4 -2 0 -15 -2 0 1 2 -1 5 -2 0 1 7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 0.00 0.40 2.00 0.40 2.00 0.40 2.00 0.40 2.00 0.40 2.00 0.82 2.98 0.00 1.60 0.00 0.82 2.98 0.00 1.60 0.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 181 1902 13 10 84 107 176 645 176 645 178 178 178 178 179 170 170 170 170 170 170 170 170	1974 180 73 69 148 27 51 143 0 372 66 66 115 199 1302 46 41 1693 42 29 79 106 184 810 9 756 337 348 348 348 348 348 348 348 348	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19 5 1 -28 -8 -8 -165 -24 -32 -44 -57	0.66 0.07 1.59 0.86 0.41 1.27 6.49 0.00 1.27 2.53 2.63 0.49 1.35 2.59 1.35 1.23 2.59 4.93 5.53 0.05 5.00 0.00 0.00 0.00 0.00 0.0	138 7 1 1 2 10 0 4 3 3 0 6 5 102 0 0 198 0 0 1199 12 0 12 0 1	128 13 2 6 14 0 11 8 11 6 3 2 5 5 1117 3 1 156 2 0 0 2 3 3 17 1 23 2 5 5	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -0 -15 -3 -1 -1 -2 -4 -1 -1 -1 -2 -4	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 2.45 1.43 1.41 2.00 2.83 0.00 0.00 0.00 0.00 2.13 2.45 1.41 2.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1
38WR 88667 Meso 467 621 -54 2.43 49 32 17 2.67 460 451 9 0.42 37 19 18 3.40 38NT 68668 Meso 209 204 5 0.35 8 9 -1 0.34 210 204 6 0.42 5 6 -1 0.43 40NT 88670 Meso 649 671 -22 0.86 50 40 10 1.49 631 585 46 187 38 23 15 2.72 40NL 88676 Meso 28 28 26 2 0.38 7 1 6 3.00 37 46 -9 14.0 4 0 4 2.33 40NT 88676 Meso 28 28 26 2 0.38 7 1 6 3.00 37 46 -9 14.0 4 0 4 2.33 40NT 92158 Mero 1026 1025 1 0.03 118 148 -30 260 1122 1181 -59 174 126 124 2 0.18 8858 885W 92159 Mero 1026 1025 1 0.03 118 148 -30 260 1122 1181 -59 1.74 126 124 2 0.18 885W 92159 Mero 732 807 -75 2.70 49 49 49 0 0 0.00 603 562 41 17.0 57 57 0 0 0.00 68WL 92160 Mero 930 783 147 502 62 74 -12 146 894 778 116 4.01 62 59 3 0.39 88EL 92162 Mero 342 343 -1 0.05 39 35 4 0.66 340 362 -22 11.7 35 30 5 0.88 68WL 92163 Mero 180 165 15 1.14 7 3 4 0.05 39 180 165 191 146 88 7 1 1.06 180 165 15 1.14 7 3 4 0.06 340 362 -22 11.7 35 30 5 0.88 68WL 92163 Mero 180 165 15 1.14 7 3 4 1.79 180 161 19 146 8 7 1 1.06 17 1.	775T 77ER 77WL 77WL 77WL 77WL 77NL 77SR 77SR 77SR 77SL 37EI 37EI 37EL 37SL 37NR 37SL 37NR 37WL 37SL 37NL 37WL 37WL 37WL 37WL 37WL 37WL 37WL 37W	82769 82771 82772 82773 82774 82776 82776 82777 82778 82779 82780 82780 8284210 84211 84212 84214 84215 84214 84214 84214 84215 84216 84214 84218 84218 84218 84218 84218	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 9 80 97 165 155 150 167 175 175 175 175 175 175 175 17	1867 199 68 62 153 17 48 124 0 372 215 1593 28 28 28 29 28 108 226 141 700 15 741 21 21	-411 -322 -8 -4 0 -1 -355 -411 0 -66 -13 -62 -2 -2 -174 -44 -29 -19 -11 -61 -9 -50 -9 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 3.84 3.85 5.02	125 11 0 0 3 6 0 1 1 2 0 9 1 1 5 0 1 103 0 1 158 0 1 158 0 0 1 159 159 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	162 13 3 5 19 2 2 9 0 3 4 4 2 0 9 9 2 1 173 2 0 0 3 4 173 2 0 0 173 173 173 173 173 173 173 173	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 -3 -3 0 4 -2 0 115 -2 0 1 2 -115 -2 0 117 -3 -3 -5 -4	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.53 1.00 0.00	1945 181 60 62 153 34 14 78 0 397 47 47 47 47 145 206 1351 130 100 84 107 156 645 33 788 78 78 78 78 78 78 78 78 7	1974 180 73 69 148 27 51 143 0 372 66 61 15 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 181 184 185 185 186 186 186 186 186 186 186 186	-29 1 -13 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 209 -19 5 1 -28 -165 24 48 -57 -111	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.10 6.12 5.12 6.13 6.14 6.15 6.16 6.16 6.16 6.17 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18	138 7 1 1 2 10 0 4 3 0 6 5 5 102 0 0 4 4 0 198 0 198 0 2 0 19 12 0 0 19 12 0 0 10 10 10 10 10 10 10 10 10 10 10 10	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 17 17 1 23 2 5 3 3	10 -6 -1 -4 -4 -9 -0 -3 -5 -1 -1 -1 -4 -0 -3 -15 -3 -1 -1 -2 -4 -0 -3 -16 -5 -1 -1 -2 -4 -3	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.45 1.41 3.16 2.00 2.83 0.00 0.00 0.00 1.43 2.45 1.41 2.00 2.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1
40NT 88670 Meso 649 671 -22 0.86 50 40 110 1.49 631 585 46 1.87 38 23 15 2.72 40NL 88676 Meso 28 28 26 2 0.38 7 1 6 3.00 37 46 -9 1140 4 0 4 2.68 86ET 92156 Mero 492 460 32 1147 80 78 2 0.23 584 531 53 2.24 86 86 0 0.00 88WT 92158 Mero 1026 1025 1 0.03 118 148 -30 2.60 1122 1181 -59 1.74 126 124 2 0.18 885R 92159 Mero 732 807 -75 2.70 49 49 0 0.00 603 562 41 1.70 57 57 0 0.00 88WT 92160 Mero 24 19 5 1.08 1 2 -1 0.82 28 24 4 0.78 1 4 -3 150 88WR 92161 Mero 930 783 147 5.02 62 74 -12 146 894 778 116 4.01 62 59 3 0.39 88WL 92162 Mero 342 343 -1 0.05 39 35 4 0.06 340 362 -22 1.17 35 30 5 5 0.88 88WL 92163 Mero 164 124 40 3.33 2 7 -5 5 2.56 174 159 15 1.16 2 6 -4 2.00 88WT 92164 Mero 1372 1466 -94 2.50 119 157 -38 32 31 497 1363 134 3.54 114 129 -15 136 81FT 104065 Mero 1372 1466 -94 2.50 119 157 -38 32 31 437 1363 134 3.54 114 129 -15 136 81FT 104065 Mero 1372 1466 -94 2.50 119 157 -38 323 1497 1363 134 3.54 114 129 -15 136 105T 104081 Mero 14081 Mero 14088 Mero 14081 Mero 14081 Mero 14088 Mero 1508	775T 77ER 77WL 77WL 77WL 77WL 77WL 77WR 77WL 77SR 77WI 77NR 77SL 37EL 37EL 37KL 37KL 37KL 37KL 37KL 37KL 37KL 37K	82769 82771 82772 82773 82773 82776 82776 82776 82778 82781 82781 82781 82781 84211 84212 84213 84214 84215 84216 84217 84218 84220 84220 84220 84220 84221 84220 84221 84223 84224 88660	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 97 165 150 750 750 69 102 7 7 756 66	1867 199 68 68 62 153 17 48 124 0 372 215 28 28 28 1845 29 29 108 226 141 700 15 741 21 26 788	-41 -32 -8 -4 0 -1 -355 -41 0 66 -13 -62 -2 -174 -19 1 -444 -29 -19 -13 -11 -61 -9 -50 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.45 5.02 1.22	125 11 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 11 5 0 11 5 1 6 15 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 0 99 2 1 1773 2 0 0 3 2 1 13 0 16 3 5 4 14 18	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 -7 0 -6 -3 -3 -3 0 -4 -2 0 115 -2 0 1 2 -115 -2 0 17 -3 -5 -4 7 1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.67 0.53 0.00 3.68 3.78	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 176 645 33 788 78 78 87 79 44 44 794 108	1974 180 73 69 148 27 51 143 0 372 66 61 15 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 115 199 184 185 185 185 185 185 185 185 185	-29 1 -13 -13 -7 5 7 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19 5 1 28 -8 -165 -8 -8 -165 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 1.56	138 7 1 1 2 10 0 4 3 0 6 5 102 0 0 198 0 199 12 0 12 0 12 0 12 0 12 0 12 0 12	128 13 2 6 6 14 0 1 18 1 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 2 5 5 3 19 3	10 -6 -1 -1 -4 -4 -0 0 -3 -5 -1 0 -15 -3 -1 -1 -2 -4 -3 -16 -5 -1 -1 -1 -2 -4 -3 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.115 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 3.16 2.00 0.00 0.00 1.43 2.45 1.41 3.16 2.00 0.00 0.00 1.43 2.45 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1
40NL 88676 Meso 28 28 26 2 0.38 7 1 6 300 37 46 -9 1.40 4 0 4 2.33 68ET 92156 Mero 492 460 32 1.47 80 78 2 0.23 584 531 53 2.24 86 86 0 0.000 88WT 92158 Mero 1026 1025 1 0.003 1118 148 -30 2.60 1122 1181 .59 1.74 126 1124 2 0.18 8SSR 92159 Mero 732 807 -75 2.70 49 49 49 0 0.000 603 562 41 1.70 57 57 0 0.000 88WL 92160 Mero 930 783 147 502 62 74 -12 146 894 778 116 4.01 62 59 3 0.39 88EL 92161 Mero 930 783 147 502 62 74 -12 146 894 778 116 4.01 62 59 3 0.39 88EL 92162 Mero 342 343 -11 0.05 39 35 4 0.66 340 362 -22 1.17 35 30 5 0.88 68WL 92163 Mero 180 165 15 1.14 7 3 4 1.79 180 161 19 146 8 7 1 1.05 15 1.88 11 1 0.000 88WT 10404 Mero 180 165 15 1.14 7 3 4 1.79 180 161 19 146 8 7 1 1.05 138 11WT 104064 Mero 180 165 15 1.14 7 3 4 1.79 180 161 19 146 8 7 1 1.35 130 15 1.36 11WT 104064 Mero 11372 1466 .94 2.50 119 157 -38 323 1497 1363 134 3.54 114 129 .15 1.36 105KL 104081 Meso 146 149 -3 0.25 2 3 -1 0.63 138 127 11 0.96 7 5 2 0.82 105KL 104082 Meso 104 105 -1 0.00 15 25 -10 2.24 97 123 -26 2.48 13 22 -9 2.15 105KL 104084 Meso 21 36 -15 2.81 0 1 1 -1 1.41 22 33 -11 0.000 8 10 10 10 10 10 10 10 10 10 10 10 10 10	775T 77ER 77WL 77WL 77WT 77KL 77WL 77NL 77SR 77SL 77SR 77SL 37EI 37EI 37EI 37EI 37MI 37WL 37WL 37WL 37WL 37WL 36WR 36ST 36WR 36SUR 36NR	82769 82771 82772 82773 82773 82776 82776 82777 82786 82777 82781 82781 82781 82781 84211 84211 84212 84213 84214 84215 84216 84217 84218 84220 84220 84223 84224 84228 84228 84228 84228 88660 88661 886665 886665	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 165 150 34 778 69 102 7 754 66 404 404 404	1867 199 68 68 62 153 17 48 124 0 372 215 46 127 215 28 28 1845 29 28 108 27 20 15 165 28 165 28 165 29 28 28 165 29 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 30	-41 -32 -8 -8 -4 0 -1 -355 -41 0 66 -13 -62 -2 -174 -19 -1 -44 -29 -19 -13 -11 -61 -9 -50 -63 -21 -54 -63 -21 -54 -64	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.45 5.02 1.22 1.96 3.30	125 11 0 3 6 0 1 1 2 0 9 1 1 5 0 1033 0 1 158 0 1 1 5 1 6 115 0 0 2 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 9 1 1 9	162 13 3 5 19 2 2 9 0 3 4 2 0 99 2 1 173 2 0 0 3 3 4 173 2 0 0 3 19 19 10 10 10 10 10 10 10 10 10 10	-37 -2 -3 -3 -2 -13 -2 -11 -7 -0 -6 -3 -3 -3 -0 -15 -2 -0 -115 -2 -0 -115 -2 -0 -17 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 0.00 1.60 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.41 1.00 3.68 2.67 3.68	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 450 176 645 78 8 124 44 794 108 355	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 184 184 810 9 756 30 181 55 55 55 56 56 56 67 68 68 68 68 68 68 68 68 68 68	-29 1 -13 -7 5 7 -7 -5 7 -85 -0 25 -19 -30 7 49 -8 -15 -209 -29 -19 -5 1 -28 -8 -165 -24 -32 -48 -57 -111 -41 -56 -47 -9	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 1.47 6.26 2.42	138 7 1 1 2 100 0 4 4 3 3 0 6 6 5 102 0 198 0 198 0 192 1 1 0 2 2 1 1 0 2 2 2 1 9 3 7	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 25 5 3 19 3 16 19	10 -6 -1 -1 -4 -0 -3 -5 -1 0 -3 -4 -4 -4 -4 -0 -3 -15 -3 -1 -1 -1 -2 -4 -3 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 3.16 2.00 2.45 4.82 1.31 1.41 0.00 0.00 0.00 1.43 2.45 1.41 2.45 1.41 2.83 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.4
68WT 92158 Micro 1026 1025 1 0.03 118 148 -30 2.60 1122 1181 -59 1.74 126 124 2 0.18 68SR 92159 Micro 732 807 -75 2.70 49 49 0 0.00 603 562 41 1.70 57 57 0 0.00 68WL 92160 Micro 24 19 5 1.08 1 2 -1 0.82 28 24 4 0.78 1 4 -3 1.90 68WR 92161 Micro 930 783 147 5.02 62 74 -12 1.46 894 778 116 4.01 62 59 3 0.39 68EL 92163 Micro 164 124 40 333 2 7 -5 2.96 174 159 115 1.16 2.4 2.00 88 88YT 92164	775T 77ER 77FER 77FER 77FWL 77NIL 77SR 77SR 77SR 77SR 77SI 37EI 37EI 37EI 37EI 37FI 37NI 37NI 37NI 37NI 37NI 37NI 37NI 37N	82769 82771 82772 82773 82774 82775 82776 82777 82778 82779 82780 82781 84211 84211 84212 84213 84214 84215 84216 84216 84216 84216 84216 84216 84216 84216 84218 84220 8428 88660 88666 88666	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 189 213 1419 47 29 1801 0 9 7 7 754 66 69 404 467 209	1867 199 68 68 62 153 17 48 124 0 372 215 1593 28 1845 29 28 1845 29 28 108 226 141 700 15 741 21 21 28 788 788	-41 -32 -8 -4 0 -1 -35 -41 0 -66 -13 -62 -2 -2 -174 -19 1 -44 -29 -19 -13 -11 -61 -61 -9 -50 -63 -63 -63 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.02 1.22 1.20 1.96 3.30 2.43 0.35	125 11 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 158 0 0 0 0 1 1 1 1 6 15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 0 9 9 1773 2 0 0 3 14 13 0 16 3 5 4 14 18 16 32 9	-37 -2 -3 -3 -2 -13 -2 -13 -2 -1 -7 0 -6 -3 -3 -3 -0 -4 -2 0 -115 -2 0 -115 -2 0 -17 -3 -5 -4 -7 -1 -3 -5 -4 -7 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.40	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 176 645 33 788 78 124 44 794 108 3555 460 210	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 184 810 9 756 30 185 185 185 185 185 185 185 185	-29 1 -13 -17 -7 -5 7 -65 0 -25 -19 30 7 -49 -8 -15 -209 -29 -19 -5 1 -28 -8 -165 -24 -32 -48 -57 -111 -41 -47 -9 -6 -6 -6 -6	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 6.10 6.12 5.24 1.15 6.53 4.62 1.56 1.47 6.26 2.42 0.42	138 7 1 1 2 10 0 4 3 3 0 6 5 102 0 198 0 0 199 12 0 0 19 12 0 0 19 12 0 0 19 12 0 10 15 15 15 15 15 15 15 15 15 15 15 15 15	128 13 2 6 14 0 11 18 8 1 16 6 3 2 5 117 3 1 156 2 0 0 2 3 3 17 1 23 2 5 3 19 6	10 -6 -1 -1 -4 -4 -0 0 3 -5 -1 0 -15 -3 -1 -15 -3 -1 -1 -2 -4 -3 -7 -19 -3 -19 -3 -11 -1 -2 -4 -3 -7 -19 -3 -11 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 2.00 2.83 0.00 0.00 2.45 1.41 2.00 2.83 1.41 2.00 2.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1
68SR 92159 Micro 732 807 -75 2.70 49 49 0 0.00 603 562 41 1.70 57 57 0 0.00 68NL 92169 Micro 24 19 5 1.08 1 2 -1 0.82 28 24 4 0.78 1 4 -3 1.90 68WL 92161 Micro 342 343 -1 0.05 39 35 4 0.66 340 362 -22 1.17 35 30 5 0.88 68WL 92163 Micro 180 164 124 40 3.33 2 7 -5 2.36 174 159 15 1.16 2 6 -4 2.00 68ST 92164 Micro 180 165 15 1.14 7 3 4 179 180 161 19 1.46 8 7	775T 77ER 77WL 77WL 77WT 77FL 77WR 77NL 77SR 77WT 77NR 77SL 37EL 37SL 37KL 37KL 37KL 37KL 37WL 37KL 37WL 37WL 37WL 36WL 36SL 36NT 36WT 36WR 36SL 36NR 36WR 36WR 36WR 38WT 40NT	82769 82771 82772 82773 82773 82776 82776 82777 82786 82779 82780 82781 82781 824211 84211 84212 84213 84214 84215 84216 84216 84216 84216 8426 848660 88661 88662 88663 88664 88666	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 97 165 150 750 34 778 69 102 7 754 66 404 407 407 408 409 409 409 409 409 409 409 409	1867 199 68 68 62 153 17 48 124 0 372 215 46 127 215 28 28 1845 29 28 1845 29 28 165 17 17 165 28 165 28 165 29 206 161 17 201 165 28 51 47 30 521 204 671	-41 -32 -8 -8 -4 0 -1 -355 -41 0 66 -13 -62 -2 -174 -19 1 -44 -29 -19 -13 -11 -61 -9 -50 -9 -50 -63 -21 -34 -55 -52 -22	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 0.75 1.86 5.45 5.02 1.22 1.96 3.30 2.43 0.35	125 11 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 1 5 1 6 15 0 0 2 1 1 9 9 1 1 5 7	162 13 3 5 19 2 2 9 0 3 4 2 2 0 9 11 173 2 0 0 3 3 2 1 1 173 2 1 1 18 16 3 5 4 18 16 32 9 4 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 -3 -0 -15 -2 -0 -15 -2 -0 -17 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.67 0.53 3.16 2.83 1.67 0.23 2.74 2.67 0.34 1.49	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 28 1902 13 10 84 107 156 455 33 788 78 124 44 44 794 108 3555 460 210 631 37	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 181 55 55 46 47 48 49 49 40 40 40 40 40 40 40 40 40 40	-29 1 -13 -7 5 7 -7 -5 -65 0 25 -19 -30 7 49 -8 -10 -19 -19 -19 -28 -8 -165 -24 -32 -48 -57 -111 -41 -56 -47 -9 -6 -46 -9	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 1.47 6.26 2.42 0.42 0.42	138 7 1 1 2 10 0 4 3 3 0 6 6 5 102 0 198 0 0 199 12 0 0 19 12 0 22 19 1 0 26 22 19 37 5 38 4	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 2 0 0 2 3 3 17 1 23 27 5 3 19 3 16 6 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -0 -3 -4 -4 -0 -15 -3 -1 -1 -1 -2 -4 -3 -7 -19 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 2.45 1.41 3.16 2.00 0.00 0.00 0.00 0.00 1.43 2.45 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1
68WR 92161 Micro 930 783 147 5.02 62 74 -12 1.46 894 778 116 4.01 62 59 3 0.39 68EL 92162 Micro 342 343 -1 0.05 39 35 4 0.66 340 362 -22 1.17 35 30 5 0.88 68WL 92163 Micro 164 124 40 333 2 7 -5 2.96 174 159 15 1.16 2 6 -4 200 68ST 92164 Micro 180 165 15 1.14 7 3 4 1.79 180 161 19 1.46 8 7 1 0.37 81WT 104064 Micro 1372 1466 -94 2.50 119 157 -38 323 1497 1363 134 3.54 114 129 -15 1.36 81ET	775T 77ER 77WL 77WL 77WL 77WL 77WL 77WR 77NL 77SR 77WT 77SR 77SL 77ET 37ET 37ET 37ET 37ET 37FL 37FL 37FL 37FL 37WL 37WL 37WL 37WL 37WL 37WL 37WL 37W	82769 82771 82773 82774 82775 82776 82777 82778 82781 82781 82781 82781 82781 82781 84211 84211 84211 84213 84214 84215 84216 84217 84218 84220 88660 88661 88666 88666 88667 88667	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 7 165 150 750 750 34 778 69 102 7 7 754 66 404 404 446 404 446 409 649 649 649 649 649 649 649 64	1867 199 68 68 62 153 17 48 124 0 3772 215 1593 28 1845 29 28 1845 29 28 1845 29 28 1845 29 28 30 108 226 141 700 15 741 21 21 165 28 788 51 473 521 204 671	-411 -322 -8 -4 -0 -1 -355 -411 -0 -66 -13 -62 -2 -174 -44 -29 -19 -11 -61 -9 -50 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.37 1.86 5.45 5.02 1.22 1.96 1.93 2.43 0.35 0.86 0.38	125 111 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 11 5 0 0 11 5 0 0 11 5 1 158 0 0 0 1 159 0 0 1 159 19 19 19 29 49 8 50 7 7	162 13 3 5 19 2 2 9 0 3 4 2 0 9 1773 2 0 1773 2 0 16 3 5 4 14 18 16 32 9 40 178	-37 -2 -3 -3 -2 -13 -2 -11 -7 0 -6 -3 -3 -3 -0 -4 -2 0 -115 -2 0 -115 -2 0 -17 -3 -5 -4 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 0.82 2.98 0.00 2.45 1.90 0.80 2.98 0.00 0.40 2.00 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.67 3.16 2.83 2.74 2.67 0.34 1.49 3.00 0.23	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 445 33 788 78 124 44 794 108 355 460 210 631 37 584	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 106 184 810 9 756 30 184 810 9 756 30 181 181 55 753 52 402 451 204 585	-29 1 -13 -7 5 7 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19 1 -28 -8 -165 24 32 48 -57 -11 41 -47 9 6 46 -9 -9	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 1.35 1.23 2.59 4.93 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 1.47 6.26 2.42 0.42 0.42 1.87 1.40	138 7 1 1 2 10 0 4 3 3 0 6 6 0 0 6 5 102 0 198 0 198 0 19 12 0 12 0 10 22 19 17 10 22 19 37 5 38 4 4 86	128 13 2 6 14 0 11 8 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 2 5 3 19 3 16 19 3 6 23 0 0 0 86	10 -6 -1 -4 -4 -9 -9 -1 -1 -0 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41 3.16 2.00 2.83 0.00 2.45 4.82 1.41 1.41 1.41 2.00 2.83 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.4
88WL 92163 Micro 164 124 40 3.33 2 7 -5 2.66 174 159 16 1.16 2 6 -4 2.00 88ST 92164 Micro 180 165 15 1.14 7 3 4 1.79 180 161 19 1.46 8 7 1 0.37 81WT 104064 Micro 1372 1466 -94 2.50 119 157 -38 323 1497 1363 134 3.54 114 129 -15 136 81ET 104065 Micro 1136 1197 -61 1.79 79 86 -7 0.77 1124 1039 85 2.58 90 86 4 0.43 10WL 104081 Micro 1136 1197 -61 1.79 79 86 -7 0.77 1124 1039 85 2.58 90 86 4 0.43 10WL 104081 Micro 110 10 10 10 15 25 -10 224 97 123 -26 2.48 13 22 -9 2.15 10NR 104083 Micro 104 105 -1 0.10 15 25 -10 224 97 123 -26 2.48 13 22 -9 2.15 10NR 104083 Micro 79 49 30 3.75 14 5 9 2.92 65 49 16 2.12 16 0 16 5.66 10NS 10NS 104084 Micro 21 36 -15 2.81 0 1 -1 1.41 22 33 -11 2.10 1 1 0 0 0.00 10NT 104085 Micro 209 228 -19 129 18 23 -5 110 216 258 -42 2.73 17 28 -11 2.32 10NR 104086 Micro 209 228 -19 129 18 23 -5 110 216 258 -42 2.73 17 28 -11 2.32 148NT 117031 Micro 3 319 398 -79 447 17 23 -6 134 310 325 -15 0.84 9 32 -23 5.08	775T 77ER 77WL 77WL 77WL 77WL 77WL 77WR 77HL 77SR 77WI 77SR 77SL 37EI 37EI 37EI 37EL 37WL 37HL 37HL 37HL 37HL 37HL 37HL 37HL 37H	82769 82771 82772 82773 82773 82776 82776 82777 8278 82780 82781 82781 82781 82781 824211 84211 84215 84216 84216 84216 84216 84216 84220 84221 84222 84221 84222 84224 88666	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 80 97 165 150 750 43 43 80 97 165 160 9 80 97 165 175 175 187 189 189 189 189 189 189 189 189	1867 199 68 68 62 153 17 48 124 0 372 215 28 189 189 189 180 159 108 228 141 700 15 246 141 700 15 25 165 26 147 27 27 27 27 28 28 28 29 28 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	-41 -32 -8 -8 -4 0 -1 -355 -41 0 66 -13 62 -2 -174 19 1 -44 -29 -19 -13 -11 -61 -9 -50 -37 -48 -53 -21 -34 -55 -52 -22 -23 -75	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 5.45 5.02 1.22 1.96 3.30 2.43 0.35 0.86 0.38 0.35 0.88	125 11 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 1 5 1 6 15 0 0 0 1 1 5 1 1 6 15 0 7 8 8 8 50 7 80 80 818 81 81	162 13 3 5 19 2 2 9 0 3 4 2 2 9 11 173 2 0 0 3 3 4 11 13 0 16 3 5 4 14 18 16 32 9 40 1 78 144 18 144 18 16 32 9 40 40 40 40	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 -7 -9 -6 -3 -3 -3 -0 -15 -2 -0 -15 -2 -0 -17 -3 -5 -4 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.67 0.53 0.00 3.43 2.45 2.67 0.23 2.74 2.67 0.34 1.49 3.00 0.23 2.60 0.00	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 176 645 33 788 78 8 124 44 108 355 460 210 631 37 584 1122 603	1974 180 73 69 148 27 51 143 0 372 66 66 115 199 46 41 1693 42 29 79 106 184 810 9 756 30 30 40 41 41 42 45 46 47 48 49 40 40 40 40 40 40 40 40 40 40	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19 5 1 -28 -8 -165 24 32 48 -57 -11 56 -47 9 6 46 -9 53 -59 -59 -41	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.35 1.35 1.35 1.35 1.35 1.37 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	138 7 1 1 2 10 0 4 3 3 0 6 6 5 102 0 198 0 199 12 0 19 12 0 22 19 12 0 22 19 15 38 4 86 126 57	128 13 2 6 14 0 11 8 11 6 3 2 5 5 1117 3 1156 2 0 0 2 3 3 17 1 23 2 5 3 16 6 19 6 23 0 86 124 57	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -0 -3 -4 -0 -15 -3 -1 -1 -2 -4 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.115 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 3.16 2.00 0.00 0.00 0.00 1.43 2.45 1.41 2.00 2.83 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0
88ST 92164 Micro 180 165 15 1.14 7 3 4 1.79 180 161 19 1.46 8 7 1 0.37 81WT 104064 Micro 1372 1466 -94 2.50 119 157 -38 3.23 1497 1363 134 3.54 114 129 -15 1.36 81ET 104065 Micro 1336 1197 -61 1.79 79 86 -7 0.77 1124 1039 85 2.58 90 86 4 0.43 10WL 104081 Meso 146 149 -3 0.25 2 3 -1 0.63 138 127 11 0.96 7 5 2 0.82 10ST 104082 Meso 104 105 -1 0.10 15 25 -10 2.24 97 123 -26 2.48 13 22 -9 2.15 10NR 104083 Meso 79 49 30 3.75 14 5 9 292 65 49 16 2.12 16 0 16 5.66 10SL 104084 Meso 21 36 -15 2.81 0 1 -1 1.41 22 33 -11 2.10 1 1 0 0.00 10NT 104085 Meso 209 228 -19 129 18 23 -5 1.10 2.16 258 -42 2.73 17 28 -11 2.32 10WR 104086 Meso 92 1116 -24 2.35 0 1 1 -1 1.41 127 126 1 0.09 8 1 7 3.30 48NT 107031 Meso 319 398 -79 4.17 17 23 -6 13.4 310 325 -15 0.84 9 32 -23 5.08	775T 77ER 77WL 77WL 77NT 77EL 77WR 77NL 77SR 77SR 77SR 77SI 37SL 37SL 37KL 37KL 37KL 37KL 37KL 37KL 37KL 37K	82769 82771 82772 82773 82774 82775 82776 82776 82777 82786 82777 82781 82781 82781 84211 84211 84213 84214 84215 84213 84214 84215 84216 84217 84218 84220 84221 84220 84221 84220 84221 84220 84221 84221 84220 84221 84221 84220 84221 84221 84220 84221 84223 84224 88660 88661 88662 88663 886645 886665 88667 88668	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 1801 0 9 165 150 34 778 69 102 7 754 66 404 467 209 649 28 492 1026 1027 1028 103	1867 199 68 68 62 153 17 48 124 0 372 215 46 127 215 1593 28 1845 29 28 28 1845 29 163 17 165 28 165 27 28 28 28 1845 29 28 1845 29 28 28 80 100 15 165 28 93 108 108 108 108 108 108 108 108 108 108	-41 -32 -8 -8 -4 0 -1 -355 -41 0 66 -13 -62 -2 -174 -19 -1 -44 -29 -19 -13 -11 -61 -9 -50 -9 -50 -21 -33 -21 -55 -69 -54 -55 -22 -2 -2 -2 -2 -2 -2 -2 -2 -32 -75 -55 -55 -51 -47	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.45 5.02 1.96 3.30 2.43 0.35 0.86 0.38 1.47 0.03 2.70 1.03	125 111 0 3 6 0 1 1 2 0 9 1 1 5 0 1133 0 1 158 0 0 1 1 5 0 0 1 1 5 0 0 2 1 1 9 2 9 4 9 8 8 5 0 7 80 118 49 11 62	162 13 3 5 19 2 2 9 0 3 4 2 2 0 9 9 2 1 1 173 2 0 0 3 3 4 14 18 16 3 5 4 14 18 18 16 16 32 9 40 1 1 78 49 2 74	-37 -2 -3 -3 -2 -13 -2 -11 -7 -0 -6 -3 -3 -3 -0 -1 -15 -2 -0 -115 -2 -0 -115 -2 -0 -115 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.17 2.00 3.43 2.45 3.16 2.83 1.67 0.23 2.74 3.16 2.83 2.74 3.16 2.83 2.74 3.16 2.83 2.74 3.16 2.83 2.74 3.16 2.83 2.74 3.16 2.83 2.74 3.76 0.76 0.76 0.76 0.76 0.76 0.77 0.77 0	1945 181 60 62 153 34 14 78 0 0 397 47 145 206 1351 38 26 1902 13 10 641 107 156 176 645 33 788 124 44 108 355 460 210 631 37 584 1122 603 28	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 184 184 810 9 756 30 181 552 402 453 464 475 465 475 475 475 475 475 475 475 47	-29 1 -13 -7 5 7 -7 -5 7 -7 -5 -65 -65 -65 -19 -30 -7 -49 -8 -15 -209 -29 -19 -5 1 -28 -8 -165 -24 -32 -48 -57 -111 -41 -56 -47 -9 -9 -9 -53 -59 -41 -41 -41 -41 -41 -59 -59 -41 -41 -41 -41 -41 -41 -41 -41 -41 -41	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 6.12 6.24 1.17 6.26 2.42 0.42 0.42 0.42 1.87 1.40 2.24 1.70 0.78	138 7 1 1 2 100 4 4 3 0 6 6 5 102 0 198 0 198 0 192 2 100 2 198 0 198 102 0 198 102 0 198 102 102 108 108 108 108 108 108 108 108 108 108	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 25 5 3 19 3 16 19 6 19 6 22 0 86 124 57 4 4	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -1 -0 -3 -4 -4 -0 -15 -3 -1 -1 -1 -2 -4 -3 -7 -19 -3 -18 -1 -1 -1 -2 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	0.87 1.90 0.82 2.00 1.115 0.00 1.90 2.13 1.41 0.00 1.43 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.83 3.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 2.45 1.41 1.41 0.01 1.41 1.41 0.01 1.43 1.44 1.41 0.01 1.44 1.41 0.01 1.44 1.41 0.01 1.45 1.41 1.41 0.01 1.44 1.44 1.44 1.44 1.44
81ET 104065 Mcro 1136 1197 -61 1.79 79 86 -7 0.77 1124 1039 85 2.58 90 86 4 0.43 10WL 104081 Meso 146 149 -3 0.25 2 3 -1 0.63 138 127 11 0.96 7 5 2 0.82 10NR 104082 Meso 104 105 -1 0.10 15 25 -10 2.24 97 123 -2.6 2.48 13 22 -9 2.15 10NR 104083 Meso 79 49 30 3.75 14 5 9 2.92 65 49 16 2.12 16 0 16 5.68 10SL 104084 Meso 21 36 -15 2.81 0 1 -1 1.41 22 33 -11 2.10 1 1 0	775T 77ER 777WL 77WT 77WT 77NT 77EL 77WR 77NL 77SR 77SR 77ST 77SI 37EI 37SL 37KL 37NL 37KL 37NL 37NL 37NL 37NL 37NL 37NL 37NL 37N	82769 82771 82772 82773 82774 82775 82776 82778 82778 82780 82781 82781 82781 82121 84211 84212 84210 84216	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 30 438 33 189 213 1419 47 29 80 97 165 150 750 43 43 43 47 29 40 40 40 40 40 40 40 40 40 40	1867 199 68 68 62 153 17 48 124 0 372 215 28 1845 29 29 1845 29 108 226 141 700 15 741 21 26 46 671 26 460 1025 807 19 783 343	-41 -32 -8 -4 0 -1 -355 -41 0 66 -13 -62 -2 -174 -19 1 -44 -29 -19 -13 -11 -61 -9 -50 -9 -54 -54 -54 -54 -54 -54 -54 -55 -55 -55	0.95 2.37 1.00 0.52 0.00 0.55 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.02 1.22 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	125 111 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1158 0 0 1 158 0 0 0 1 159 1 1 6 15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 2 9 173 2 1773 2 0 0 16 3 1 18 16 3 2 1 178 14 14 18 16 32 9 40 1 78 144 49 2 74 49 2 74	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 0 -6 -3 -3 0 4 -2 0 0 115 -2 0 0 17 -3 -5 -4 -7 1 13 17 -1 10 6 2 -3 -3 -4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.01 1.17 2.00 0.01 1.41 1.00 0.82 2.67 0.53 0.00 3.43 2.45 2.83 1.67 0.23 2.74 2.67 0.34 1.49 3.00 0.23 2.60 0.00 0.82 1.46	1945 181 60 62 153 34 14 78 80 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 176 645 33 788 78 84 124 44 179 41 108 355 460 210 631 37 584 11122 603 28 894	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 181 55 753 52 402 451 204 585 46 531 1181 562 24 778	-29 1 -13 -13 -7 5 7 -7 -5 0 0 25 -19 30 7 49 -8 -15 209 -29 -19 5 1 1 -28 -8 -165 24 32 48 -9 -17 -9 -9 -9 -9 -19 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.36 1.37 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	138 7 1 1 2 10 0 4 3 0 6 5 5 102 0 0 198 0 199 12 0 0 22 0 1 0 22 0 1 1 0 28 86 86 126 57 1 1 62 35	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 2 5 5 3 16 19 6 23 0 86 124 4 59 30	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -1 -3 -3 -1 -1 -1 -2 -4 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -2 -3 -3 -1 -1 -2 -3 -3 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	0.87 1.90 0.82 2.00 1.115 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 3.16 2.00 0.00 0.00 1.43 2.45 1.41 2.00 2.83 3.00 0.00 0.00 1.43 2.45 1.41 2.00 2.83 1.41 2.83 1.43 1.44 1.44 1.44 1.44 1.44 1.44 1.4
10WL 104081 Meso 146 149 -3 0.25 2 3 -1 0.63 138 127 11 0.96 7 5 2 0.82 10ST 104082 Meso 104 105 -1 0.10 15 25 -10 224 97 123 -26 248 13 22 -9 2.15 10NR 104083 Meso 79 49 30 3.75 14 5 9 2.92 66 49 16 2.12 16 0 16 5.68 10SL 104084 Meso 21 36 -15 2.81 0 1 -1 1.41 22 33 -11 2.10 1 1 0 0.00 10NT 104085 Meso 20 228 -19 129 18 23 -5 1.10 2.16 258 -42 2.73 17 28 -11	775T 77ER 777WL 77NT 77TEL 77WR 77NL 77SR 77SR 77SR 77SL 37SL 37SL 37KL 37KL 37KL 37KL 37KL 37KL 37KL 37K	82769 82771 82772 82773 82773 82776 82776 82777 82786 82777 82786 82781 82781 82781 82421 84211 84211 84212 84213 84214 84215 84216	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 97 165 150 750 34 778 66 404 467 209 649 467 209 649 467 209 649 467 209 649 467 467 467 467 467 467 467 467	1867 199 68 68 62 153 17 48 124 0 372 215 46 127 215 28 28 1845 29 28 1845 29 28 1646 17 700 15 26 460 1025 807 19 783 343 124 165	-41 -32 -8 -8 -4 0 -1 -355 -41 0 -66 -13 -62 -2 -174 -19 -1 -44 -29 -19 -13 -11 -61 -9 -50 -9 -54 -53 -21 -34 -55 -69 -54 -55 -22 -2 -2 -75 -5 -69 -75 -5 -69 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 5.45 5.02 1.22 1.96 3.30 2.43 0.35 0.86 3.88 1.47 1.08 5.02 0.05 3.33 2.70 1.08 5.02 0.05 3.33	125 111 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 1 5 1 6 15 0 0 2 1 1 9 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 1 6 1 1 1 1 6 1 1 1 1 6 1	162 13 3 5 19 2 2 9 0 3 4 2 2 9 1 1 173 2 1 1 173 2 0 0 16 3 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 173 2 1 1 174 3 5 1 174 18 18 19 19 174 175 174 175 174 175 175 177 174 175 175 177 174 175 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 177 175 175	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.67 0.34 1.49 2.67 0.33 2.74 2.67 0.34 1.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 28 1902 13 10 84 107 156 455 33 788 78 124 44 108 355 460 210 631 37 584 1122 603 28 894 340 174	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 181 55 2402 451 204 531 1181 562 24 77 362 159	-29 1 -13 -7 5 7 -7 -5 7 -7 -65 0 25 -19 -30 7 -49 -8 -15 -20 -29 -19 -19 -5 1 -28 -8 -165 -24 -32 -48 -57 -11 -11 -41 -56 -47 -9 -6 -6 -6 -6 -9 -53 -59 -59 -59 -59 -51 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 1.47 6.26 2.42 0.42 1.41 1.74 1.70 0.78 4.01 1.17	138 7 1 1 2 10 0 4 4 3 3 0 6 6 5 102 0 198 0 198 0 19 12 2 19 12 0 22 19 10 0 22 19 12 0 26 26 22 19 37 5 38 4 86 57 1 126 57 1 62 35 2	128 13 2 6 14 0 11 8 11 6 3 2 2 5 5 117 3 1 156 2 2 0 0 2 3 3 17 1 23 27 5 3 19 3 16 6 23 3 17 1 23 24 57 4 59 30 6 6 7	10 -6 -1 -1 -4 -4 -4 -0 0 3 -5 -1 0 -3 -1 -1 -1 -2 -4 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 2.45 2.00 0.00 1.43 2.45 1.41 3.16 2.00 2.83 0.00 0.00 2.45 4.82 1.31 1.41 0.21 2.00 2.31 2.45 1.41 0.21 2.00 2.31 2.45 0.72 2.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
10NR 104083 Meso 79 49 30 3.75 14 5 9 2.92 65 49 16 2.12 16 0 16 5.66 10SL 104084 Meso 21 36 -15 2.81 0 1 -1 1.41 22 33 -11 2.10 1 1 0 0.00 110NT 104085 Meso 29 228 -19 1.29 18 23 -5 1.10 216 258 42 2.73 17 28 -11 2.32 10WR 104086 Meso 92 116 -24 2.35 0 1 -1 1.41 127 126 1 0.09 8 1 7 3.32 48NT 117031 Meso 319 398 -79 4.17 17 23 -6 1.34 310 325 -15 0.84 9 32 -23 5.08	775T 77ER 777WL 77NT 77NL 77NT 77NL 77SR 77WT 77NR 77SL 77ET 37ET 37ET 37ET 37ST 37EL 37NR 37WL 37ST 37NL 37WI 37WI 37WI 37WI 37WI 37WI 37WI 37WI	82769 82771 82773 82774 82775 82776 82777 82778 82786 82781 82781 82781 82781 82781 82781 82781 84211 84211 84213 84213 84214 84215 84216 84216 84217 84218 84220 88660 88661 88662 88663 88667 88668 88670 88676 92158 92161 92161 92161	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 9 77 165 150 750 34 467 209 649 24 492 492 1926 492 1926 1937 24 1930	1867 199 68 62 153 17 48 124 0 372 46 127 215 1593 28 1845 29 29 29 1845 28 1845 28 108 226 1411 21 165 28 788 521 246 671 26 460 1025 807 19 783 343 124 165	-411 -322 -8 -4 -0 -11 -355 -41 -41 -41 -62 -2 -174 -19 -13 -41 -61 -61 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.39 1.30 2.43 0.35 0.86 0.38 1.47 0.03 2.70 1.08 5.02 0.05 3.33 1.14	125 111 0 3 6 0 1 1 2 0 9 1 1 5 0 0 1 1 5 0 0 1 1 5 0 0 1 1 5 0 0 1 1 5 1 6 1 5 0 0 1 1 5 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 1 6 1 1 1 6 1	162 13 3 5 5 19 2 2 2 9 0 3 4 4 2 0 99 2 1 173 2 0 0 3 3 2 1 13 0 16 3 5 4 14 14 18 18 18 18 18 18 2 7 4 2 7 3 3 157	-37 -2 -3 -2 -13 -2 -11 -7 -0 -6 -3 -3 -3 -0 -4 -2 -0 -115 -2 -0 -115 -2 -0 -17 -3 -5 -4 -7 -1 -10 -6 -2 -3 -5 -4 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 0.82 2.98 0.00 2.45 1.90 0.00 0.40 2.00 0.00 0.40 2.00 0.00 0.0	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 176 645 33 78 124 44 794 108 355 460 631 37 584 11122 603 28 894 340 174 180	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1893 42 29 79 106 184 184 184 184 184 185 30 181 183 285 485 485 485 485 485 485 485 4	-29 1 -13 -7 5 7 -37 -65 0 25 -19 30 7 49 -8 -15 -20 -19 5 1 -28 -8 -8 -165 -24 -32 -48 -57 -11 -11 -16 -9 -6 -46 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0.66 0.07 1.59 0.86 0.41 1.27 6.49 0.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 1.35 1.23 2.59 4.93 1.35 1.23 2.59 4.93 0.55 4.93 0.55 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.87 1.40 2.24 1.87 1.40 2.24 1.74 1.70 0.78 4.01 1.17 1.16 1.46 1.46 1.46 1.46 1.46 1.46 1.46	138 7 1 1 2 100 0 4 4 3 0 6 6 5 102 0 0 198 0 2 10 10 12 0 12 0 12 0 12 0 12 0 15 16 16 16 17 18 18 18 11 11 11 11 11 11 11 11 11 11	128 13 2 6 14 0 11 8 11 6 3 2 5 117 3 1 156 2 0 0 2 3 3 17 1 1 23 2 5 3 19 6 19 6 2 3 0 6 7 7 129	10 -6 -1 -4 -4 -9 -9 -1 -1 -0 -3 -5 -1 -1 -0 -15 -3 -1 -1 -1 -2 -4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 1.15 0.00 1.90 2.45 2.45 1.41 3.16 2.00 2.83 0.00 2.45 4.82 1.31 1.41 0.21 2.00 2.31 2.45 1.48 5.37 0.72 3.40 0.43 2.72 2.83 0.00 0.18 0.00 0.18 0.00 0.39 0.88 2.00 0.37
10NT 104085 Meso 209 228 -19 129 18 23 -5 1.10 216 258 -42 273 17 28 -11 232 10WR 104086 Meso 92 116 -24 2.35 0 1 -1 1.41 127 126 1 0.09 8 1 7 3.30 48NT 117031 Meso 319 398 -79 4.17 17 23 -6 1.34 310 325 -15 0.84 9 32 -23 5.08	775T 77ER 77FER 77FER 77FML 77FIF 77FER 77FNL 77FSR 77FSL 37FSE 37FIF 37	82769 82771 82772 82773 82773 82776 82776 82777 82786 82777 82786 82781 82781 82781 82781 824211 84211 84212 84213 84214 84215 84216 84216 84216 84216 84216 84216 84216 84217 84220 84221 84222 84224 84660 88661 88662 88663 88664 88669 92158 92159 92160 92161 92162 92163 92164 92162 92163	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 47 29 1801 0 9 80 97 165 150 750 466 404 467 209 649 492 102 24 930 342 164 166 175 175 175 175 175 175 175 175	1867 199 68 68 62 153 17 48 124 0 372 215 31 189 28 1845 29 28 1845 29 28 1845 29 28 1845 29 28 1845 29 28 108 27 109 109 109 109 109 109 109 109 109 109	-41 -32 -8 -8 -4 0 -1 -355 -41 0 -66 -13 -62 -2 -174 -19 -1 -44 -29 -19 -13 -11 -61 -9 -50 -9 -54 -5 -5 -22 -2 -2 -2 -75 -5 -22 -2 -32 -1 -75 -5 -24 -61 -75 -5 -24 -61 -75 -5 -22 -32 -75 -5 -32 -32 -33 -34 -34 -34 -34 -34 -34 -34 -34 -34	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 5.02 1.22 1.96 3.30 2.43 0.35 0.38 1.47 1.08 5.02 0.05 3.33 1.14 2.50 1.79 1.79	125 111 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 1 5 1 6 15 0 0 0 1 1 5 1 6 15 1 6 15 1 6 15 1 1 6 1 1 1 6 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 2 9 11 173 2 0 0 3 3 4 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 174 18 16 3 175 4 18 175 175 175 186 18 18 18 18 18 18 18 18 18 18 18 18 18	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 -0 -6 -3 -3 -3 -0 -15 -2 -0 -15 -2 -0 -11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.41 1.00 0.82 2.67 0.34 1.49 2.67 0.34 1.49 2.67 0.34 1.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 28 1902 13 10 84 107 156 455 33 788 78 124 44 108 355 460 210 631 37 584 1122 603 28 894 340 174 180 1497	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1693 42 29 79 106 181 184 810 9 756 30 181 55 2402 451 204 585 46 531 1181 562 24 77 362 159 362 159 362 159	-29 1 -13 -7 5 7 -7 -5 7 -7 -65 0 25 -19 -30 7 49 -8 -15 -20 -29 -19 -19 -5 1 -28 -8 -165 -47 -9 -6 -46 -9 -53 -59 -41 -41 -56 -47 -9 -53 -59 -41 -41 -41 -41 -41 -41 -41 -41 -41 -41	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.53 4.62 1.56 1.47 6.26 2.42 0.42 1.41 1.74 1.70 0.78 4.01 1.17 1.16 1.46 3.54 2.59	138 7 1 1 2 10 0 4 3 3 0 6 6 5 102 0 198 0 199 12 0 2 19 12 0 2 2 19 15 38 4 86 126 57 1 16 62 8 114 90 7	128 13 2 6 14 0 11 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 27 5 3 16 6 29 6 124 57 4 59 30 6 7 129 86 5	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -1 -3 -4 -4 -0 -3 -15 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 2.00 0.00 0.00 0.00 0.00 1.43 2.45 1.41 2.45 1.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10WR 104086 Meso 92 116 -24 2.35 0 1 -1 1.41 127 126 1 0.09 8 1 7 3.30 48NT 117031 Meso 319 398 -79 4.17 17 23 -6 1.34 310 325 -15 0.84 9 32 -23 5.08	775T 77ER 777WL 77NT 77TML 77NT 77EL 77WR 77NI 77SR 77SR 77SI 37EL 37SL 37SL 37NI 37NL 37NL 37NL 37NL 37NL 37NL 36SL 36NT 36WR 36ST 36WR 36ST 36WR 36SL 36NT 36WR 36NT 40NL	82769 82771 82772 82773 82774 82775 82776 82776 82777 82786 82777 82781 82781 82781 82781 82421 84211 84213 84214 84215 84213 84214 84215 84216 84217 84218 84220 84221 84220 84221 84221 84220 84221 84221 84220 84221 84221 84220 84221 84221 84220 84221 84223 84224 84266 88661 88662 88663 88664 88668 88669 92158 92159 92160 92161 92162 92161 92162 92161 92162 92161 92162 92161	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 1801 0 9 80 9 75 165 150 34 47 75 46 69 102 7 75 404 467 209 649 28 492 1026 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	1867 199 68 68 62 153 17 48 124 0 372 46 127 215 1593 28 1845 29 28 1845 29 28 1845 29 102 15 15 1593 28 1845 19 10 15 15 15 15 15 15 15 15 15 15 15 15 15	-411 -322 -8 -4 -0 -11 -355 -41 -41 -0 -66 -13 -62 -2 -174 -19 -13 -41 -44 -29 -19 -13 -41 -61 -9 -50 -51 -62 -2 -174 -44 -44 -29 -13 -11 -61 -61 -63 -21 -34 -55 -52 -22 -2 -2 -2 -2 -34 -55 -22 -2 -2 -2 -34 -55 -22 -2 -2 -34 -55 -22 -2 -34 -55 -22 -2 -35 -34 -55 -22 -2 -2 -34 -35 -36 -37 -37 -37 -37 -37 -37 -37 -37 -37 -37	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.45 5.02 1.22 1.96 3.30 2.43 0.35 0.86 0.38 1.47 1.00 0.05 3.33 1.14 2.50 1.79 0.25	125 111 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 11 158 0 0 1 1 158 0 0 1 1 5 1 1 6 15 0 2 2 1 1 9 49 49 8 50 7 80 118 49 1 1 62 39 2 7 119 79 2 1 15	162 13 3 5 5 19 2 2 9 0 3 4 2 2 0 9 9 2 1 173 2 0 0 3 3 2 113 0 16 3 5 4 14 18 18 16 32 9 40 1 178 7 3 1157 86 3 3 3 3 2 25	-37 -2 -3 -2 -1 -1 -7 -0 -3 -3 -0 -4 -7 -7 -0 -3 -3 -0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	3.09 0.58 2.45 1.00 0.82 2.98 0.00 2.45 1.90 0.60 0.70 0.70 0.70 0.70 0.70 0.70 0.7	1945 181 60 62 153 34 14 78 0 397 47 1445 206 1351 38 26 1902 13 10 84 1107 156 176 645 33 788 124 44 794 108 355 460 210 631 37 584 1122 603 28 894 340 174 180 1497 1124 138 97	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 41 1893 42 29 79 106 184 184 184 184 187 55 55 753 52 46 46 118 184 184 185 186 187 188 188 188 188 188 188 188	-29 1-13 -7 5 7 7 -37 -65 0 25 -19 30 7 49 -8 -15 209 -29 -19 5 1 -28 -8 -165 24 32 48 -57 -111 -56 -47 9 6 46 -9 53 -59 41 4 41 -22 15 19 134 85 -116 -22 15 -19 -22 -23 -24 -25 -25 -27 -27 -27 -28 -38 -38 -38 -38 -38 -38 -38 -38 -38 -3	0.66 0.07 1.59 0.86 0.41 1.27 6.49 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 6.60 6.12 5.24 1.15 6.63 4.62 1.56 6.12 6.24 1.17 1.16 1.40 2.24 1.77 1.70 0.78 4.01 1.17 1.16 1.46 3.54 2.58 0.96 2.41	138 7 1 1 2 100 0 4 4 3 0 6 6 5 102 0 198 0 198 0 192 2 10 2 2 10 2 2 2 11 0 2 2 2 11 0 2 2 2 2	128 13 2 6 14 0 11 8 11 8 11 6 3 2 5 117 3 11 156 2 0 0 2 3 3 17 1 1 23 3 17 1 23 3 16 19 3 16 19 3 16 19 6 23 0 6 7 4 59 30 6 7 129 86 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -1 -0 -3 -4 -4 -4 -0 -3 -15 -3 -1 -15 -3 -1 -1 -1 -1 -2 -2 -4 -3 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 3.16 2.00 0.00 0.00 1.43 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.00 2.45 1.41 3.16 2.83 1.41 2.83 1.44 1.41 2.83 1.44 1.41 2.83 1.44 1.41 2.83 1.44 1.44 1.44 1.44 1.44 1.44 1.45 1.45
	775T 77ER 77FER 77FER 77FML 77FNL 77FSR 77FNL 77FSR 77FSL 77FSL 37FSL 37FSL 37FSL 37FSL 37FNL 37FSL 37FNL 37	82769 82771 82773 82773 82773 82776 82776 82777 82786 82777 82786 82781 82781 82781 82781 82781 824211 84211 84212 84213 84214 84215 84216 84216 84216 84216 84216 84217 84218 84216	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 1419 47 29 80 97 165 150 750 34 778 69 102 7 7 754 66 404 467 209 649 224 930 342 164 166 166 172 173 175 175 175 175 175 175 175 175	1867 199 68 68 62 153 17 48 124 0 372 215 28 1845 29 28 1845 29 28 1845 29 28 1845 29 28 1026 141 700 15 28 165 28 73 108 21 204 671 204 671 26 460 1025 807 19 783 343 124 166 1197 149 36	-41 -32 -8 -8 -4 0 -1 -355 -41 0 -66 -13 -62 -2 -174 -19 -13 -11 -44 -29 -19 -13 -11 -61 -9 -50 -51 -51 -51 -51 -51 -51 -51 -75 -51 -75 -51 -75 -71 -75 -94 -61 -3 -1 -3 -1 -1 -1 -3 -1 -1 -1 -3 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.02 1.22 1.96 3.30 2.43 0.35 0.86 0.38 1.47 0.03 3.33 1.14 0.03 3.33 1.14 2.50 1.79 0.25 0.10	125 111 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 1 5 1 1 6 15 1 0 0 0 1 1 1 5 1 1 6 15 1 1 6 15 1 1 1 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 2 9 11 173 2 0 0 3 3 4 173 2 11 173 2 0 0 16 3 5 4 14 18 16 32 9 40 1 78 144 18 16 32 7 4 35 7 3 157 86 3 25 5 1	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 -7 -9 -6 -3 -3 -3 -0 -4 -7 -15 -2 -0 -17 -3 -5 -4 -4 -7 -1 -10 -10 -1 -12 -38 -7 -1 -10 -10 -1 -10 -11 -11	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 0.40 2.00 0.00 1.17 2.00 0.01 1.41 1.00 0.82 2.67 0.53 0.00 3.43 2.45 2.67 0.34 1.49 3.00 0.23 2.60 0.00 0.82 1.46 0.66 2.36 1.79 3.23 0.77 0.63 2.24 2.92	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 176 645 33 788 78 81 124 44 108 355 460 210 631 37 584 1122 603 28 894 340 174 180 1497 1124 1189 97 65 56	1974 180 73 69 148 27 51 143 0 372 66 61 155 199 180 41 189 42 29 79 106 184 810 9 756 30 30 181 55 240 24 451 204 585 46 531 1181 562 24 159 362 159 161 1363 1039 127 123 49 33	-29 1 -13 -7 5 7 -7 -5 7 -7 -65 0 25 -19 30 7 49 -8 -15 -20 -29 -19 5 1 -28 -8 -8 -165 -24 -32 -48 -57 -11 -11 -56 -47 -9 -6 -40 -9 -53 -59 -59 -41 -41 -6 -11 -22 -57 -51 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.23 2.59 1.35 1.35 1.37 1.36 1.37 1.36 1.37 1.37 1.38 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	138 7 1 1 2 10 0 4 4 3 0 6 5 102 0 198 0 199 12 0 22 0 1 0 12 0 22 19 12 0 22 19 15 16 22 19 17 5 38 4 86 126 57 1 1 62 35 2 8 114 90 7 13 16	128 13 2 6 14 0 11 8 11 6 3 2 5 5 1117 3 1156 2 0 0 2 3 3 17 1 23 2 5 3 16 6 7 4 59 30 6 7 129 86 6 7 129 86 6 7 129 86 6 7	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -0 -3 -4 -0 -15 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -1 -2 -4 -3 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 3.16 2.00 0.00 0.00 0.00 1.43 2.45 1.41 2.00 2.83 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0
	775T 77ER 77FER 77FER 77FWL 77FIF 77FER 77FNL 77FSR 77FST 77FST 77FST 37FL 37FL 37FL 37FL 37FL 37FL 37FL 37FL	82769 82771 82772 82773 82773 82776 82776 82777 82786 82777 82786 82781 82781 82781 82781 82421 84211 84212 84213 84214 84215 84216 84216 84216 84217 84218 84220 84221 84220	Meso Meso Meso Meso Meso Meso Meso Meso	1826 167 60 58 153 16 13 83 0 438 33 189 213 34 1419 47 29 1801 0 9 1801 0 9 165 150 77 77 78 69 102 7 7 754 66 404 467 209 649 467 209 404 407 209 407 407 407 407 407 407 407 407	1867 199 68 68 62 153 17 48 124 0 372 215 46 127 215 1593 28 1845 29 28 1845 29 28 1845 29 165 17 165 28 1845 29 17 18 18 18 19 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	-411 -322 -8 -8 -4 0 -1 -355 -41 0 -66 -13 -62 -2 -174 -19 -11 -44 -229 -19 -13 -11 -61 -9 -50 -50 -54 -55 -22 -2 -2 -2 -2 -2 -32 -1 -75 -5 -69 -61 -9 -75 -61 -9 -75 -61 -9 -75 -61 -75 -61 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	0.95 2.37 1.00 0.52 0.00 0.25 6.34 4.03 0.00 3.28 2.07 4.93 0.14 4.48 3.10 0.19 1.03 7.62 4.42 1.40 1.09 4.36 0.75 1.86 3.84 1.34 7.16 5.45 5.02 1.22 1.96 3.30 2.43 0.35 0.86 0.38 1.47 1.00 0.05 3.33 1.14 2.50 0.05 3.33 1.14 2.50 0.75 0.86 0.86 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	125 111 0 0 3 6 0 1 1 2 0 9 1 1 5 0 103 0 1 158 0 0 1 1 5 1 1 6 15 1 5 0 0 1 1 1 5 1 1 6 1 1 1 6 1 1 1 1 6 1 1 1 1	162 13 3 5 19 2 2 9 0 3 4 2 2 0 9 9 2 1 1 173 2 0 0 3 3 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 1 173 2 173 2 173 2 173 2 174 185 166 3 3 157 7 3 157 7 3 157 866 3 3 255 1 1 2 3 1	-37 -2 -3 -3 -2 -13 -2 -11 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	3.09 0.58 2.45 1.00 3.68 2.00 0.82 2.98 0.00 2.45 1.90 1.60 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00 1.17 2.00 0.00 0.00 0.00 0.00 1.17 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1945 181 60 62 153 34 14 78 0 397 47 145 206 1351 38 26 1902 13 10 84 107 156 455 176 645 33 788 124 44 108 355 460 210 631 37 584 1122 603 28 894 340 1497 1124 138 97 65 22 216	1974 180 73 69 148 27 51 143 0 372 66 115 199 1302 46 115 199 1302 46 41 1693 42 29 79 106 184 810 9 756 30 181 55 24 02 451 204 531 1181 562 24 57 78 362 24 59 161 1363 1039 127 123 49 33 258	-29 1 -13 -7 5 7 -7 -5 7 -7 -37 -65 0 25 -19 30 7 49 -8 -105 -19 -19 -20 -29 -19 -19 -5 -1 -28 -8 -165 -24 -32 -48 -57 -11 -11 -11 -11 -22 -11 -11 -11 -12 -11 -11	0.66 0.07 1.59 0.86 0.41 1.27 6.49 6.18 0.00 1.27 2.53 2.63 0.49 1.35 1.23 2.59 4.93 5.53 4.30 0.55 0.10 2.15 0.60 6.12 5.24 1.15 6.26 2.42 0.42 0.42 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 1.77 1.40 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2	138 7 1 1 2 10 0 4 4 3 3 0 6 6 5 102 0 198 0 198 0 198 2 10 2 19 12 2 2 19 15 16 16 2 3 3 3 3 6 114 90 7 13 16 1 17 8	128 13 2 6 14 0 11 8 8 11 6 3 2 5 5 117 3 1 156 2 0 0 2 3 3 17 1 23 25 5 3 19 3 16 6 23 0 86 6 7 129 86 6 7 129 86 5 2 0 0 1 1 28 1	10 -6 -1 -1 -4 -4 -0 -3 -5 -1 -1 -0 -3 -3 -1 -1 -1 -2 -4 -3 -7 -1 -1 -1 -1 -1 -2 -4 -3 -3 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.87 1.90 0.82 2.00 1.15 0.00 1.90 2.13 1.41 0.00 0.00 1.43 2.45 1.41 2.00 0.00 0.00 1.43 2.45 1.41 2.00 2.31 1.41 2.00 2.45 1.41 2.00 2.45 1.41 2.83 1.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4SL	117169	Meso	73	38	35	4.70	0	1	-1	1.41	62	41	21	2.93	3	0	3	2.45
4NR 4WR	117170 117171		0 26	12 24	-12 2	4.90 0.40	2	0	2	0.00 2.00	0 28	12 6	-12 22	4.90 5.34	0 4	0	-1 4	1.41 2.83
4NT	117172	Meso	229	196	33	2.26	24	15	9	2.04	243	236	7	0.45	23	22	1	0.21
4WL 4ST	117173 117174		35 140	14	-21 -2	4.24 0.17	1 20	11	9	1.41 2.29	21 125	6 140	15 -15	4.08 1.30	1 22	1 11	0 11	0.00 2.71
52EL 52SR	13089151 13089152		20	1 2	19 -2	5.86	1 0	3	-2	1.41 3.16	13	3	10 0	3.54	8	4	4 -4	1.63 2.83
31EL	13089157		0 351	341	10	2.00 0.54	19	5 21	-5 -2	0.45	0 343	0 318	25	0.00 1.38	0 24	22	2	0.42
31SL 39SL	13089166 13089176		79 89	61 64	18 25	2.15 2.86	11	8	-7	0.97 3.30	88 102	90 74	-2 28	0.21 2.98	9	5	5 -2	1.96 1.00
38WL 47WL	13089177	Meso	88	68 17	20	2.26	1	6	-5	2.67	102	67	35	3.81	3	5	-2 0	1.00 0.00
47VL 47NL	13089187 13089188		25 35	48	-13	1.75 2.02	3	2	1	0.82 0.63	32 39	20 40	12 -1	2.35 0.16	3	1	2	1.41
34WL 34WT	13089197 13089198		17 55	18 26	-1 29	0.24 4.56	3 1	1 1	0	1.41 0.00	24 52	15 33	9 19	2.04 2.91	1 4	0	-1 4	0.82 2.83
34WR	13089199	Meso	24	8	16	4.00	0	0	0	0.00	25	3	22	5.88	1	1	0	0.00
34ER 34ET	13089200 13089201		34 38	20 24	14 14	2.69 2.51	1	0	1	0.00 1.41	28 50	43 66	-15 -16	2.52 2.10	0	2	-1 -2	1.41 2.00
34EL 34SR	13089202 13089203		69 242	61 222	8 20	0.99 1.31	7 5	3 4	4	1.79 0.47	77 237	67 270	10 -33	1.18 2.07	0 4	3	-1 1	1.41 0.53
34SL	13089204	Meso	25	10	15	3.59	0	0	0	0.00	21	15	6	1.41	0	0	0	0.00
34NL 46SL	13089206 13089483		145 24	155	-10 18	0.82 4.65	0	12 0	-8 0	2.83 0.00	161 31	200	-39 20	2.90 4.36	6	7	-1 0	0.39
46ST 46SR	13089484 13089485		74 19	80 18	-6 1	0.68 0.23	0	0	0	0.00	60 25	100 12	-40 13	4.47 3.02	0 1	0	0	0.00 1.41
46EL	13089486	Micro	2	9	-7	2.98	0	0	0	0.00	1	12	-11	4.31	0	0	0	0.00
46NT 48WL	13089487 13089503		39 36	31 23	13	1.35 2.39	7	2	-2	3.74 2.00	37 35	42 32	-5 3	0.80	0	1	-1 -1	1.41 1.41
48WR 48NR	13089504 13089505		9 4	11	-2 -2	0.63 0.89	1 0	5	-4 0	2.31 0.00	8 4	12 11	-4 -7	1.26 2.56	0	4 0	-4 0	2.83 0.00
48SL	13089506	Meso	40	20	20	3.65	3	0	3	2.45	43	29	14	2.33	1	0	1	1.41
81NL 22WR	13089549 13089736		116 0	109	7	0.66 0.00	0	3 18	-2 -18	1.41 6.00	128 0	147 0	-19 0	1.62 0.00	0	17	-17	1.41 5.83
53ER 53WL	13089812 13089814		1386 578	1331 466	55 112	1.49 4.90	112 29	102 25	10 4	0.97 0.77	1186 545	1205 463	-19 82	0.55 3.65	135 19	116 28	19 -9	1.70 1.86
33EL	13089842	Meso	244	235	9	0.58	9	10	-1	0.32	241	243	-2	0.13	7	14	-7	2.16
35NL 35WL	13089853 13089854	Meso	99	95 37	-29	0.41 6.11	8	11	-3 -1	0.97 1.41	106 8	115 26	-9 -18	0.86 4.37	7	13	-6 0	1.90 0.00
35WT 35WR	13089855 13089856	Meso	95 29	67 22	28 7	3.11 1.39	2	0	2	2.00 1.41	94 22	68 26	26 -4	2.89 0.82	3 2	6 2	-3 0	1.41 0.00
35ET	13089857	Meso	56	36	20	2.95	0	4	-4	2.83	42	47	-5	0.75	1	4	-3	1.90
35NR 35SL	13089858 13089859		8 24	23 18	-15 6	3.81 1.31	1	1	0	0.00	13 29	15 19	-2 10	0.53 2.04	0	1	-1	0.00 1.41
23ER 59ET	13090099 13090152		10	0 19	-9	0.00 2.36	0	0	-1	0.00	9	0 12	-3	0.00	0	0	0	0.00
59WT	13090153	Meso	28	23	5	0.99	0	0	0	0.00	17	22	-5	1.13	0	1	-1	1.41
59WL 59WR	13090154 13090155		14	15 9	-1 -7	0.26 2.98	0 1	0	-1 1	1.41 1.41	26 0	14 8	12 -8	2.68 4.00	2	1	-1 1	1.41 0.82
59SL 59NR	13090156 13090157		79 16	56 2	23 14	2.80 4.67	0	0	0	0.00	102 17	26 0	76 17	9.50 5.83	1 0	0	1 0	1.41 0.00
68SL	13090179	Micro	689	609	80	3.14	44	54	-10	1.43	613	639	-26	1.04	49	47	2	0.29
66SL 66ST	13090338 13090339		10 50	26 32	-16 18	3.77 2.81	0	3 1	-3 -1	2.45 1.41	13 33	30 53	-17 -20	3.67 3.05	0	1	-2 -1	2.00 1.41
66SR 66EL	13090340 13090341		27 15	13 16	14 -1	3.13 0.25	2 0	0 2	-2	2.00	32 21	11 28	21 -7	4.53 1.41	2 5	0	5	0.82 3.16
66NT	13090342	Micro	54	65	-11	1.43	0	2	-2	2.00	67	90	-23	2.60	0	4	-4	2.83
69SL 69SR	13090343 13090345		15 6	13	-7	4.95 2.27	3	0	-2 3	2.00 2.45	6 11	10 15	-4 -4	1.41	0	2	-2	0.00 2.00
69EL 55NR	13090346 13119550		90 48	40 52	50 -4	6.20 0.57	5 0	4 4	-4	0.47 2.83	83 52	69 62	14 -10	1.61 1.32	6	2 2	-2	2.00
55WL	13119551	Meso	74	83	-9	1.02	0	0	0	0.00	80	77	3	0.34	0	2	-2	2.00
15NL 15EL	13119942 13119943		140 60	30 36	110 24	11.93 3.46	11 0	0	11 0	4.69 0.00	114 45	37 62	-17	8.86 2.32	8	0	7	3.30 0.00
63NR 63NL	13120448 13120449		0	3	-1 -3	1.41 2.45	0	0	0	0.00	0	6	-1 -6	1.41 3.46	0	0	-4 0	2.83 0.00
63ER	13120450	Meso	7	15	-8	2.41	0	0	0	0.00	16	17	-1	0.25	2	1	1	0.82
63WL 63ST	13120451 13120452		15 22	9 28	-6	1.73 1.20	3	0	3	0.00 2.45	15 21	21 35	-6 -14	1.41 2.65	2	1	1	0.00 0.82
63NT 64EL	13120458 13168443		0 32	10 19	-10 13	4.47 2.57	2	0 2	0	0.00	0 25	6 30	-6 -5	3.46 0.95	0 2	0	0	0.00 0.82
64NT	13168444	Micro	26	36	-10	1.80 4.68	2	2	0	0.00 0.11	22	37	-15	2.76	1 77	1	0	0.00 2.64
31ET 40NR	13405771 13405912	Meso	1146 0	1310 6	-164 -6	3.46	81 0	0	-1 0	0.00	1075 0	1102 8	-27 -8	0.82 4.00	0	0	-25 0	0.00
52ST 52ER	13405918 13405919		559 225	577 224	-18 1	0.76 0.07	39 4	38 5	-1	0.16 0.47	531 265	477 215	54 50	2.41 3.23	48 10	50 7	-2 3	0.29 1.03
55WT 55NL	13406071 13406072	Meso	854 72	956 39	-102 33	3.39 4.43	36 3	52 2	-16 1	2.41 0.63	843 56	852 56	-9 0	0.31	54 0	48 5	6 -5	0.84 3.16
71WT	13406099	Meso	771	627	144	5.45	13	13	0	0.00	702	603	99	3.88	11	11	0	0.00
71WL 71ETR	13406100 13406104		121 106	87 142	-36	3.33 3.23	3 5	3	2	0.63 1.00	111 95	111 129	-34	0.00 3.21	6 10	9	1	2.00 0.32
71NR 71NL	13406109 13406110	Meso	75 229	85 246	-10 -17	1.12 1.10	0 2	1 5	-1 -3	1.41 1.60	87 254	65 237	22 17	2.52 1.08	1 10	3 7	-2 3	1.41 1.03
72NR	13406231	Meso	66	54	12	1.55	1	2	-1	0.82	84	51	33	4.02	3	0	3	2.45
9ET 9WT	13406258 13406262	Meso	399 686	312 671	87 15	4.61 0.58	4 12	9 16	-5 -4	1.96 1.07	351 697	345 587	6 110	0.32 4.34	11 21	12 15	-1 6	0.29 1.41
22EL 20WT	13406293 13406439		57 442	41 421	16 21	2.29 1.01	8 26	4 26	4 0	1.63 0.00	40 468	69 398	-29 70	3.93 3.36	18 43	5 24	13 19	3.83 3.28
20WL	13406440	Meso	226	195	31	2.14	2	12	-10	3.78	225	278	-53	3.34	1	6	-5	2.67
20ETR 20NL	13406443 13406448	Meso	376 198	315 132	61 66	3.28 5.14	27 5	11	16 4	3.67 2.31	316 134	334 131	-18 3	1.00 0.26	37 5	17	20 3	3.85 1.60
20NR 21NL	13406449 13406675		86 68	96 87	-10 -19	1.05 2.16	3 1	5 18	-2 -17	1.00 5.52	70 64	150 131	-80 -67	7.63 6.79	9 2	7	2 -16	0.71 5.06
74EL	13406690	Meso	725	694	31	1.16	34	41	-7	1.14	737	658	79	2.99	33	39	-6	1.00
53ET 53NL.AM	13406693 13406696	Meso	1253 2730	1310 2898	-57 -168	1.59 3.17	131 146	135 137	-4 9	0.35 0.76	1179 2324	1223 2599	-44 -275	1.27 5.54	127 144	142 135	-15 9	1.29 0.76
53NR.AM 12ET	13406697 13406725		676 1257	618 1213	58 44	2.28 1.25	25 96	28 83	-3 13	0.58 1.37	666 1044	569 1016	97 28	3.90 0.87	25 108	26 105	-1 3	0.20 0.29
12NR	13406726	Meso	54	43	11	1.58	1	1	0	0.00	43	45	-2	0.30	1	3	-2	1.41
12SL 12WL	13406727 13406731	Meso	4 0	35 18	-31 -18	7.02 6.00	4 0	1	-1	2.83 1.41	8 2	24 8	-16 -6	4.00 2.68	0	0	0	2.00 0.00
12WT 33WL	13406732 13406803		2322 192	2310 193	12 -1	0.25 0.07	128 9	134 13	-6 -4	0.52 1.21	1909 221	1821 224	-3	2.04 0.20	117 16	121 6	-4 10	0.37 3.02
5NL	13406817	Meso	147	114	33	2.89	16	11	5	1.36	156	132	24	2.00	22	12	10	2.43
14STR 14SL	13406825 13406826	Meso	94 35	98 45	-4 -10	0.41 1.58	0	1	-4 -1	2.83 1.41	105 36	92 33	13 3	1.31 0.51	1	0	-2 1	2.00 1.41
14WTR 14EL	13406829 13406831	Meso	654 32	618 27	36 5	1.43 0.92	3 1	2	1 0	0.63 0.00	642 34	657 24	-15 10	0.59 1.86	13 0	9	4 0	1.21 0.00
14ETR	13406832	Meso	118	121	-3	0.27	8	3	5	2.13	113	133	-20	1.80	2	3	-1	0.63
29SL 29ET	13406949 13406950	Meso	27 232	43 229	-16 3	2.70 0.20	2 12	17	-5	0.82 1.31	35 198	32 236	-38	0.52 2.58	10	3 21	-2 -11	1.41 2.79
29NR 27NT	13406951 13406968		41 279	37 281	-2	0.64 0.12	9	1 11	-1 -2	1.41 0.63	37 275	24 294	13 -19	2.35 1.13	1 13	0 13	1 0	1.41 0.00
	, .5-00500	.,,,,,,,,	213	201		V. 12				0.00	213	204	-13	1.10	13	- 10		0.00

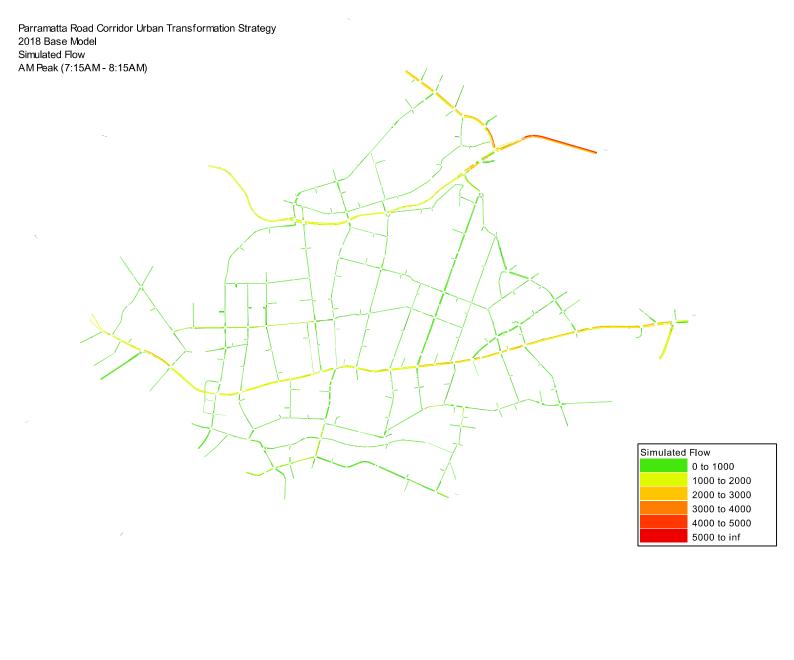
27ER 13406674 Masco 77 38 39 5.14 4 1 3 190 76 28 48 6.66 3 1 2 1.41 27ER 13406674 Masco 9 13 4 121 4 1 3 190 76 28 48 6.66 3 1 2 1.41 27ER 13406674 Masco 9 13 4 121 4 1 3 190 20 16 4 0.94 0 0 9 4.24 27ER 13406676 Masco 502 528 -6 0.28 20 15 5 120 598 591 07 4.14 26 16 10 2.18 28ESTR 13406905 Masco 10 20 -10 228 33 1 2 141 22 18 4 0.99 6 0 6 3.46 28UTR 13406906 Masco 206 173 93 6.23 77 1 6 3.00 229 181 111 722 12 6 6 20 28ET 1340700 Masco 56 46 10 148 9 1 8 3.58 69 42 27 3.62 6 0 8 3.46 28EL 1340700 Masco 56 46 10 148 9 1 8 3.58 69 42 27 3.62 6 0 8 3.46 28EL 1340700 Masco 56 46 10 148 9 1 8 3.58 69 42 27 3.62 6 0 8 3.46 28EL 1340700 Masco 56 46 10 148 9 1 8 3.58 69 42 27 3.62 6 0 8 3.46 28EL 1340700 Masco 56 57 11 141 10 3 7 2.75 58 60 1 3 3 3 3 5 5 1 4 4 2 2 28EL 1340700 Masco 6 55 5 11 141 10 3 7 2.75 59 60 -2 2.02 8 1 7 3 3 28EL 1340702 Masco 6 55 5 11 141 10 3 7 2.75 59 60 -2 2.02 8 1 7 7 3.30 28EL 1340702 Masco 6 55 5 11 141 10 3 7 2.75 59 60 -2 2.02 8 1 7 7 3.30 28EL 1340702 Masco 6 55 5 11 141 10 3 7 2.75 59 60 -2 2.02 8 1 7 7 3.30 28EL 1340702 Masco 6 55 5 11 141 10 3 7 2.75 59 60 -2 2.02 8 1 7 7 3.30 28EL 1340702 Masco 6 55 5 11 141 10 0 3 7 2.75 59 60 -2 2.02 8 1 7 7 3.30 28EL 1340702 Masco 6 6 55 5 11 141 10 0 3 7 2.75 59 60 -2 2.02 8 1 7 7 3.30 2	27NL	12400000	Mana	36	13	23	4 65	1	1	0	0.00	44	17	27	4 89	2	1	1	0.82
Fig. 13400074 Meso 9 13 4 121 4 1 3 150 20 16 4 634 9 0 9 4.74									-										0.02
Page 18									_		1100								
PRINT 13406990 Miso																_			
285E 13407091 Mac 10 20 10 258 3 1 2 141 22 18 4 0.09 6 0 6 3.40																			
Description 1980																			
EEET						_			-										
EREL 13407001 Mero 86 36 50 6.40 4 1 3 190 56 45 11 1.55 5 1 4 2.31																			
ESSITE 134/0711 Meso									_										
ESSIL 13407017 Meso 6 12 -6 200 1 0 1 141 6 111 -5 171 3 0 3 2.45																			
EMPTR 140/701 Meso														-			_		
ESETR 13407022 Meso								-											
ESEL 15407023 Meso 35 16 19 3.76 4 2 2 11.5 28 34 -6 10.8 9 0 9 4.24 4.04 4.05 1.08 1.08 1.09 1.00									_										
HAWIR 19803389 Meso 61 49 12 162 0 0 0 0 0 0 0 0 0										· ·									
TANTR 19803398 Meso 153 100 53 471 1 2 -1 0.082 125 126 -1 0.09 4 2 2 2 115						_											_		
TAMEL 13803378 Meso 3 9 6 2.45 0 0 0 0 0.00 5 20 -15 4.24 3 1 2 1.41																			
19SL																			
HSSTR 13803339 Meso 304 243 61 3.89 20 15 5 1.20 286 283 3 0.18 19 16 3 0.72									_										
19NT						<u> </u>													
19NL 13603400 Meso 57 35 22 3.24 4 8 4 1.63 48 51 -3 0.43 6 6 0 0.00 19ER 13603404 Meso 63 27 9 1.60 12 8 4 1.26 28 37 -9 1.58 2 5 -3 1.60 19EL 13603405 Meso 63 20 43 6.67 0 3 -3 2.45 62 35 27 3.88 0 5 -5 3.16 21WT 13603995 Meso 224 203 81 5.19 0 4 -4 2.83 2.83 2.88 -5 0.30 0 1 -1 1.41 32WL 13604612 Meso 46 10 3.6 6.80 0 0 0 0 0.00 4.5 31 14 2.27 0 1 -1 1.41 32ER 13604614 Meso 22 19 3 0.68 0 0 0 0 0.00 2.8 2.5 3 0.58 4 1 3 1.90 32NL 13604615 Meso 53 15 38 6.52 0 1 -1 1.41 50 17 33 5.70 0 0 0 0.00 32NR 13604615 Meso 0 0 0 0 0 0 0 1 -1 1.41 0 41SR 1360620 Meso 0 0 0 0 0 0 0 0 0																			
19ER 13803404 Meso 36 27 9 160 12 8 4 120 28 37 -9 1.58 2 5 -3 160 19EL 13803405 Meso 284 203 81 5.19 0 4 -4 2.83 228 228 228 -5 0.30 0 1 -1 1.41 32WL 13804812 Meso 46 10 36 6.80 0 0 0 0 0 0 0 0 32ER 13804814 Meso 22 19 3 0.66 0 0 0 0 0 0 0 28 25 3 0.58 4 1 3 3 32NL 13804815 Meso 53 115 38 6.52 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 13804816 Meso 0 2 -2 2.00 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 13804824 Meso 0 0 0 0 0 0 0 0 0																			
19EL 13803405 Meso 63 20 43 6.87 0 3 3 3 2.45 62 35 27 3.88 0 5 5.5 3.16 21WT 13803995 Meso 284 203 81 5.19 0 4 4 2.83 283 288 -5 0.30 0 1 -1 1.41 32ER 13804612 Meso 46 10 36 6.80 0 0 0 0 0 0 0 32PL 13804612 Meso 22 19 3 0.66 0 0 0 0 0 0 32NL 13804615 Meso 53 15 38 6.52 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 13604617 Meso 0 2 -2 2.00 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 13604617 Meso 0 2 -2 2.00 0 1 -1 1.41 50 9 -9 4.24 0 1 -1 1.41 41SR 1360620 Meso 0 0 0 0 0 0 0 0 0																			
21WT 13603995 Meso 284 203 81 5.19 0 4 -4 2.83 283 288 -5 0.30 0 1 -1 1.41																			
32WL 13604612 Meso 48 10 36 6.80 0 0 0 0 0.00 45 31 14 2.27 0 1 -1 1.41 32ER 13604614 Meso 22 19 3 0.66 0 0 0 0 0.00 28 25 3 0.58 4 1 3 1.90 32NL 13604615 Meso 53 15 38 6.52 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 1360467 Meso 0 2 -2 2.00 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 13606020 Meso 0 2 -2 2.00 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 32NR 13606020 Meso 0 2 -2 2.00 0 1 -1 1.41 0 9 -9 4.24 0 1 -1 1.41 41SR 13606020 Meso 0 0 0 0 0 0 0 0 0																			
32ER 13604614 Meso 22 19 3 0.66 0 0 0 0.000 28 25 3 0.58 4 1 1 3 1.90 32NL 13604615 Meso 53 15 38 6.52 0 1 1 -1 1.41 50 17 33 5.70 0 0 0 0 0.00 32NR 13604617 Meso 0 2 -2 2.20 0 0 1 1 -1 1.41 50 17 33 5.70 0 0 0 1 1.1 1.41 41SR 13606020 Meso 0 0 0 0 0 0.00 0 0 4 -4 2.83 0 0 0 0 0 0.00 0 4 -4 2.83 1WT.AM 13608779 Meso 2111 2181 7.70 1.51 117 119 -2 0.18 1729 1654 75 1.82 103 98 5 0.50 1WR.PM 13608780 Meso 146 189 43 3.32 6 7 -1 0.39 196 151 45 3.42 4 5 -1 0.47 1WR.PM 13608781 Meso 1 146 189 -43 3.32 6 7 -1 0.39 196 151 45 3.42 4 5 -1 0.47 1WL.AM 13608781 Meso 21 27 -6 122 0 4 -4 2.83 26 28 -2 0.38 0 0 0 0 0 0.00 1WL.PM 13608780 Meso 21 27 -6 122 0 4 -4 2.83 26 28 -2 0.38 0 0 0 0 0.00 1WL.PM 13608780 Meso 5 123 99 24 2.28 13 8 5 1.54 129 127 2 0.18 15 4 11 3.57 70ER 13610952 Meso 39 25 14 2.47 7 0 7 3.74 39 18 21 3.93 2 1 1 1 0.82 70ET 13610955 Meso 0 1 -1 1.4 1.41 0 0 0 0 0.00 0 3 3 -3 2.45 0 0 0 0 0.00 70NR 13610955 Meso 44 28 16 2.67 1 0 1 1.41 53 25 28 4.48 0 2 2 -2 2.00 70WT 13610956 Meso 6 44 28 16 2.67 1 0 1 1.41 53 25 25 28 4.48 0 2 2 -2 2.00 21SR 13610957 Meso 241 188 53 3.62 8 3 3 5 2.13 202 218 -16 1.10 7 5 5 2 0.82 21SR 13611261 Meso 28 34 -6 1.08 0 0 0 0 0.00 19 55 -36 5.55 2 12 12 -10 3.78	21WT	13603995	Meso	284	203	_	5.19	0	4	-4	2.83	283	288	-5	0.30	0	1		1.41
32NL 13604615 Meso 53 15 38 6.52 0 1 1 -1 1.41 50 17 33 5.70 0 0 0 0 0.00 32NR 13604617 Meso 0 2 -2 200 0 1 -1 1.41 50 17 33 5.70 0 0 0 0 0.00 4 4 4 2.83 0 0 0 0 0.00 0 4 4 4 2.83 10 0 0 0 0.00 0 4 4 4 2.83 10 0 0 0 0.00 0 4 4 4 2.83 10 0 0 0 0.00 0 0 4 4 4 2.83 10 0 0 0 0 0.00 0 0 4 4 4 2.83 10 0 0 0 0 0.00 0 0 4 4 4 2.83 10 0 0 0 0 0.00 0 0 4 4 4 2.83 10 0 0 0 0 0.00 0 0 4 4 4 2.83 10 0 0 0 0 0.00 0 0 0 4 4 4 2 8 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32WL	13604612	Meso	46	10	36	6.80	0	0	0	0.00	45	31	14	2.27	0	1		1.41
32NR 13604617 Meso 0 2 -2 2.00 0 1 -1 -1 1.41 0 9 9 -9 4.24 0 1 1 -1 1.41 1.41 41 1.58 13606000 Meso 0 0 0 0 0.00 0 4 -4 2.83 0 0 0 0 0.00 0 4 -4 2.83 10 0 0 0 0.00 0 4 -4 2.83 10 0 0 0 0.00 0 4 -4 2.83 10 0 0 0 0 0.00 0 0 4 -4 2.83 10 0 0 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0	32ER	13604614	Meso	22			0.66	0	0	0	0.00	28	25	3	0.58				1.90
41SR 13606020 Meso 0 0 0 0 0.00 0 4 -4 283 0 0 0 0 0.00 0 4 -4 283 1WT.AM 13608779 Meso 2111 2181 -70 1.51 117 119 -2 0.18 1729 1654 75 182 103 98 5 0.50 1WR.PM 13608780 Meso 146 189 -43 3.32 6 7 -1 0.39 196 151 45 3.42 4 5 -1 0.47 1WR.PM 13608784 Meso 1 110 13608780 Meso 21 27 -6 122 0 4 -4 2.83 26 28 -2 0.38 0 0 0 0 0.00 1WL.PM 13608788 Meso 21 27 -6 122 0 4 -4 2.83 26 28 -2 0.38 0 0 0 0 0.00 1WL.PM 13608788 Meso 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32NL	13604615	Meso	53	15	38	6.52	0	1	-1	1.41	50	17	33	5.70	0	0	0	0.00
1WT.AM	32NR	13604617	Meso	0	2	-2	2.00	0	1	-1	1.41	0	9	-9	4.24	0	1	-1	1.41
1	41SR	13606020	Meso	0	0	0	0.00	0	4	-4	2.83	0	0	0	0.00	0	4	-4	2.83
TWR-PM	1WT.AM	13608779	Meso	2111	2181	-70	1.51	117	119	-2	0.18	1729	1654	75	1.82	103	98	5	0.50
TWLPM	1WR.AM	13608780	Meso	146	189	-43	3.32	6	7	-1	0.39	196	151	45	3.42	4	5	-1	0.47
TWLAM 13608787 Meso 21 27 -6 1.22 0 4 -4 2.83 26 28 -2 0.38 0 0 0 0.00	1WR.PM	13608783	Meso																
1	1WT.PM	13608784	Meso																
Sanl-PM 13608794 Meso Sanl-PM 13608795 Meso Sanl-PM 13608795 Meso Sanl-PM 13609795 Meso Sanl-PM Sa	1WL.AM	13608787	Meso	21	27	-6	1.22	0	4	-4	2.83	26	28	-2	0.38	0	0	0	0.00
53NR.PM 13608795 Meso 123 99 24 2.28 13 8 5 1.54 129 127 2 0.18 15 4 11 3.57 70ER 13610952 Meso 39 25 14 2.47 7 0 7 3.74 39 18 21 3.93 2 1 1 0.82 70NL 13610954 Meso 0 1 -1 1.41 0 0 0 0.00 0 3 -3 2.45 0 0 0 0.00 70NR 13610955 Meso 44 28 16 2.67 1 0 1 1.41 53 25 28 4.48 0 2 -2 2.00 70WT 13610956 Meso 64 80 -16 1.89 2 5 -3 1.60 44 111 67 7.61 0 1 -1 1.1 70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 218 -16 1.10 7 5 2 0.82 21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0 0.00 19 55 -36 5.92 0 0 0 0.00 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -56 5.25 2 12 -10 3.78	1WL.PM	13608788	Meso																
70ET 13610952 Meso 123 99 24 2.28 13 8 5 1.54 129 127 2 0.18 15 4 11 3.57 70ER 13610953 Meso 39 25 14 2.47 7 0 7 7 3.74 39 18 21 3.93 2 1 1 0.82 70NL 13610954 Meso 0 1 -1 1.41 0 0 0 0 0 0 0 3 -3 2.45 0 0 0 0 70NR 13610955 Meso 44 28 16 2.67 1 0 1 1.41 53 25 28 4.48 0 2 -2 2.00 70WT 13610956 Meso 64 80 -16 1.89 2 5 -3 1.60 44 111 -67 7.61 0 1 -1 70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 2.18 -16 1.10 7 5 2 0.82 21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0 0 0 0 0 4SEL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78 70ET 3.67	53NL.PM	13608794	Meso																
70ER 13610953 Meso 39 25 14 2.47 7 0 7 3.74 39 18 21 3.93 2 1 1 0.82 70NL 13610954 Meso 0 1 -1 1.41 0 0 0 0 0.00 0 3 -3 2.45 0 0 0 0.00 70NR 13610955 Meso 44 28 16 2.67 1 0 1 1.41 53 25 28 4.48 0 2 -2 2.00 70WT 13610956 Meso 64 80 -16 1.89 2 5 -3 1.60 44 111 -67 7.61 0 1 -1 1.41 70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 218 -16 1.10 7 5 2 0.82 21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0 0.00 19 55 -36 5.92 0 0 0 0.00 45EL 13611806 Micro 1120 1166 -46 1.36 90 92 -2 0.21 1066 1040 26 0.80 91 104 -13 1.32 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.76	53NR.PM	13608795	Meso																
70NL 13610954 Meso 0 1 -1 1.41 0 0 0 0.000 0 3 -3 2.45 0 0 0 0.000 70NR 13610955 Meso 44 28 16 2.67 1 0 1 1.41 53 25 28 28 4.48 0 2 -2 2.00 70WT 13610956 Meso 64 80 -16 1.89 2 5 -3 1.60 44 111 -67 7.61 0 1 -1 1.41 70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 218 -16 1.10 7 5 2 0.62 21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0 0.00 19 55 -36 5.92 0 0 0 0.00 45ET 13611806 Micro 1120 1166 -46 1.36 90 92 -2 2.29 1066 1040 26 0.80 91 104 -13 1.32 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78	70ET	13610952	Meso	123	99	24	2.28		8	5	1.54	129	127	2	0.18	15	4	11	3.57
70NR 13610955 Meso 44 28 16 2.67 1 0 1 1.41 53 25 28 4.48 0 2 -2 2.00 70WT 13610956 Meso 64 80 -16 1.89 2 5 -3 1.60 44 111 -67 7.61 0 1 -1 70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 218 -16 1.10 7 5 2 0.82 21SR 13611251 Meso 22 34 -6 1.08 0 0 0 0 0.00 19 55 -36 5.92 0 0 0 0.00 45ET 13611806 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.32 4.48 0 2 -2 2.00 4.51 1.51 1.51 1.51 1.51 1.51 1.52 1.51 1.51 1.52 1.51 1.55	70ER	13610953	Meso	39	25	14	2.47	7	0	7	3.74	39	18	21	3.93	2	1	1	0.82
70WT 13610956 Meso 64 80 -16 1.89 2 5 -3 1.60 44 111 -67 7.61 0 1 -1 1.41 70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 218 -16 1.10 7 5 2 0.82 21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0.00 19 55 -36 5.92 0 0 0 0.00 45ET 13611806 Micro 1120 1166 -46 1.36 90 92 -2 0.21 1066 1040 26 0.80 91 104 -13 1.32 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78	70NL	13610954	Meso	0	1	-1	1.41	0	0	0	0.00	0	3	-3	2.45	0	0	0	0.00
70WL 13610957 Meso 241 188 53 3.62 8 3 5 2.13 202 218 -16 1.10 7 5 2 0.82 21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0 19 55 -36 5.92 0 0 0 0.00 45ET 13611806 Micro 1120 1166 -46 1.36 90 92 -2 0.21 1066 1040 26 0.80 91 104 -13 1.32 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78	70NR	13610955	Meso	44	28	16	2.67	1	0	1	1.41	53	25	28	4.48	0	2	-2	2.00
21SR 13611251 Meso 28 34 -6 1.08 0 0 0 0.00 19 55 -36 5.92 0 0 0 0 0.00 45ET 13611806 Micro 1120 1166 -46 1.36 90 92 -2 0.21 1066 1040 26 0.80 91 104 -13 1.32 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78	70WT	13610956	Meso	64	80	-16	1.89	2	5	-3	1.60	44	111	-67	7.61	0	1	-1	1.41
45ET 13611806 Micro 1120 1166 -46 1.36 90 92 -2 0.21 1066 1040 26 0.80 91 104 -13 1.32 45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78	70WL	13610957	Meso	241	188	53	3.62	8	3	5	2.13	202	218	-16	1.10	7	5	2	0.82
45EL 13612038 Micro 116 115 1 0.09 2 9 -7 2.98 93 151 -58 5.25 2 12 -10 3.78	21SR	13611251	Meso	28	34	-6	1.08	0	0	0	0.00	19	55	-36	5.92	0	0	0	0.00
	45ET	13611806	Micro	1120	1166	-46	1.36	90	92	-2	0.21	1066	1040	26	0.80	91	104	-13	1.32
	45EL	13612038	Micro	116	115	1	0.09	2	9	-7	2.98	93	151	-58	5.25	2	12	-10	3.78
43WT 13612111 Micro 1476 1573 -97 2.48 119 156 -37 3.16 1599 1467 132 3.37 117 126 -9 0.82	43WT	13612111	Micro	1476	1573	-97	2.48	119	156	-37	3.16	1599	1467	132	3.37	117	126	-9	0.82
61NR 13613542 Micro 0 0 0 0 0.00 0 2 -2 2.00 0 1 -1 1.41 0 0 0 0.00	61NR			0	0	0	0.00	0	2	-2	2.00	0	1		1.41	0	0	0	0.00

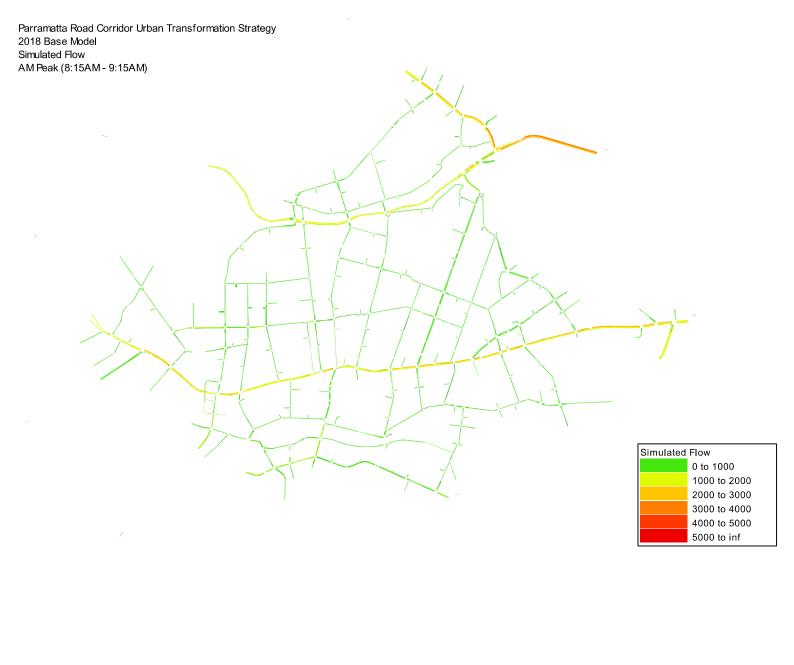
										PM	Peak							
Turn Name	Aimsun ID	Area			.V		0-1730	Н					v		D-1830		IV	
30ST	61436	Meso	Modelled 95	Observed 73	Difference 22	GEH 2.40	Modelled 0	1	Difference -1	GEH 1.41	Modelled 87	Observed 70	Difference 17	GEH 1.92	Modelled 1	0	Difference 1	GEH 1.41
30ER 30NT	61437 61438		403 81	395 100	-19	0.40 2.00	8	18 0	-10 0	2.77 0.00	398 79	398 82	-3	0.00	10 1	17 0	-7 1	1.91 1.41
30EL 30NL	61439 61440		100 370	64 295	36 75	3.98 4.11	3 7	10	-3	1.41	99 343	68 355	31 -12	3.39 0.64	0 13	10	0	0.00 0.88
30SR 29WT	61441 61459		150 439	155 380	-5 59	0.40 2.92	0 4	0 13	0 -9	0.00 3.09	136 467	88 459	48 8	4.54 0.37	1 6	0 12	1 -6	1.41 2.00
29NL 29SR	61460 61461	Meso	27 172	25 188	2 -16	0.39 1.19	0	0 8	0 -8	0.00 4.00	23 133	27 165	-4 -32	0.80	0	0 4	0 -4	0.00
29WL	61462	Meso	12	17	-5	1.31	0	0	0	0.00	14	23	-9	2.09	0	0	0	0.00
29ER 29ST	61463 61464	Meso	24 108	14 154	10 -46	2.29 4.02	0	0	0	0.00	23 128	27 152	-4 -24	0.80 2.03	0	2	-2	0.00 2.00
29WR 29EL	61465 61466		34 239	65 237	-31 2	4.41 0.13	0	1	0 -1	0.00 1.41	40 276	52 205	-12 71	1.77 4.58	3	1	2	0.00 1.41
29NT 31WR	61467 69795	Meso Micro	125 397	191 416	-66 -19	5.25 0.94	0	3	-3	0.00 2.45	133 392	136 378	-3 14	0.26 0.71	0	2	-2	0.00 2.00
31SR 31WT	69796 69797		427 1225	432 1221	-5 4	0.24	4 44	9 43	-5 1	1.96 0.15	448 1266	429 1258	19 8	0.91 0.23	9 41	3 29	6 12	2.45 2.03
76ET 76NR	69812 69813		1429 115	1313 147	116 -32	3.13 2.80	60 4	58 8	2 -4	0.26 1.63	1485 121	1554 121	-69 0	1.77 0.00	53 6	37 2	16 4	2.39 2.00
76WT 76NL	69814 69815	Micro	1514 142	1487 138	27 4	0.70 0.34	45 1	46 1	-1 0	0.15 0.00	1554 145	1570 132	-16 13	0.40 1.10	39 1	33 0	6	1.00 1.41
76WL	69816	Micro	72	58	14	1.74	0	4 3	-4	2.83	79	68	11 9	1.28	0	0 4	0 -4	0.00
76ER 56WT	69817 70256	Meso	195 302	261 270	-66 32	4.37 1.89	0 7	8	-3 -1	2.45 0.37	225 335	216 317	18	0.61 1.00	0 14	8	6	2.83 1.81
56NL 56SR	70257 70258	Meso	106 46	65 54	41 -8	4.43 1.13	0	0	-2 0	2.00 0.00	75 36	70 54	5 -18	0.59 2.68	0	0	-1 0	1.41 0.00
56ET 56NR	70259 70260		332 61	391 58	-59 3	3.10 0.39	4 0	14 0	-10 0	3.33 0.00	343 60	372 48	-29 12	1.53 1.63	3 0	15 0	-12 0	4.00 0.00
56SL 56ER	70261 70262	Meso Meso	108 85	86 41	22 44	2.23 5.54	0	1 3	-1 -3	1.41 2.45	128 84	84 31	44 53	4.27 6.99	0	1 3	-1 -3	1.41 2.45
56WL 56ST	70263 70264	Meso	55 114	62 152	-7 -38	0.92 3.30	0	0	0 -3	0.00 2.45	66 140	70 119	-4 21	0.49 1.85	0	0 2	0 -2	0.00 2.00
56EL 56WR	70265 70266	Meso	70	76 25	-6 -3	0.70	4	3 0	1	0.53 1.41	55 41	72	-17 6	2.13 0.97	8	0 0	8	4.00 1.41
56NT	70267	Meso	165	179	-14	1.07	0	5	-5	3.16	165	175	-10	0.77	0	2	-2	2.00
28NL 28SR	71068 71069	Meso	30 69	17 75	-6	0.71	0	3	-1 -3	2.45	27 86	18 98	-12	1.90	0	1	-1	1.41
28WT 28ST	71070 71071	Meso	387 431	372 425	15 6	0.77 0.29	3	9	-5 -6	1.96 2.45	407 434	400 424	7 10	0.35 0.48	6 7	11 3	-5 4	1.71 1.79
28WL 28EL	71072 71073	Meso Meso	156 119	142 108	14 11	1.15 1.03	3	7	-4	1.41 1.79	121 128	141 119	-20 9	1.75 0.81	8	7	8 -4	4.00 1.79
28NT 28WR	71074 71075		456 184	543 154	-87 30	3.89 2.31	2	11	-9 -1	3.53 1.41	474 155	536 123	-62 32	2.76 2.71	5 0	9	-4 0	1.51 0.00
28ET 28NR	71076 71077	Meso	417 80	458 75	-41 5	1.96 0.57	11 0	20	-9 -1	2.29 1.41	449 66	484 61	-35 5	1.62 0.63	9	17	-8 0	2.22 0.00
28SL 39WT	71078 71093	Meso	169 1319	202 1385	-33 -66	2.42	0 46	1 43	-1 3	1.41	176 1415	187	-11 27	0.82 0.72	0 48	0 28	0 20	0.00
39NL	71094	Micro	116	137	-21	1.87	5	2	3	1.60	116	94	22	2.15	0	2	-2	2.00
39ET 39EL	71095 71097	Micro	2161 219	2048 243	113 -24	2.46 1.58	78 11	86 4	-8 7	0.88 2.56	2236 224	2173 282	63 -58	1.34 3.65	80 10	63	17 7	2.01 2.75
41ET 41SL	71099 71100		670 83	661 82	9	0.35 0.11	17 2	20	-3 1	0.70 0.82	691 94	613 108	78 -14	3.05 1.39	20 0	13	7 -2	1.72 2.00
41WT 41NL	71101 71102		481 0	495 51	-14 -51	0.63 10.10	3 0	7	-7	2.45 3.74	459 0	466 52	-7 -52	0.33 10.20	10 0	4	-4	2.27 2.83
41EL 41NT	71104 71105		17 1210	54 1131	-37 79	6.21 2.31	8 15	4 17	-2	1.63 0.50	24 1206	64 1125	-40 81	6.03 2.37	4 16	3 13	1 3	0.53 0.79
41WL 41ST	71106 71108		78 626	77 631	1 -5	0.11 0.20	3 2	1 14	2 -12	1.41 4.24	63 601	62 611	1 -10	0.13 0.41	6	0 2	0 4	0.00 2.00
1NT 1EL	73126 73127		195 64	264 53	-69 11	4.55 1.44	0	11	-11 -6	4.69 3.46	201 64	280 74	-79 -10	5.09 1.20	0	13	-13 1	5.10 0.43
1SL	73128		283	262 2223	21	1.27	3 88	3 76	0	0.00	293	270 2211	23	1.37	4 88	3 78	1 10	0.53 1.10
1ST	73129 73130	Meso	2189 247	233	14	0.90	0	9	-9	4.24	2301 272	205	67	4.34	0	7	-7	3.74
1ER 1NL	73132 73134	Meso	116 125	128 80	-12 45	1.09 4.44	0	5 7	-5 -7	3.16 3.74	122 138	136 99	-14 39	1.23 3.58	0	6	-6 -3	3.46 2.45
23EL 23NT	73152 73153	Meso	614 2120	576 2120	38 0	1.56 0.00	32 78	24 82	-4	1.51 0.45	611 2271	612 2251	-1 20	0.04 0.42	26 68	20 66	6 2	1.25 0.24
23SR 23NL	73154 73155		898 28	932 48	-34 -20	1.12 3.24	14 0	24	-10 -2	2.29	957 48	985 45	-28 3	0.90 0.44	10 0	24 0	-14 0	3.40 0.00
23ST 3NL	73156 73175		2259 62	2328 97	-69 -35	1.44 3.93	88 2	88 6	0 -4	0.00 2.00	2383 59	2372 103	11 -44	0.23 4.89	91 3	97	-6 0	0.62
3WT 3NR	73176 73177	Meso	2022 58	1895 173	127 -115	2.87	64 0	80 3	-16 -3	1.89 2.45	2027 62	2058 129	-31 -67	0.69 6.86	63 0	57 7	6 -7	0.77 3.74
3ET 3SL	73178 73179	Meso	1866 139	1715 160	151 -21	3.57 1.72	57 4	69 11	-12 -7	1.51	2012 147	2000	12	0.27 1.98	55 0	46 14	9 -14	1.27
3NT	73180	Meso	298	269	29	1.72	0	7	-7	3.74	316	277	39	2.26	3	3	0	0.00
42ET 42SL	73195 73196	Meso	69 71	182 63	-113 8	0.98	0	0	-1 0	0.00	75 66	182 49	-107 17	9.44 2.24	0	0	0	0.00
42WL 42ER	73197 73198	Meso	33 10	14	19 -9	3.92 2.36	0	0	0	0.00	34 6	28 15	-9	1.08 2.78	0	0	0	0.00
42ST 42WT	73199 73200	Meso	301 47	307 102	-6 -55	0.34 6.37	0	3 1	-2 -1	1.41 1.41	305 48	308 144	-3 -96	0.17 9.80	0	3 1	-3 -1	2.45 1.41
42NL 42SR	73201 73202		63 236	25 248	38 -12	5.73 0.77	2 5	0 11	-6	2.00 2.12	63 231	22 222	41 9	6.29 0.60	2 5	0 13	2 -8	2.00 2.67
42WR 42NT	73203 73204	Meso	66 276	21 322	45 -46	6.82 2.66	1 4	0 4	1	1.41 0.00	56 273	14 322	42 -49	7.10 2.84	1 2	7	0 -5	0.00 2.36
42EL 63EL	73205 73214	Meso	76 247	58 254	18 -7	2.20 0.44	0	0 3	0 3	0.00	61 234	47 269	14	1.91	1 4	0 7	1 -3	1.41 1.28
63WR	73215	Meso	24	55	-31	4.93	0	1	-1	1.41	24	34	-10	1.86	0	1	-1	1.41
63SR 63WT	73216 73217	Meso	242 300	245 294	-3 6	0.19	2	11	-3 -9	1.90 3.53	232 325	278 322	-46 3	2.88 0.17	3	14	-2 -11	2.00 3.77
63SL 63ET	73218 73219	Meso	48 442	49 332	-1 110	0.14 5.59	0	13	-13	0.00 5.10	60 458	55 348	5 110	0.66 5.48	9	0 15	-6	0.00 1.73
35SR 35EL	73221 73223		42 12	35 80	7 -68	1.13 10.03	0	0	0 -1	0.00 1.41	31 19	29 53	2 -34	0.37 5.67	0	0	0	0.00 0.00
35NT 35ER	73224 73225	Meso	335 134	200 123	135 11	8.25 0.97	0	3 9	-3 -8	2.45 3.58	341 140	193 173	148 -33	9.06 2.64	7	3 14	4 -14	1.79 5.29
35ST	73226 73238	Meso	277 516	251 488	26 28	1.60 1.25	1 6	3	-2 -7	1.41 2.27	283	322 472	-39	2.24 1.94	3 4	2	1 -2	0.63 0.89
11ET 11SL	73239	Meso	102	142	-40	3.62	4	13	-10	3.33	515 96	140	43 -44	4.05	3	16	-13	4.22
11NR 11WT	73240 73241	Meso	39 477	50 445	-11 32	1.65 1.49	1	10	-2 -9	2.00 3.84	74 457	43 486	-29	4.05 1.34	0	7	-2 -7	2.00 3.74
11SR 11NL	73242 73243		43 73	57 38	-14 35	1.98 4.70	0	0	0 -1	0.00 1.41	62 65	54 50	8 15	1.05 1.98	0	1 0	-1 0	1.41 0.00
11WR 11EL	73244 73245	Meso	119 145	121 186	-2 -41	0.18 3.19	6 8	10 4	-4 4	1.41 1.63	135 163	128 166	7 -3	0.61 0.23	2 6	6	-4 5	2.00 2.67
11NT	73246	Meso	172	169	3	0.23	7	17	-10	2.89	173	202	-29	2.12	15	15	0	0.00
11WL	73247	Meso	77	74	3	0.35	0	1	-1	1.41	67	92	-25	2.80	0	5	-5	3.16

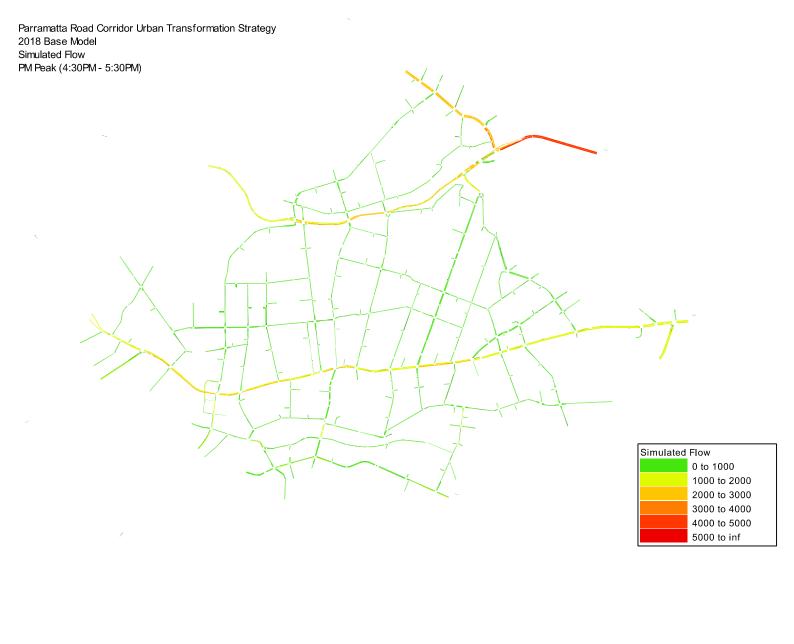
11ER	73248	Meso	48	36	12	1.85	0	0	0	0.00	52	46	6	0.86	0	0	0	0.00
11ST 13ET	73249 73258	Meso Meso	143 350	157 366	-14 -16	1.14 0.85	3 2	15 4	-12 -2	4.00 1.15	142 381	171 334	-29 47	2.32 2.49	3 5	20	-17 5	5.01 3.16
13SL 13NR	73259 73260		58 300	106 259	-48 41	5.30 2.45	0 11	3 8	-3 3	2.45 0.97	67 293	79 248	-12 45	1.40 2.74	1 4	1 5	0 -1	0.00 0.47
13WT	73261	Meso	386	387	-1	0.05	0	4	-4	2.83	383	383	0	0.00	0	1	-1	1.41
13SR 13NL	73262 73263	Meso Meso	51 62	65 25	-14 37	1.84 5.61	0	0	0	0.00	71 49	53 36	18 13	2.29 1.99	0	0	0	0.00
13WL 13ER	73264 73265	Meso Meso	205 40	192 36	13	0.92 0.65	1 0	6	-5 0	2.67 0.00	199 26	194 31	5 -5	0.36 0.94	0	7 0	-7 0	3.74 0.00
13ST 7NL	73266 73268	Meso Meso	146 48	203 44	-57 4	4.31 0.59	3	2 2	1 -2	0.63 2.00	173 48	208 48	-35 0	2.54 0.00	2 2	1	1	0.82 0.82
7SR	73269	Meso	106	119	-13	1.23	0	7	-7	3.74	83	122	-39	3.85	0	4	-4	2.83
7ER 7ST	73270 73271	Meso Meso	182 371	184 346	-2 25	0.15 1.32	0 7	3	-2 4	2.00 1.79	183 385	191 393	-8 -8	0.59 0.41	3 6	3	3	0.00 1.41
7EL 7NT	73272 73273		155 266	161 198	-6 68	0.48 4.46	0 10	9	-9 9	4.24 3.84	167 256	158 216	9 40	0.71 2.60	0	6	-6 0	3.46 0.00
5SL	73275	Meso	9	23	-14	3.50	0	0	0	0.00	11	31	-20	4.36	0	2	-2	2.00
5NR 5ET	73277	Meso	10 325	32 310	-22 15	4.80 0.84	0	12	-12	0.00 4.90	7 330	34 295	-27 35	5.96 1.98	3	8	-5	0.00 2.13
5NT 5EL	73279 73280	Meso Meso	92 71	160 42	-68 29	6.06 3.86	0	0	-1	0.00 1.41	95 61	128 64	-33 -3	3.13 0.38	0	0	0	0.00
5WL 5ST	73281 73282	Meso Meso	8 113	27 95	-19 18	4.54 1.77	0	0 2	0 -2	0.00 2.00	10 87	33 62	-23 25	4.96 2.90	0	1 0	-1 0	1.41 0.00
5ER	73283	Meso	4	107	-103	13.83	0	11	-11	4.69	11	119	-108	13.40	0	13	-13	5.10
5WT 5SR	73284 73285	Meso Meso	146 24	139 29	-5	0.59 0.97	0	11	-11 -1	4.69 1.41	125 27	150 40	-25 -13	2.13 2.25	0	2	-2 -2	1.15 2.00
16NT 16EL	73288 73289	Meso Meso	479 67	467 96	12 -29	0.55 3.21	1 0	5 1	-4 -1	2.31 1.41	467 57	463 84	-27	0.19 3.22	1	0	1	1.41 1.41
16WR 16ST	73290 73291	Meso Meso	26 403	19 367	7 36	1.48 1.83	2 4	0 4	2	2.00 0.00	28 454	23 389	5 65	0.99 3.17	0 5	0 2	0	0.00 1.60
16ER	73292	Meso	101	87	14	1.44	1	0	1	1.41	108	102	6	0.59	0	0	0	0.00
16WL 16SR	73293 73294	Meso Meso	65 156	61 178	-22	0.50 1.70	0	1	-1	0.00 1.41	70 155	91 184	-21 -29	2.34 2.23	0	0	0	0.82 0.00
16NL 16WT	73295 73296	Meso Meso	91 149	89 223	-74	0.21 5.43	0 3	1 11	-1 -8	1.41 3.02	125 115	118 232	-117	0.64 8.88	1 6	9	-3	1.41 1.10
16SL 16NR	73297 73298	Meso Meso	4 109	75 119	-71 -10	11.30 0.94	0	2	-2 -3	2.00 2.45	5 112	87 142	-82 -30	12.09 2.66	0	0	0 -1	0.00 1.41
16ET	73299	Meso	297	361	-64	3.53	0	21	-21	6.48	289	395	-106	5.73	3	20	-17	5.01
15WL 15ST	73301 73302	Meso Meso	180 404	150 470	-66	2.34 3.16	0 4	6	-1 -2	1.41 0.89	179 449	160 492	19 -43	1.46 1.98	0 5	2	3	0.00 1.60
15NR 15SL	73303 73304	Meso Meso	75 212	128 170	-53 42	5.26 3.04	0 2	1 3	-1 -1	1.41 0.63	62 242	124 164	-62 78	6.43 5.47	1 6	0	1 5	1.41 2.67
15NT 15WR	73305 73306	Meso	428 90	438 112	-10 -22	0.48 2.19	2	5	-3 -1	1.60 1.41	421 110	443 112	-22 -2	1.06 0.19	0	0	0	0.00
6NR	73315	Meso	34	43	-9	1.45	0	1	-1	1.41	32	35	-3	0.52	0	0	0	0.00
6SL 6ET	73316 73317	Meso Meso	87 281	84 312	-31	0.32 1.80	2	1	1	0.00 0.82	85 312	90 282	-5 30	0.53 1.74	0 4	3	1	0.00 0.53
6WL 6ST	73318 73319	Meso Meso	72 75	56 70	16 5	2.00 0.59	0	0	0	0.00	55 66	47 81	-15	1.12 1.75	0	0	-1	0.00 1.41
6ER 6WR	73320 73321	Meso Meso	2 19	14 5	-12 14	4.24 4.04	0	0	0	0.00	3 34	7 21	-4 13	1.79 2.48	0	0	0	0.00
6NT	73322	Meso	128	134	-6	0.52	0	1	-1	1.41	125	142	-17	1.47	0	2	-2	2.00
6EL 6WT	73323 73324	Meso Meso	25 407	19 373	6 34	1.28 1.72	1	1	0	0.00	30 423	33 484	-3 -61	0.53 2.86	0	2	-1 -2	1.41 2.00
6NL 6SR	73325 73326	Meso Meso	3	10 8	-10 -5	4.47 2.13	0	0	0	0.00	9	9	-9 -3	4.24 0.93	0	0	0	0.00
18ST 18WL	73344 73345	Meso Meso	514 37	475 29	39 8	1.75 1.39	6	2	-1	2.00 1.41	522 45	522 24	0 21	0.00 3.58	10 0	2	8 -1	3.27 1.41
18NT	73346	Meso	642	603	39	1.56	0	8	-8	4.00	667	635	32	1.25	3	2	1	0.63
18WR 18NR	73347 73348	Meso Meso	21 113	13 100	13	1.94 1.26	0	0	0	0.00	19 126	18 112	1 14	0.23 1.28	0	0	0	0.00
18SL 75SL	73349 73351	Meso Meso	54 5	52 10	-5	0.27 1.83	0	0	-2 0	2.00 0.00	71 9	90 15	-19 -6	2.12 1.73	0	0	-1 0	1.41 0.00
75ET 75EL	73352 73354	Meso Meso	688 74	702 57	-14 17	0.53 2.10	25 0	20	5 -1	1.05 1.41	700 51	670 50	30 1	1.15 0.14	24 0	17 0	7	1.55 0.00
75WT	73355	Meso	476	534	-58	2.58	3	8	-5	2.13	461	517	-56	2.53	10	10	0	0.00
75SR 22ET	73356 73381	Meso Meso	701	723	-1 -22	0.63 0.82	7 2	0 11	-9	3.74 3.53	3 771	4 764	-1 7	0.53 0.25	4 13	11	2	2.83 0.58
22SL 22WT	73382 73383	Meso Meso	211 458	237 530	-26 -72	1.74 3.24	6 4	12 6	-6 -2	2.00 0.89	250 501	275 429	-25 72	1.54 3.34	9 6	20	-11 4	2.89 2.00
22NL 22NT	73384 73385	Meso Meso	58 306	58 292	0 14	0.00 0.81	1 4	1 4	0	0.00	65 318	52 294	13 24	1.70 1.37	7	0 3	1 4	1.41 1.79
22WL	73386	Meso	83	64	19	2.22	1	0	1	1.41	86	67	19	2.17	0	0	0	0.00
22ER 22ST	73387 73388		105 349	108 388	-3 -39	0.29 2.03	4	2	2	0.00 1.15	108 411	119 417	-11 -6	1.03 0.29	1	1	0	0.00
67NR 67ET	73421 73422	Micro Micro	158 1566	183 1589	-25 -23	1.91 0.58	0 91	3 114	-3 -23	2.45 2.27	145 1648	166 1658	-21 -10	1.68 0.25	0 98	3 105	-3 -7	2.45 0.69
67WL 67ER	73423 73424	Micro Micro	37 207	45 227	-8 -20	1.25 1.36	6	2 22	-13	2.00 3.30	34 213	45 236	-11 -23	1.75 1.54	3 4	0 23	3 -19	2.45 5.17
67WT	73425	Micro	1140	1268	-128	3.69	53	63	-10	1.31	1191	1293	-102	2.89	69	58	11	1.38
67NL 66WT	73426 73434	Micro Micro	293 943	360 934	-67 9	3.71 0.29	53	16 53	-16 0	5.66 0.00	317 1023	370 971	-53 52	2.86 1.65	59	14 46	-12 13	1.79
66NL 66ET	73435 73436	Micro Micro	154 1486	79 1443	75 43	6.95 1.12	6 82	2 79	3	2.00 0.33	124 1554	111 1450	13 104	1.20 2.68	11 89	1 83	10 6	4.08 0.65
66NR 66ER	73437 73438	Micro Micro	106 204	199 202	-93 2	7.53 0.14	0 10	3	-3 10	2.45 4.47	112 235	196 240	-84 -5	6.77 0.32	0 12	1 0	-1 12	1.41 4.90
66WL 78NL	73439 73441	Micro Meso	95 19	133	-38 -17	3.56 3.24	0	1 0	-1 9	1.41 4.24	100	132	-32 -22	2.97	7	0	0 7	0.00
78SR	73442	Meso	62	73	-11	1.34	0	9	-9	4.24	44	68	-24	3.21	1	7	-6	3.00
78WT 78ST	73443 73444	Meso Meso	973 175	992 183	-19 -8	0.61 0.60	44 3	47 0	-3 3	0.44 2.45	1054 194	1028 165	26 29	0.81 2.16	53 0	42 1	-1 -1	1.60 1.41
78WL 78EL	73445 73446	Meso Meso	23 122	29 138	-6 -16	1.18 1.40	3	0 10	3 -10	2.45 4.47	25 124	19 160	-36	1.28 3.02	0	0 11	0 -11	0.00 4.69
78NT 78WR	73447 73448	Meso Meso	127	107	20	1.85	0 5	0 5	0	0.00	136	130	6 -16	0.52 1.28	1 19	0	1 19	1.41
78ET	73449	Meso	1482	1512	-30	0.78	82	84	-2	0.22	1557	165 1482	75	1.92	91	72	19	2.10
78NR 78SL	73450 73451	Meso Meso	0 207	14 130	-14 77	5.29 5.93	2	3	-1	0.00 0.63	0 192	8 129	-8 63	4.00 4.97	3	2	-1 1	1.41 0.63
24WL 24ER	73460 73461		60 261	67 260	-7 1	0.88 0.06	1 2	2 11	-1 -9	0.82 3.53	82 285	74 291	8 -6	0.91 0.35	2	2 14	0 -12	0.00 4.24
24ST	73462	Meso	146	143	3	0.25	1	1	0	0.00	159	169	-10	0.78	0	0	0 7	0.00
24SL	73463 73464	Meso	515 27	489 15	26 12	1.16 2.62	3 0	10	-7 -1	2.75 1.41	575 40	497 31	78 9	3.37 1.51	13 0	6	0	2.27 0.00
24NL 24WT	73465 73466	Meso Meso	175 275	135 274	40 1	3.21 0.06	2	5 2	-5 0	3.16 0.00	195 268	161 253	34 15	2.55 0.93	0 5	5 1	-5 4	3.16 2.31
24SR 24NT	73467 73468	Meso Meso	43 225	71 227	-28 -2	3.71 0.13	0 7	0	0 7	0.00 3.74	63 220	62 222	1 -2	0.13 0.13	0 13	0	0 13	0.00 5.10
24EL	73469	Meso	114	91	23	2.27	3	1	2	1.41	124	114	10	0.92	1	1	0	0.00
64WL 64NL	73471 73472	Micro Micro	310 1	298 18	-17	0.69 5.52	0	0	-2 0	1.15 0.00	329 0	340 17	-11 -17	0.60 5.83	5 0	0	0	0.47 0.00
64WT 64NR	73473 73474	Micro Micro	1085 493	1033 475	52 18	1.60 0.82	40 2	49 11	-9 -9	1.35 3.53	1161 533	1163 475	-2 58	0.06 2.58	56 11	41 8	15 3	2.15 0.97

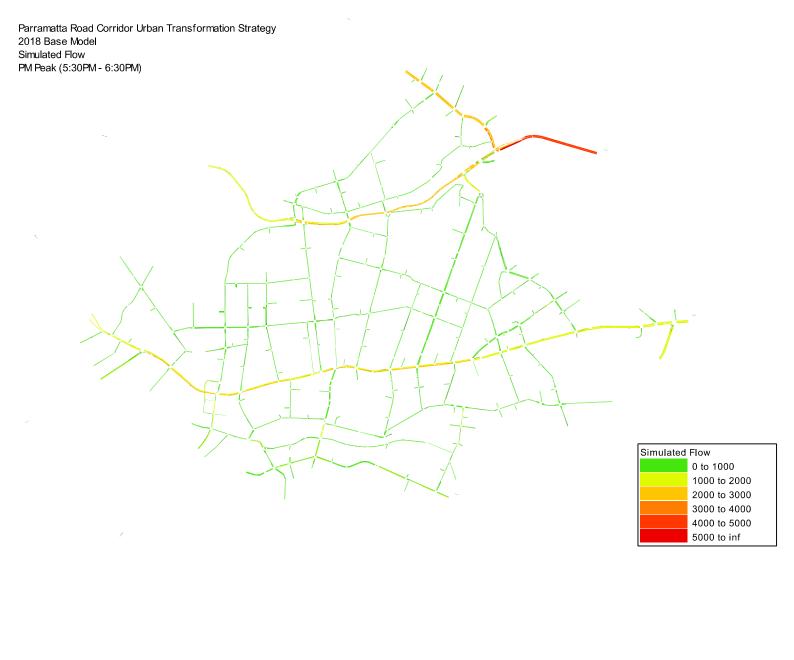
Column	64ET	73475		1740	1692	48	1.16	85	88	-3	0.32	1757	1731	26	0.62	94	76	18	1.95
Column	61NL 61WT				75 1166				2 54			145 1248	107 1228				0 44		
Column C	61SR 61ER																		
Section Sect	61WL	73481	Micro	60	44	16	2.22	1	1	0	0.00	59	38	21	3.02	0	1	-1	1.41
1. 1. 1. 1. 1. 1. 1. 1.	61ET	73483	Micro	1700	1580	120	2.96	82	103	-21	2.18	1731	1645	86	2.09	93	79	14	1.51
950. 1960. 1961. 1	61SL 61EL			_															
Series	61NT 46WL																		
Series Person Person	46NR													23			_		
950. 950. 950. 950. 950. 950. 950. 950.	46NL	73491	Micro	22	22	0	0.00	1	0	1	1.41	23	24	-1	0.21	1	0	1	1.41
9690	46WT 45WL																		
Section Sect	45ST 45WT																		
9695. 7702 No. 1969 1969 1979 1989 1989 1989 1989 1989 1989 198	45SR	73497	Micro	123	97	26	2.48	11	1	10	4.08	103	104	-1	0.10	8	1	7	3.30
Color	45WR	73501	Micro	216	207	9	0.62	12	2	10	3.78	254	240	14	0.89	5	2	3	1.60
Margin M	47WT													205		30		5	
Column	44SL 44ET																		
March Marc	44NR 44WR	73508	Micro				5.27									1			
Method M	44EL	73510	Micro	8	18	-10	2.77	0	6	-6	3.46	11	21	-10	2.50	0	5	-5	3.16
March Marc	44WT	73512	Micro	1041	1054	-13	0.40	28	32	-4	0.73	1081	1041	40	1.23	32	19	13	2.57
March Marc	44NL 44WL																		
Section Property Section Secti	44ST 34ST			_															
Heart 1989 Marco 244 271 457 458 49 49 49 49 49 49 49 4	34NT	73518	Meso	698	684	14	0.53	5	14	-9	2.92	714	667	47	1.79	8	11	-3	0.97
1986 1986 1987 1986 1987 1988 1989	43ER	73536	Micro	264	321	-57	3.33	9	32	-23	5.08	309	357	-48	2.63	12	34	-22	4.59
Section Property Name Pr	43WL 43NL			274	245	29	1.80	18		-6	1.31	310		62	3.71		20	3	0.65
Section Property Section Sec	43NR 43ET																		
Sept Property Sept Sep	50ST	73543	Meso	948	923	25	0.82	10	12	-2	0.60	949	970	-21	0.68	12	8	4	1.26
September 1985 New 1985 New 1987 A. 1988 1997 A. 1988 1989 1	50NT	73546	Meso	925	933	-8	0.26	16	8	8	2.31	953	859	94	3.12	8	2	6	2.68
SET 7950 New 198 199 0 893 0 0 0 893 176 199 27 328 0 0 0 0 395	50EL 50NR																		
Section Property	50SL 50ET																		
1985 1986	50NL 50WT	73551																	
March Marc	49EL	73555	Meso	555	559	-4	0.17	2	7	-5	2.36	541	476	65	2.88	2	6	-4	2.00
Sept. Table Mag. Dec. Type Sept. Dec. Type Sept. S	49SR	73557	Meso	296	309	-13	0.75	1	7	-6	3.00	305	326	-21	1.18	0	3	-3	2.45
Table	49NL 49STL																		
Time	49ETR 73NR																		
Table	73ET	73649	Meso	64	71	-7	0.85	0	0	0	0.00	76	82	-6	0.68	0	0	0	0.00
Table Tabl	73ER	73651	Meso	112	118	-6	0.56	1	1	0	0.00	116	133	-17	1.52	0	2	-2	2.00
SBMET 73666 Mass 336 326 10 0.55 0 4	73W I 73NL	73653	Meso								0.00		46	27				0	
SBARR 78868 Meso 207 249 42 278 0 1 -1 141 216 251 356 229 0 3 -3 248 248 248 7870 Meso 123 74 49 494 1 0 1 141 148 85 63 544 0 0 0 0 0 0 0 0 0	58WT 58NL																		
SERR 73060 Maso	58ET 58NR																		
SSEL T3884 Marco 151 119 32 278 0 0 0 0 0 138 118 20 177 0 2 2 2 200	58ER	73669	Meso	358	357	1	0.05	7	8	-1	0.37	357	375	-18	0.94	9	4	5	1.96
SSEL T3867 Marco 37 56 .19 2.79 0 0 0 0 0.00 42 74 .32 4.20 3 1 2 1.41	55EL	73684	Meso	151	119	32	2.75	0	0	0	0.00	138	118	20	1.77	0	2	-2	2.00
SIVIL TOSEON Merco 293 2848 9	55SL	73687	Meso	37	56	-19	2.79	0	0	0	0.00	42	74	-32	4.20	3	1	2	1.41
SINT 73802 Meso 488 481 -13 0.00 10 1 9 3.84 470 489 1 0.05 1 0 1 1 141	51ST 51WL																		
SIEL 7389 Meso 15 15 15 0 0 0.00 0 0 0 0 0 26 17 9 154 0 0 0 0 0 0.00 151NR 7389 Meso 349 358 9 9 0.48 2 6 4 20 20 19 13 3 0 0 3 245 151S 73895 Meso 20 9 111 289 2 0 0 2 200 19 25 -6 128 0 0 0 0 0 0.00 151T 73895 Meso 682 713 3 31 117 20 18 2 0 6 6 676 6 14 62 244 20 20 0 0 0 0 0.00 151NL 73897 Meso 137 78 59 59 569 4 1 1 3 190 144 80 6 64 6.05 6 2 2 4 200 151NT 73899 Meso 508 514 6 6 0.27 1 5 4 231 535 599 26 114 0 6 6 -6 3.46 54SL 73702 Meso 881 881 881 .20 0.68 16 25 9 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	51ER 51NT	73691	Meso	342	346	-4	0.22	5	7	-2	0.82	334	324	10	0.55	8	5	3	1.18
515L 73696 Meso 20 9 111 289 2 0 2 200 19 25 -8 128 0 0 0 0 00 000 51FL 73696 Meso 682 713 -31 117 20 18 2 0.6 676 614 62 244 20 20 0 0 0.00 51NL 73697 Meso 137 78 59 59 569 4 1 1 3 190 144 80 64 605 6 2 24 4 20 20 50 0 0.00 51NL 73697 Meso 508 514 -6 027 1 5 -4 231 535 599 26 114 0 0 6 -6 6 3.46 545L 73701 Meso 98 192 6 022 2 10 1 -8 19 19 19 102 102 0 0.00 0 0 6 -6 3.46 545L 73702 Meso 81 881 881 -20 0.68 116 25 -9 190 888 815 43 149 18 16 2 0.49 546L 73702 Meso 45 2 507 -55 251 23 21 2 0.3 500 494 6 0 0.27 28 19 9 186 546L 73704 Meso 45 36 8 1 41 0 0 0 0 0 0 0 0 0 44 1 17 235 0 1 1 1 1 0 0 0.00 545L 73705 Meso 31 28 3 0.55 6 0 6 6 8 4 4 1 25 16 279 1 1 1 0 0 0.00 545L 73706 Meso 535 537 -2 0.09 24 24 24 0 0 0.00 603 601 2 0.00 18 14 4 4 1.00 545R 73707 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 2 0 0 0 18 14 4 1.00 549R 73707 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 7 -3 128 549R1 73708 Meso 663 660 13 0.51 2 12 -10 378 679 687 -8 0.31 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51EL	73693	Meso	15	15	0	0.00	0	0	0	0.00	26	17	9	1.94	0	0	0	0.00
51NL 73697 Meso 137 78 59 56.09 4 1 1 3 3 1.00 144 80 64 6.05 6 2 4 2.00 51VT 73708 Meso 508 514 -8 0.27 1 5 5 4 4 2.01 535 509 26 114 0 6 -8 3.46 545L 73707 Meso 98 1 92 6 0.02 2 10 -8 3.47 102 102 0 0.00 0 0 6 -8 3.46 545L 73707 Meso 98 1 92 1 6 0.02 2 1 10 -8 3.47 102 102 0 0.00 0 0 6 -8 3.46 545L 73707 Meso 452 507 -55 241 23 21 2 0 0.00 0 0 0 0 0 6 -9 148 16 2 0.04 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51SL	73695	Meso	20	9	11	2.89	2	0	2	2.00	19	25	-6	1.28	0	0	0	0.00
SASL 73701 Meso 98 92 6 0.62 2 10 -8 3.27 102 102 0 0.00 0 6 6 -8 3.46 SET 73702 Meso 861 881 -20 0.688 16 25 -9 9	51ET 51NL																	4	
S4ET 73702 Meso 861 881 -20 0.68 16 25 -9 1.99 858 815 43 1.49 18 16 2 0.49 1.86 1817 73703 Meso 452 507 -55 2.51 23 21 2 0.43 500 494 6 0.27 28 19 9 1.86 184L 73704 Meso 31 28 3 0.55 6 0 0 6 3.46 41 25 16 2.79 1 1 1 0 0.00 144 177 2.35 0 1 1 -1 1.41 1.41 1.41 1.41 1.41 1.41 1.	51WT 54SL																		
SAEL 73704 Meso 45 36 9 1.41 0 0 0 000 61 44 17 2.35 0 1 -1 1.41 54WL 73705 Meso 31 2.8 3 0.955 6 0 6 3.48 41 2.5 16 2.79 1 1 0 0.00 54SET 73705 Meso 200 211 -11 0.77 8 5 3 1.18 191 178 13 0.96 7 10 -3 10.3 54NL 73708 Meso 663 650 13 0.51 2 12 1.01 3.78 667 -8 0.31 4 7 -3 12.8 54NL 73708 Meso 148 107 41 3.53 0 3 -3 2.45 136 126 10 0.87 0 2 -2 200 22WT 73937 Meso 519 562	54ET	73702	Meso	861	881	-20	0.68	16	25	-9	1.99	858	815	43	1.49	18	16	2	0.49
S4ST 73706 Meso 535 537 -2 0.09 24 24 0 0.00 603 601 2 0.08 18 14 4 1.00 54RR 73707 Meso 200 211 -11 0.77 8 5 3 1.18 191 178 13 0.96 7 10 -3 1.03 54WT 73708 Meso 663 650 13 0.51 2 12 -10 3.78 679 667 -8 0.31 4 7 -3 1.28 54WT 73708 Meso 148 107 41 3.63 0 3 -3 2.45 136 126 10 0.87 0 2 -2 2.00 22WT 7337 Meso 519 562 -43 1.85 3 15 -12 4.00 550 561 -11 0.47 3 16 -13 4.22 32ET 7333 Meso 680 671 109 4.36 6 18 -12 3.46 677 661 16 0.62 13 22 -9 2.15 12NL 79573 Meso 72 50 22 2.82 2 0 2 2.00 64 43 21 2.87 0 0 0 0.00 0.00 12EL 79575 Meso 25 34 -9 1.66 4 0 4 2.83 35 36 -1 0.17 6 0 0 6 3.46 12NT 79577 Meso 110 104 6 0.58 0 0 2 -2 2.00 107 122 -15 1.40 0 0 0 0 0 0.00 84ST 80099 Meso 119 126 33 2.76 1 100 -9 3.84 148 174 2.26 2.05 0 1 13 -13 5.10 84WR 8010 Meso 188 213 2.25 1.77 1 12 -11 4.31 188 196 -8 0.58 3 11 -8 3.02 84WR 8010 Meso 188 213 2.25 1.77 1 12 -11 4.31 188 196 -8 0.58 3 11 -8 3.02 84WR 8010 Meso 19 81 -12 1.39 4 1 1 3 1.90 78 699 9 1.05 1 1 2 -11 0.84 13 77 5.84 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54EL	73704	Meso	45	36	9	1.41	0	0	0	0.00	61	44	17	2.35	0	1	-1	1.41
54NL 73708 Meso 663 650 13 0.51 2 112 -10 3.78 679 687 -8 0.31 4 7 -33 128 54NL 73709 Meso 148 107 41 3.63 0 3 -3 245 136 126 10 0.87 0 2 -2 200 232WT 79337 Meso 519 562 -43 1.85 3 15 -12 4.00 550 561 -11 0.47 3 16 -13 4.22 32ET 79339 Meso 680 571 109 4.36 6 18 -12 3.46 677 661 16 0.62 13 22 -9 2.15 12NL 79573 Meso 72 50 22 2.82 2 0 2 2.00 64 43 21 2.87 0 0 0 0 0 0 0 0 0 12E 12NL 79575 Meso 25 34 -9 166 4 0 4 2.83 35 36 -1 0.17 6 0 0 6 3.46 12NT 79576 Meso 121 128 -7 0.63 0 0 0 0 0 0.00 139 141 -2 0.17 6 0 0 6 3.46 12NT 79577 Meso 110 104 6 0.58 0 2 -2 2.00 107 122 -15 140 0 0 0 0 0 0 0.00 445T 79577 Meso 159 126 33 2.76 1 10 -9 3.84 148 174 -26 2.05 0 0 13 -13 510 84WL 80998 Meso 0 24 -24 6.93 0 0 0 0 0 0.00 12 4 -24 6.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54ST	73706	Meso	535	537	-2	0.09	24	24	0	0.00	603	601	2	0.08	18	14	4	1.00
23WT 79337 Meso 519 562 -43 1.85 3 15 -12 4.00 550 561 -11 0.47 3 16 -13 4.22	54ER 54WT										3.78								
32ET 79339 Meso 680 571 109 4.36 6 18 -12 3.46 677 661 16 0.62 13 22 -9 2.15 12NL 79573 Meso 72 50 22 2.82 2 0 2 2.00 64 43 21 2.87 0 0 0 0 0 0.00 12EL 79575 Meso 25 34 -9 1.66 4 0 4 2.83 35 36 -1 0.17 6 0 0 6 3.46 12NT 79576 Meso 121 128 -7 0.63 0 0 0 0 0 0.00 139 141 -2 0.17 0 0 0 0 0.00 0.00 12ST 79577 Meso 110 104 6 0.58 0 2 -2 2.00 107 122 -15 140 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	54NL 32WT																		
12EL 79575 Meso 25 34 -9 1.66 4 0 4 2.83 35 36 -1 0.17 6 0 6 3.46	32ET	79339	Meso	680	571	109	4.36	6	18	-12	3.46	677	661	16	0.62	13	22	-9	2.15
12ST 7867 Meso 110 104 6 0.58 0 2 -2 20 107 122 -15 1.40 0 0 0 0 0.00 84ST 80097 Meso 159 126 33 2.76 1 10 -9 3.84 148 174 -26 2.05 0 13 -13 5.10 84WL 80098 Meso 0 24 -24 6.93 0 0 0 0 0 0.00 0 24 -24 6.93 0 0 0 0 0.00 84ER 80099 Meso 22 21 1 1 0 22 0 0 0 0 0 0.00 36 37 -1 0.17 0 1 -1 1.41 84NT 80100 Meso 188 213 -25 1.77 1 12 -11 4.31 188 196 -8 0.58 3 111 -8 3.02 84WR 80101 Meso 121 115 6 0.55 0 7 7 -7 3.74 133 133 0 0.00 3 114 -11 3.77 84SL 80103 Meso 69 81 -12 139 4 1 3 190 78 69 9 1.05 1 2 -1 0.82 84ET 80104 Meso 1582 2084 -132 2.94 50 58 -8 109 2029 2159 -130 2.84 53 41 12 1.75 84NL 80105 Meso 16 6 76 -30 3.84 0 2 -2 2.00 2 2.00 20 26 -6 1.25 1 0 1 1.41 84SR 80106 Meso 46 76 -30 3.84 0 2 -2 2.00 20 20 26 -6 1.25 1 0 1 1.41 84WR 80107 Meso 1357 1841 -4 0.09 54 44 10 1.43 1882 1878 4 0.09 53 43 10 1.44 85FR 80107 Meso 1357 1841 -4 0.09 54 44 10 1.43 1882 1878 4 0.09 53 43 10 1.44 85FR 80108 Meso 224 232 -8 0.53 0 10 -10 -10 4.47 291 272 19 1.13 0 17 -17 5.83 85FR 80124 Meso 265 363 39 8 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 85FR 80124 Meso 265 363 39 8 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 85FR 80124 Meso 265 274 49 8 5.55 6 3 3 3 141 2 2.99 3.53	12EL	79575	Meso	25	34	-9	1.66	4	0	4	2.83	35	36	-1	0.17	6	0	6	3.46
BAWIL B0098 Meso 0 24 -24 6,93 0 0 0 0 0 0 24 -24 6,93 0 </td <td>12ST</td> <td>79577</td> <td>Meso</td> <td>110</td> <td>104</td> <td>6</td> <td>0.58</td> <td></td> <td>2</td> <td>-2</td> <td>2.00</td> <td>107</td> <td>122</td> <td>-15</td> <td>1.40</td> <td>0</td> <td>0</td> <td>0</td> <td>0.00</td>	12ST	79577	Meso	110	104	6	0.58		2	-2	2.00	107	122	-15	1.40	0	0	0	0.00
84ER 80099 Meso 22 21 1 1 0.22 0 0 0 0 0.00 36 37 -1 0.17 0 1 -1 1.41 84NT 80100 Meso 188 213 -25 1.77 1 12 -11 4.31 188 196 -8 0.58 3 11 -8 3.02 84WR 80101 Meso 121 115 6 0.55 0 7 -1 7 -1 3.74 133 133 0 0 0.00 3 114 -11 3.77 84SL 80103 Meso 69 81 -12 1.39 4 1 1 3 1.90 78 69 9 1.05 1 2 -1 0.82 84ET 80104 Meso 1952 2084 -132 2.94 50 58 8 -8 1.09 2029 2159 -130 2.84 53 41 12 1.75 84NL 80105 Meso 16 10 6 166 2 0 2 2.00 20 26 -6 1.25 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	84ST 84WL																		
BAWR 80101 Meso 121 115 6 0.55 0 7 -7 3.74 133 133 0 0.00 3 14 -11 3.77 BASS 069 81 -12 1.39 4 1 3 3 1.90 78 69 9 1.05 1 2 -1 0.82 BASET 80104 Meso 1952 2084 -132 2.94 50 58 -8 1.09 2029 2159 -130 2.84 53 41 12 1.75 BANL 80105 Meso 1 16 10 6 1.66 2 0 2 2.00 20 26 -8 1.25 1 0 1 1 2 1.75 BANK 80106 Meso 46 76 -30 3.84 0 2 2 -2 2.00 30 87 -5.77 BASER 80107 Meso 1337 1841 -4 0.09 54 44 10 1.43 1882 1878 4 0.09 53 43 10 1.44 BAWT 80107 Meso 224 232 -8 0.53 0 10 -10 -10 4.47 291 272 19 1.13 0 17 -17 5.83 BOST 80122 Meso 265 363 -98 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 BANK 80124 Meso 265 363 -98 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 BANK 80124 Meso 265 274 -9 0.55 6 3 3 3 1.41 264 269 -5 0.31 11 2 9 3.54	84ER	80099	Meso	22	21	1	0.22	0	0	0	0.00	36	37	-1	0.17	0	1	-1	1.41
B4ET 80104 Meso 1952 2084 -132 2.94 50 58 -8 1.09 2029 2159 -130 2.84 53 41 12 1.75 84NL 80105 Meso 16 10 6 1.66 2 0 2 2 2.00 20 26 -6 125 1 0 1 1.41 84SR 80106 Meso 46 76 -30 3.84 0 2 2 -2 2.00 30 87 -57 7.45 1 3 -2 1.41 84WT 80107 Meso 1837 1841 -4 0.09 54 444 10 11.43 1882 1878 4 0.09 53 43 10 1.44 59ET 80121 Meso 224 232 -8 0.53 0 10 -10 4.47 291 272 19 1.13 0 17 -17 5.83 59ER 80122 Meso 265 363 -98 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 59NL 80123 Meso 70 59 11 1.37 0 4 4 4 2.83 78 63 15 1.79 0 5 -5 3.16 59ER 80124 Meso 97 49 48 5.62 0 0 0 0 0.00 96 45 51 6.07 2 0 2 2.00 2.00 59NT 80125 Meso 265 274 -9 0.55 6 3 3 3 1.41 264 269 -5 0.31 11 2 9 3.55	84WR	80101	Meso	121	115	6	0.55	0	7	-7	3.74	133	133	0	0.00	3	14	-11	3.77
84SR 80106 Meso 46 76 -30 3.84 0 2 -2 2.00 30 87 -57 7.45 1 3 -2 1.41 84WT 80107 Meso 1837 1841 -4 0.09 54 444 10 1.43 1882 1878 4 0.09 53 43 10 1.44 59ER 80121 Meso 224 232 -8 0.53 0 10 -10 4.47 291 272 19 1.13 0 177 -17 5.83 59ST 80122 Meso 265 363 -98 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 59NL 80123 Meso 70 59 11 1.37 0 4 -4 2.83 78 63 15 1.79 0 5 -5 3.16 59SR 80124 Meso 97 49 48 5.62 0 0 0 0 0.00 96 45 51 6.07 2 0 2 2.00 59NT 80125 Meso 265 274 -9 0.55 6 3 3 3 1.41 264 269 -5 0.31 11 2 9 3.53	84SL 84ET	80104	Meso	1952	2084	-132	2.94	50	58	-8	1.09	2029	2159	-130	2.84	53	41	12	1.75
BAWT 80107 Meso 1837 1841 -4 0.09 54 444 10 1.43 1882 1878 4 0.09 53 43 10 1.44 59SR 80121 Meso 224 232 -8 0.53 0 10 -10 4.47 291 272 19 1.13 0 17 -17 5.83 59ST 80122 Meso 265 363 -98 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 59NL 80123 Meso 70 59 11 1.37 0 4 -4 2.83 78 63 15 1.79 0 5 -5 3.16 59SR 80124 Meso 97 49 48 5.62 0 0 0.00 96 45 51 6.07 2 0 2 2.00 59NT 80125 Meso 265	84NL 84SR																		
59ST 80122 Meso 265 363 -98 5.53 10 3 7 2.75 302 391 -89 4.78 10 1 9 3.84 59NL 80123 Meso 70 59 11 1.37 0 4 -4 2.83 78 63 15 1.79 0 5 -5 3.16 SSSR 80124 Meso 97 49 48 5.62 0 0 0.00 96 45 51 6.07 2 0 2 2.00 S9NT 80125 Meso 265 274 -9 0.55 6 3 3 1.41 264 269 -5 0.31 11 2 9 3.53	84WT	80107	Meso	1837	1841	-4	0.09	54	44	10	1.43	1882	1878	4	0.09	53	43	10	1.44
59SR 80124 Meso 97 49 48 5.62 0 0 0 0 0.00 96 45 51 6.07 2 0 2 2.00 59NT 80125 Meso 265 274 -9 0.55 6 3 3 1.41 264 269 -5 0.31 11 2 9 3.53	59ST	80122	Meso	265	363	-98	5.53	10	3	7	2.75	302	391	-89	4.78	10	1	9	3.84
	59NL 59SR	80124	Meso	97	49	48		0		0	0.00	96	45	51		2	0	2	2.00
00	59NT 59EL			265 67	274 91	-9 -24	0.55 2.70	6	3	3	1.41 0.00	264 49	269 96	-5 -47	0.31 5.52	11 0	2	9	3.53 0.00

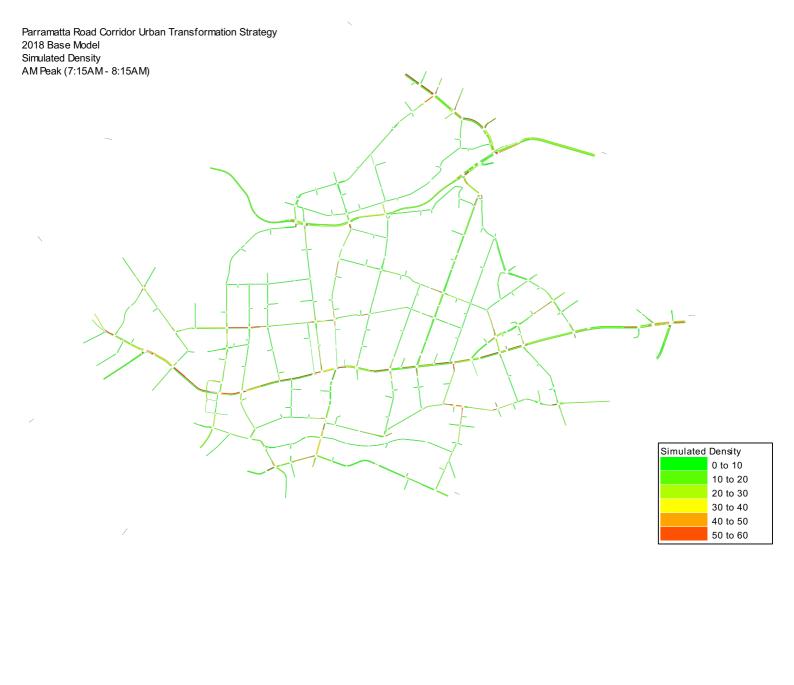
62WT	80256		1141	1085	56	1.68	41	50	-9	1.33	1210	1219	-9	0.26	61	43	18	2.50
62SR 62ET	80257 80258		235 1916	266 1873	-31 43	1.96 0.99	1 86	101	-3 -15	1.90 1.55	282 1936	266 1877	16 59	0.97 1.35	0 101	82	-1 19	1.41 1.99
62SL 62EL	80259 80260		139 354	116 366	23 -12	2.04 0.63	0 1	4 5	-4 -4	2.83 2.31	139 348	132 412	7 -64	0.60 3.28	0	1	-1 0	1.41 0.00
62WR	80261	Micro	160	196	-36	2.70	1	1	0	0.00	201	195	6	0.43	0	3	-3	2.45
33NR 33ET	80647 80648	Meso	128 1578	162 1645	-34 -67	2.82 1.67	0 53	2 52	-2 1	2.00 0.14	131 1719	172 1720	-41 -1	3.33 0.02	4 53	2 36	2 17	1.15 2.55
33SL 33ST	80649 80651	Meso Meso	24 198	30 152	-6 46	1.15 3.48	0 1	1 2	-1 -1	1.41 0.82	32 187	24 208	-21	1.51 1.49	3	1	3 2	1.90 1.41
33WT 33NL		Meso	1619 0	1647 10	-28 -10	0.69 4.47	53 0	46 0	7 0	0.99	1707 2	1696 15	11 -13	0.27 4.46	46 0	54 0	-8 0	1.13 0.00
33SR	80654	Meso	328	310	18	1.01	2	6	-4	2.00	313	335	-22	1.22	9	3	6	2.45
33NT 2WL	80655 80661		266 138	154 181	112 -43	7.73 3.40	0 4	1	-4 3	2.83 1.90	287 154	131 162	156 -8	10.79 0.64	3 2	3	-1	0.63
2ER 2ST	80662 80663		85 385	81 351	4 34	0.44 1.77	0 2	9	-9 -2	4.24 1.15	88 360	95 340	-7 20	0.73 1.07	0 3	10 2	-10 1	4.47 0.63
2NR	80664	Meso	96	175	-79	6.79	0	1	-1	1.41	80	161	-81	7.38	1	6	-5	2.67
2ET 2SL	80665 80666		1818 139	1879 110	-61 29	1.42 2.60	53 0	69 4	-16 -4	2.05 2.83	1983 129	2092 116	-109 13	2.41 1.17	54 3	54 2	0 1	0.00
2NL 2WT	80667 80668		125 1750	38 1701	87 49	9.64 1.18	1 50	1 44	6	0.00	119 1781	39 1861	-80	9.00 1.87	1 55	2 44	-1 11	0.82 1.56
2SR	80669	Meso	114	150	-36	3.13	10	35	-25	5.27 1.90	156	184	-28	2.15	8	11	-3	0.97
2NT 2EL	80670 80671		198 153	195 76	3 77	7.20	4 8	3	3 5	2.13	193 147	176 114	17 33	1.25 2.89	1	1	0	2.00 0.00
60WT 60NL	80701 80702		1166 0	1106 14	-14	1.78 5.29	41 0	52 1	-11 -1	1.61 1.41	1249 0	1224 16	25 -16	0.71 5.66	58 0	42 0	16 0	2.26 0.00
60SR	80703	Micro	55	31	24	3.66	1	0	1	1.41 2.11	59	34	25	3.67	1	0	1	1.41
60ET 60NR	80704 80705	Micro	1757 71	1687 73	70 -2	1.69 0.24	80 0	100	-20 -1	1.41	1817 87	1779 65	38 22	0.90 2.52	92 0	81 0	11 0	1.18 0.00
60SL 60WL	80706 80707		29 20	26 19	3	0.57 0.23	0	0	0	0.00	31 19	25 19	6	1.13 0.00	0	0	0	0.00
60ST 60EL	80708 80709	Micro	93 87	147	-54 46	4.93 5.75	0	1 0	-1 3	1.41	77 78	150 27	-73 51	6.85 7.04	0	1	-1 2	1.41
60NT	80710	Micro	193	234	-41	2.81	0	2	-2	2.00	216	201	15	1.04	0	0	0	0.00
74SR 74WT	80747 80748		792 1917	833 1799	-41 118	1.44 2.74	8 67	11 84	-3 -17	0.97 1.96	853 1906	755 1969	98 -63	3.46 1.43	9 63	11 65	-2 -2	0.63 0.25
74WR 74ET	80750 80751		183 1647	140 1713	43 -66	3.38 1.61	1 51	6 64	-5 -13	2.67 1.71	181 1821	156 1836	25 -15	1.93 0.35	1 53	4 42	-3 11	1.90 1.60
21EL	82727	Meso	2	11	-9	3.53	0	0	0	0.00	5	16	-11	3.39	0	0	0	0.00
21WR 21NT	82728 82729	Meso	58 215	24 241	34 -26	5.31 1.72	6	2	0 4	0.00 2.00	46 238	21 296	25 -58	4.32 3.55	7	0 4	3	0.00 1.28
21SL 21ET	82733 82734		41 135	57 100	-16 35	2.29 3.23	3	0	3 -1	2.45 1.41	50 117	49 114	1 3	0.14 0.28	0	0	0	0.00
21NR	82735	Meso	0	9	-9	4.24	0	0	0	0.00	0	12	-12	4.90	0	0	0	0.00
21ST 21ER		Meso	312 93	364 128	-52 -35	2.83 3.33	3 0	3 10	-10	0.00 4.47	343 87	393 96	-50 -9	2.61 0.94	2	2 14	-1 -12	0.82 4.24
21WL 69WT	82738 82740		12 1136	12 1140	-4	0.00 0.12	0 60	79	-19	0.00 2.28	12 1159	11 986	173	0.29 5.28	0 71	0 52	0 19	0.00 2.42
69ET 65ST	82742 82760		1647 189	1669 182	-22 7	0.54 0.51	91 1	109	-18 0	1.80 0.00	1732 210	1628 220	104 -10	2.54 0.68	98 0	81 0	17 0	1.80 0.00
65WL	82761	Micro	32	29	3	0.54	0	1	-1	1.41	40	54	-14	2.04	0	0	0	0.00
65NT 65EL	82762 82763		215 50	220 104	-5 -54	0.34 6.15	0 1	1	-1 0	1.41 0.00	223 42	214 114	9 -72	0.61 8.15	0	2	-1 -2	1.41 2.00
65NR 65SL	82764 82765		34 64	22 50	12 14	2.27 1.85	0	0 2	-2	0.00 2.00	43 60	33 29	10 31	1.62 4.65	3	0	3	0.00 2.45
65ET	82766	Micro	1650	1649	1	0.02	84	88	-4	0.43	1696	1683	13	0.32	94	74	20	2.18
65NL 65SR	82767 82768		83 37	50 40	-3	4.05 0.48	10 0	0	10 0	4.47 0.00	78 31	40 21	38 10	4.95 1.96	14 0	0	14 0	5.29 0.00
65WT 77ST	82769 82771	Micro Meso	1059 182	1055 186	-4	0.12 0.29	41 4	49 3	-8 1	1.19 0.53	1124 208	1120 204	4	0.12 0.28	56 2	41 5	15 -3	2.15 1.60
77ER	82772	Meso	106	81	25	2.59	0	7	-7	3.74	101	97	4	0.40	0	2	-2	2.00
77WL 77NT	82773 82774	Meso	45 166	60 176	-15 -10	2.07 0.76	0 5	9	-4 -4	2.83 1.51	55 156	54 223	-67	0.14 4.87	18	5	-1 13	0.82 3.83
77EL 77WR	82775 82776		36 40	42 63	-6 -23	0.96 3.20	0	0	0	0.00	39 41	39 63	-22	0.00 3.05	0	1	-1 -1	1.41
77NL 77SR	82777 82778		162 2	162 2	0	0.00	0	4 0	-4 0	2.83 0.00	150 1	199 0	-49 1	3.71 1.41	1 0	0	-1 0	0.82
77WT	82779	Meso	254	278	-24	1.47	0	8	-8	4.00	323	343	-20	1.10	0	2	-2	2.00
77NR 77SL	82780 82781		56 122	77 115	-21 7	2.58 0.64	0 1	4 1	-4 0	2.83 0.00	65 122	95 132	-30 -10	3.35 0.89	0	3	-4 -3	2.83 2.45
77ET 37ET	82782 84210		462 2233	462 2191	0 42	0.00	0 80	6 91	-6 -11	3.46 1.19	437 2263	417 2275	20 -12	0.97 0.25	0 79	2 66	-2 13	2.00 1.53
37SL	84211	Micro	48	24	24	4.00	0	2	-2	2.00	52	30	22	3.44	0	0	0	0.00
37NR 37WT	84212 84213	Micro	70 1566	67 1558	8	0.36 0.20	3 46	0 44	3 2	2.45 0.30	73 1639	127 1598	-54 41	5.40 1.02	0 50	0 35	0 15	0.00 2.30
37NL 37EL	84214 84215		27 32	18 48	9 -16	1.90 2.53	0	0	0	0.00	22 24	26 39	-4 -15	0.82 2.67	0 2	0	0 2	0.00 2.00
37NT 37WL	84216 84217	Micro	157 72	178 113	-21 -41	1.62 4.26	0	0	0 -1	0.00 1.41	156 78	176 93	-20 -15	1.55 1.62	1	0	1	1.41 1.41
37ST	84218	Micro	150	145	5	0.41	0	1	-1	1.41	144	170	-26	2.08	0	1	-1	1.41
72WL 72ST	84220 84221	Meso	112 633	79 594	33 39	3.38 1.57	8	7	-1 1	1.41 0.37	117 653	82 704	-51	3.51 1.96	0 7	6	1	0.00
72SL 72NT	84223 84224		20 977	24 1020	-4 -43	0.85 1.36	0	0	0 -6	0.00 3.46	38 988	10 1002	28 -14	5.72 0.44	2	7	-7	2.00 3.74
36NT	88660	Meso	35	28	7 -29	1.25	1	0	1	1.41	38	18	20	3.78	0	2	-2 0	2.00
36WR 36ST	88661 88662	Meso	79 63	108 62	1	3.00 0.13	4 0	2	-2	1.90 2.00	78 78	82 57	-4 21	0.45 2.56	2	3	-1	0.00
36WL 36SL	88663 88664		578 188	588 163	-10 25	0.41 1.89	1 0	15 6	-14 -6	4.95 3.46	549 184	560 144	-11 40	0.47 3.12	5 0	2	3 -4	1.60 2.83
36NR 38WR	88665 88667	Meso	857 986	840 997	17 -11	0.58 0.35	6 4	14 19	-8 -15	2.53 4.42	861 998	826 933	35 65	1.21	11 7	11	0 -7	0.00 2.16
38NT	88668	Meso	219	238	-19	1.26	11	4	7	2.56	222	275	-53	3.36	10	3	7	2.75
40NT 40NL	88670 88676		1206 3	1186 14	-11	0.58 3.77	15 0	25 0	-10 0	2.24 0.00	1213 4	1172 12	41 -8	1.19 2.83	17 0	16 0	0	0.25 0.00
68ET 68WT	92156 92158	Micro	1073 741	1047 723	26 18	0.80 0.67	85 40	95 67	-10 -27	1.05 3.69	1088 759	1019 717	69 42	2.13 1.55	88 47	105 57	-17 -10	1.73 1.39
68SR	92159	Micro	497	549	-52	2.27	39	33	6	1.00	538	523	15	0.65	27	20	7	1.44
68NL 68WR	92160 92161	Micro	45 618	45 671	-53	0.00 2.09	0 10	20	-10	0.00 2.58	48 654	37 585	11 69	1.69 2.77	0 14	0 16	-2	0.00 0.52
68EL 68WL	92162 92163		597 93	619 165	-22 -72	0.89 6.34	33 4	36 0	-3 4	0.51 2.83	588 88	598 143	-10 -55	0.41 5.12	36 8	33 1	3 7	0.51 3.30
68ST	92164	Micro	182	195	-13	0.95	0	3	-3	2.45	181	207	-26	1.87	0	1	-1	1.41
81WT 81ET	104064 104065	Micro	1055 1846	1029 1740	26 106	0.81 2.50	28 75	29 82	-1 -7	0.19 0.79	1172 1886	1162 1832	10 54	0.29 1.25	31 85	29 55	30	0.37 3.59
10WL 10ST	104081 104082		66 211	77 197	-11 14	1.30 0.98	0	3 18	-3 -17	2.45 5.52	81 198	88 225	-7 -27	0.76 1.86	0 1	1 21	-1 -20	1.41 6.03
10NR	104083 104084	Meso	132	133	-1 -5	0.09	2	4 0	-2 1	1.15 1.41	116	142	-26	2.29	0 2	1 0	-1 2	1.41
10SL 10NT	104085	Meso	54 303	59 311	-8	0.46	5	21	-16	4.44	51 355	79 329	-28 26	1.41	14	17	-3	0.76
10WR 48NT	104086 117031		8 435	50 427	-42 8	7.80 0.39	0 14	7	7	0.00 2.16	4 494	55 486	-51 8	9.39 0.36	0 7	3	0 4	0.00 1.79
48ST	117032		503	451	52	2.38	16	11	5	1.36	475	470	5	0.23	14	12	2	0.55

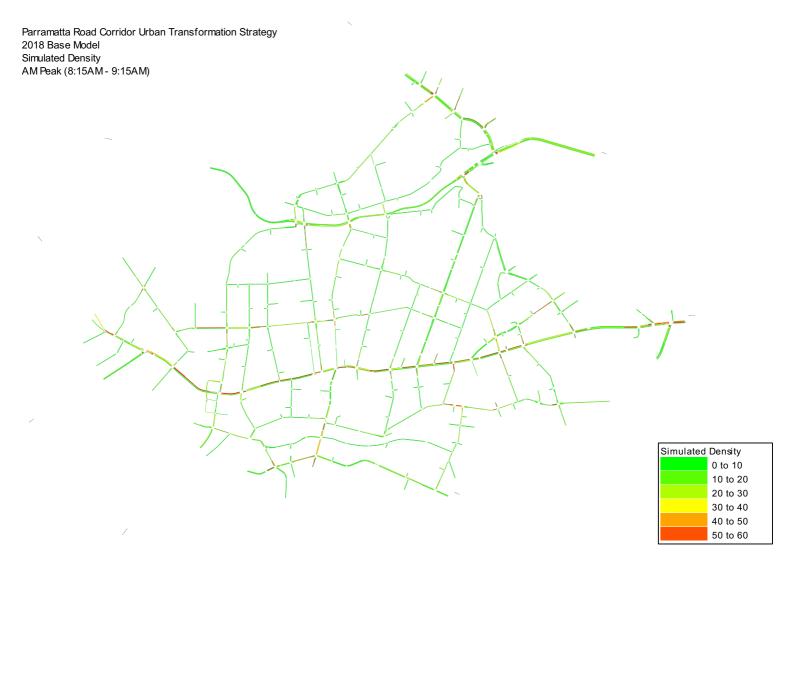

4SL	117169	Meso	15	37	-22	4.31	0	0	0	0.00	13	41	-28	5.39	0	1	-1	1.41
4NR 4WR	117170 117171		7 22	18 14	-11 8	3.11 1.89	0	1 0	-1 0	1.41 0.00	2 27	36 11	-34 16	7.80 3.67	0	0	0	0.00
4NT	117172	Meso	185	249	-64	4.34	0	5	-5	3.16	188	215	-27	1.90	3	3	0	0.00
4WL 4ST	117173 117174		15 110	10 161	-51	1.41 4.38	0	0 11	-11	0.00 4.69	7 95	9 150	-2 -55	0.71 4.97	0	0 15	-15	0.00 5.48
52EL 52SR	13089151 13089152		24 0	6	18	4.65 0.00	1 0	7 5	-6 -5	3.00 3.16	24 0	7	17 0	4.32 0.00	0	4 3	-4 -3	2.83 2.45
31EL	13089157	Micro	878	853	25	0.85	24	32	-8	1.51	857	837	20	0.69	26	18	8	1.71
31SL 39SL	13089166 13089176		154 106	160 42	-6 64	0.48 7.44	2	3	-3 -1	2.45 0.63	168 90	144 69	24 21	1.92 2.36	1 5	2	3	1.41 1.60
38WL 47WL	13089177 13089187	Meso	107	43 30	64 45	7.39	2	3	-1 0	0.63 0.00	90 70	64 44	26 26	2.96 3.44	5 1	2	3	1.60 0.00
47VL 47NL	13089188		75 109	30	79	6.21 9.48	0	0	0	0.00	90	27	63	8.24	0	0	0	0.00
34WL 34WT	13089197 13089198		15 51	20 28	-5 23	1.20 3.66	0	0	0	1.41 0.00	6 43	45 37	-39 6	7.72 0.95	0	0	-1	0.00 1.41
34WR	13089199	Meso	30	10	20	4.47	3	0	3	2.45	33	19	14	2.75	2	0	2	2.00
34ER 34ET	13089200 13089201		127 41	180 39	-53 2	4.28 0.32	0	0	0	0.00	164 41	133 35	31 6	2.54 0.97	0	0	0	2.00 0.00
34EL 34SR	13089202 13089203		149 103	228 126	-79 -23	5.75 2.15	0	0	-1	0.00 1.41	158 106	183 85	-25 21	1.91 2.15	0	4 0	-4 0	2.83 0.00
34SL	13089204	Meso	20	16	4	0.94	0	1	-1	1.41	20	11	9	2.29 7.48	2	0	2	2.00
34NL 46SL	13089206 13089483		59 10	134 20	-75 -10	7.63 2.58	0	6 2	-6 -2	3.46 2.00	43 12	108 14	-65 -2	0.55	0	7	-7 0	3.74 0.00
46ST 46SR	13089484 13089485		63 26	67 8	-4 18	0.50 4.37	0	0	0	0.00	60 10	59 6	1 4	0.13 1.41	0	0	-1 0	1.41 0.00
46EL	13089486	Micro	7	18	-11	3.11	0	0	0	0.00	7	8	-1	0.37	0	0	0	0.00
46NT 48WL	13089487 13089503		28 41	42 34	-14 7	2.37 1.14	0	1	-1	1.41	39 29	57 35	-18 -6	2.60 1.06	2	0	2	0.00 2.00
48WR 48NR	13089504 13089505		29 9	16 12	13 -3	2.74 0.93	3	3	-2 3	1.41 2.45	39 9	30 11	9 -2	1.53 0.63	0 1	0	-4 1	2.83 1.41
48SL	13089506	Meso	71	47	24	3.12	0	2	-2	2.00	76	67	9	1.06	0	0	0	0.00
81NL 22WR	13089549 13089736	Meso	74 0	80	-6 -2	0.68 2.00	0	3	-3	0.00 2.45	64 0	76 0	-12 0	1.43 0.00	0	4	-2 -4	2.00 2.83
53ER 53WL	13089812 13089814		2803 732	2728 693	75 39	1.43 1.46	101 8	96 17	5 -9	0.50 2.55	2932 791	2804 687	128 104	2.39 3.83	99 6	102 18	-3 -12	0.30 3.46
33EL	13089842	Meso	436	517	-81	3.71	1	8	-7	3.30	388	516	-128	6.02	0	7	-7	3.74
35NL 35WL	13089853 13089854	Meso	136 32	112 44	-12	2.16 1.95	3 0	12 0	-9 0	3.29 0.00	134 40	118 41	16 -1	1.43 0.16	3 0	11	-8 -1	3.02 1.41
35WT 35WR	13089855 13089856		71 60	53 46	18 14	2.29 1.92	0	0	-1	0.00 1.41	72 56	82 71	-10 -15	1.14 1.88	0	1 1	-1 -1	1.41 1.41
35ET	13089857	Meso	65	51	14	1.84	0	0	0	0.00	84	94	-10	1.06	0	0	0	0.00
35NR 35SL	13089858 13089859	Meso	19 57	25 35	-6 22	1.28 3.24	0	0	0	0.00	17 56	30 76	-13 -20	2.68 2.46	0	0	-2 0	2.00 0.00
23ER 59ET	13090099 13090152		21 13	10	-21 3	3.74 0.88	0	0	0	0.00	15 13	45 13	-30 0	5.48 0.00	0	0	0	0.00
59WT 59WL	13090153	Meso	29 70	29	0 30	0.00 4.05	0	0	0	0.00	27 72	36	-9 19	1.60 2.40	0	0	0	0.00
59WR	13090154 13090155	Meso	6	40 18	-12	3.46	0	0	0	0.00	9	53 14	-5	1.47	0	0	0	0.00
59SL 59NR	13090156 13090157		0	10	-9 -1	3.84 1.41	0	0	0	0.00	0	7	-5 0	2.36 0.00	0	0	0	0.00
68SL 66SL	13090179 13090338		696 4	722 36	-26 -32	0.98 7.16	17 0	25 0	-8 0	1.75 0.00	772 8	748 35	24 -27	0.87 5.82	13 0	19 0	-6 0	1.50 0.00
66ST	13090339	Micro	63	64	-1	0.13	0	1	-1	1.41	74	57	17	2.10	0	1	-1	1.41
66SR 66EL	13090340 13090341		17 8	14 11	-3	0.76 0.97	0 1	1	0	0.00	21 9	26 16	-5 -7	1.03 1.98	0	1	-1	0.00 1.41
66NT 69SL	13090342 13090343		76 55	67 26	9 29	1.06 4.56	0	0	-1 0	1.41 0.00	88 47	59 26	29 21	3.38 3.48	0	1 1	-1 -1	1.41 1.41
69SR 69EL	13090345 13090346	Micro	48 77	47 59	1 18	0.15 2.18	0	2 5	-2 -5	2.00 3.16	54 58	39 63	15 -5	2.20 0.64	0	0 4	0 -4	0.00 2.83
55NR	13119550	Meso	38	64	-26	3.64	0	0	0	0.00	46	37	9	1.40	0	0	0	0.00
55WL 15NL	13119551 13119942		14 37	18 38	-4 -1	1.00 0.16	2	0	2	0.00 2.00	13 47	16 24	-3 23	0.79 3.86	1	0	1	2.00 1.41
15EL 63NR	13119943 13120448		13 5	39 19	-26 -14	5.10 4.04	3	0	3 0	2.45 0.00	21 1	55 10	-34 -9	5.52 3.84	0	0	0	0.00
63NL 63ER	13120449 13120450		10 17	19 10	-9 7	2.36 1.91	0	0	0	0.00	17 21	11 5	6 16	1.60 4.44	0	0	0	0.00
63WL	13120451	Meso	8	8	0	0.00	0	1	-1	1.41	9	10	-1	0.32	0	0	0	0.00
63ST 63NT	13120452 13120458		5 23	20 39	-15 -16	4.24 2.87	0	0	0	0.00	11 30	14 28	-3 2	0.85 0.37	0	0	0	0.00
64EL 64NT	13168443 13168444		16 48	28 50	-12 -2	2.56 0.29	0	0	-1	0.00 1.41	27 58	26 45	1 13	0.19 1.81	0	0	0	0.00
31ET	13405771	Micro	1485	1447	38	0.99	60	63	-3	0.38	1525	1624	-99	2.49	52	42	10	1.46
40NR 52ST	13405912 13405918	Meso	0 764	8 774	-8 -10	4.00 0.36	0 38	0 23	0 15	0.00 2.72	1 836	9 827	-8 9	3.58 0.31	0 26	0 22	0 4	0.00 0.82
52ER 55WT	13405919 13406071		340 622	347 602	-7 20	0.38 0.81	2 5	0 5	2	2.00 0.00	320 645	282 643	38 2	2.19 0.08	2	1 9	1 -5	0.82 1.96
55NL 71WT	13406072	Meso	21 245	23 266	-2 -21	0.43	0 2	0 5	0 -3	0.00	27	25	2	0.39	0	0 3	0 -3	0.00
71WL	13406099 13406100	Meso	60	65	-5	0.63	0	0	0	0.00	263 67	300 72	-5	0.60	0	0	0	0.00
71ETR 71NR	13406104 13406109		471 83	474 105	-3 -22	0.14 2.27	6	7	-1 -1	0.39 1.41	454 72	438 113	16 -41	0.76 4.26	9	6	3 0	1.10 0.00
71NL 72NR	13406110 13406231	Meso	239 133	237 125	2 8	0.13 0.70	0	2	-2 0	2.00 0.00	225 129	229 84	-4 45	0.27 4.36	0	0	0	0.00
9ET	13406258	Meso	684	636	48	1.87	1	5	-4	2.31	650	635	15	0.59	3	6	-3	1.41
9WT 22EL	13406262 13406293		382 33	382 37	-4	0.00	2	6	-6 2	3.46 2.00	439 21	392 37	-16	2.31 2.97	0 4	0	-4 4	2.83 2.83
20WT 20WL	13406439 13406440		264 143	290 132	-26 11	1.56 0.94	6	7 8	-1 -8	0.39 4.00	267 116	333 135	-66 -19	3.81 1.70	7	5 4	2 -4	0.82 2.83
20ETR	13406443	Meso	473	495	-22	1.00	4	16	-12	3.79	522	559	-37	1.59	4	17	-13	4.01
20NL 20NR	13406448 13406449		114 140	134 154	-20 -14	1.80 1.15	3	7	-4	1.41 1.79	115 127	130 172	-15 -45	1.36 3.68	5 0	7	-7	3.16 3.74
21NL 74EL	13406675 13406690		105 892	84 912	21 -20	2.16 0.67	6	14 13	-14 -7	5.29 2.27	114 984	132 1078	-18 -94	1.62 2.93	0 7	9	-9 1	4.24 0.39
53ET	13406693	Meso	1754	1789	-35	0.83	50	57	-7	0.96	1987	2008	-21	0.47	53	39	14	2.06
53NL.AM 53NR.AM	13406696 13406697	Meso																
12ET 12NR	13406725 13406726		2305 50	2333 67	-28 -17	0.58 2.22	86 1	87 1	-1 0	0.11 0.00	2406 52	2351 79	55 -27	1.13 3.34	86 4	93	-7 4	0.74 2.83
12SL	13406727	Meso	21	27	-6	1.22	0	0	0	0.00	35	17	18	3.53	4	0	4	2.83
12WL 12WT	13406731 13406732	Meso	2003	36 1950	-16 53	3.02 1.19	73	0 82	-9	0.00 1.02	23 2160	29 2092	-6 68	1.18 1.47	0 68	59	9	0.00 1.13
33WL 5NL	13406803 13406817		182 102	163 96	19 6	1.45 0.60	0	1 5	-1 -5	1.41 3.16	179 115	230 97	-51 18	3.57 1.75	3	3	-1 0	1.41 0.00
14STR 14SL	13406825	Meso	68	74	-6 -16	0.71	0	0	0	0.00	67	82	-15	1.74	0	0	0	0.00
14WTR	13406826 13406829	Meso	38 366	54 364	2	2.36 0.10	0	2	-2	0.00 2.00	36 386	45 364	-9 22	1.41 1.14	0	0	0	0.00
14EL 14ETR	13406831 13406832		34 253	28 264	-11	1.08 0.68	0 2	3	-1 -1	1.41 0.63	31 272	21 240	10 32	1.96 2.00	3 4	0	3 4	2.45 2.83
29SL 29ET	13406949 13406950	Meso	96 400	112 417	-16 -17	1.57	0	1 28	-1 -15	1.41 3.31	124 408	100 448	24 -40	2.27	0	1 16	-1 -4	1.41
29NR	13406951	Meso	40	27	13	2.25	1	0	1	1.41	48	20	28	4.80	0	0	0	0.00
27NT	13406968	Meso	572	587	-15	0.62	1	11	-10	4.08	598	569	29	1.20	5	9	-4	1.51

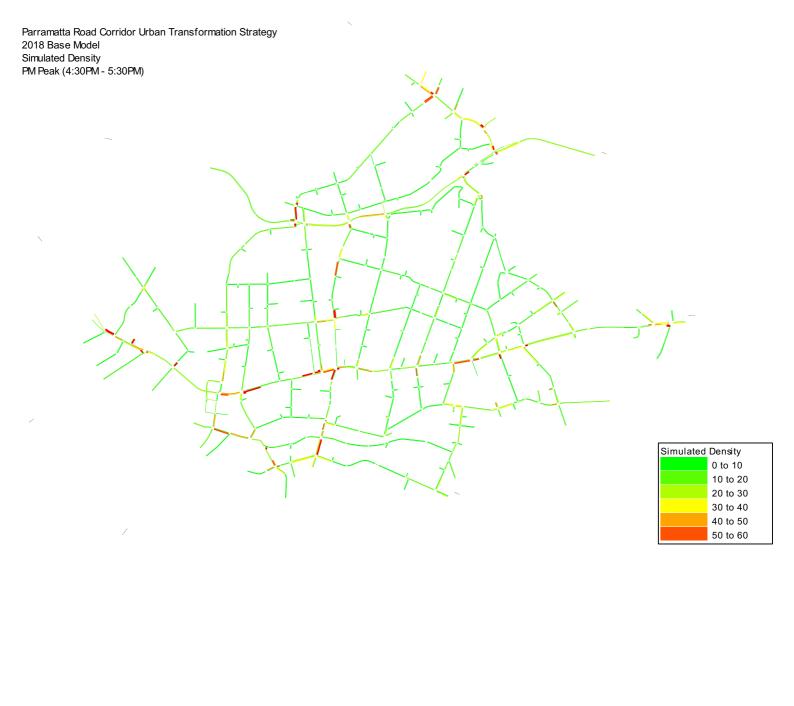

27NL	13406969	Mana	51	31	20	3.12	0	0	0	0.00	37	31	6	1.03	1	0	1	1.41
27NL 27EL	13406969		68	32	36	5.09	0	3	-3	2.45	51	37	14	2.11	0	1	-1	1.41
27ER	13406974		31	12	19	4.10	1	0	1	1.41	28	16	12	2.56	0	0	0	0.00
27STR	13406976		495	476	19	0.86	5	7	-2	0.82	457	483	-26	1.20	10	3	7	2.75
	13406976			53	-41		0	1	-2 -1	1.41	19	483 68	-26 -49	7.43	0	0	0	0.00
26STR			12 35		10	7.19	0	0	0	0.00	35	34	1	0.17	0	1	-1	1.41
26SL	13406991		101	25 57	44	1.83	0				79	65	14	1.65	0	0	0	
26WTR 26ET	13406996		76	58	18	4.95	1	2	-2 -3	2.00					2	2	0	0.00
	13407001					2.20				1.90	50	51	-1	0.14				0.00
26EL	13407002		110	75 36	35	3.64	1	0	1	1.41	134	63	71	7.15	0	0	0	0.00
25STR	13407011		18		-18	3.46	0	0	0	0.00	15	35	-20	4.00	0	0	0	0.00
25SL	13407012		15	16	-1	0.25	0	0	0	0.00	6	14	-8	2.53	0	1	-1	1.41
25WTR	13407017		62	107	-45	4.90	0	2	-2	2.00	40	93	-53	6.50	0	1	-1	1.41
25ETR	13407022		138	124	14	1.22	3	4	-1	0.53	120	109	11	1.03	2	1	1	0.82
25EL	13407023		48	34	14	2.19	0	1	-1	1.41	47	37	10	1.54	0	0	0	0.00
14WL	13603367		46	26	20	3.33	1	2	-1	0.82	44	30	14	2.30	0	0	0	0.00
14NTR	13603369		83	124	-41	4.03	0	1	-1	1.41	103	162	-59	5.13	0	0	0	0.00
14NL	13603370		8	18	-10	2.77	0	1	-1	1.41	17	14	3	0.76	0	0	0	0.00
19SL	13603378		15	24	-9	2.04	0	0	0	0.00	15	51	-36	6.27	0	0	0	0.00
19STR	13603393		390	443	-53	2.60	5	10	-5	1.83	426	392	34	1.68	6	12	-6	2.00
19NT	13603399		449	398	51	2.48	6	12	-6	2.00	498	484	14	0.63	9	6	3	1.10
19NL	13603400		33	49	-16	2.50	0	1	-1	1.41	27	83	-56	7.55	0	0	0	0.00
19ER	13603404		50	55	-5	0.69	0	0	0	0.00	64	63	1	0.13	0	0	0	0.00
19EL	13603405		29	30	-1	0.18	0	1	-1	1.41	28	45	-17	2.81	0	11	-1	1.41
21WT	13603995		117	98	19	1.83	0	0	0	0.00	116	113	3	0.28	0	0	0	0.00
32WL	13604612		31	15	16	3.34	0	1	-1	1.41	21	11	10	2.50	0	0	0	0.00
32ER	13604614		16	19	-3	0.72	0	0	0	0.00	16	17	-1	0.25	0	0	0	0.00
32NL	13604615		17	50	-33	5.70	0	0	0	0.00	15	16	-1	0.25	0	0	0	0.00
32NR	13604617	Meso	16	30	-14	2.92	0	1	-1	1.41	22	18	4	0.89	0	1	-1	1.41
41SR	13606020		0	0	0	0.00	0	2	-2	2.00	0	1	-1	1.41	0	2	-2	2.00
1WT.AM	13608779																	
1WR.AM	13608780	Meso																
1WR.PM	13608783	Meso	439	388	51	2.51	6	0	6	3.46	428	443	-15	0.72	7	3	4	1.79
1WT.PM	13608784	Meso	1905	1958	-53	1.21	73	70	3	0.35	2035	1977	58	1.29	68	51	17	2.20
1WL.AM	13608787																	
1WL.PM	13608788		80	76	4	0.45	0	0	0	0.00	93	78	15	1.62	0	1	-1	1.41
53NL.PM	13608794		1983	1985	-2	0.04	87	83	4	0.43	2076	2123	-47	1.03	83	71	12	1.37
53NR.PM	13608795	Meso	739	719	20	0.74	20	19	1	0.23	800	820	-20	0.70	13	12	1	0.28
70ET	13610952	Meso	363	435	-72	3.60	3	5	-2	1.00	415	443	-28	1.35	2	3	-1	0.63
70ER	13610953	Meso	23	31	-8	1.54	1	0	1	1.41	27	24	3	0.59	3	0	3	2.45
70NL	13610954	Meso	2	0	2	2.00	0	0	0	0.00	0	1	-1	1.41	0	0	0	0.00
70NR	13610955	Meso	54	35	19	2.85	0	1	-1	1.41	72	35	37	5.06	0	0	0	0.00
70WT	13610956	Meso	22	41	-19	3.39	0	3	-3	2.45	27	32	-5	0.92	0	1	-1	1.41
70WL	13610957	Meso	84	69	15	1.71	4	0	4	2.83	92	73	19	2.09	3	0	3	2.45
21SR	13611251	Meso	63	85	-22	2.56	0	0	0	0.00	92	92	0	0.00	0	0	0	0.00
ACCT						0.02	75	99	-24	2.57	1835	1839	-4	0.09	87	78	9	0.99
45ET	13611806	Micro	1762	1763	-1	0.02	75											
45E1 45EL	13611806 13612038		1762 225	1763 246	-1 -21	1.37	5	6	-1	0.43	250	258	-8	0.50	3	1	2	1.41
		Micro												0.50 1.02			-	1.41 0.91

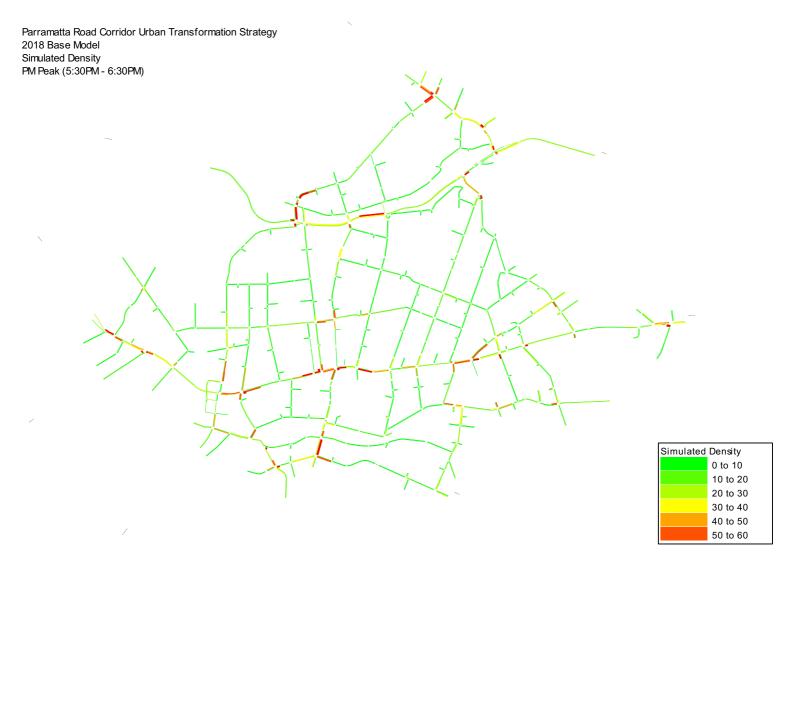

B


BASE MODEL FLOW PLOTS






C


BASE MODEL DENSITY PLOTS

В

BASE MODEL PEER REVIEW (ARUP, MARCH 2020)

ARUP

Level 5 151 Clarence Street Sydney NSW 2000 Australia www.arup.com t +61 2 9320 9320 f +61 2 9320 9321

Project title	Parramatta Road Urban Transformation Corridor	Job number
		274030-00
СС	Navdeep Hanjra (DP&E)	File reference
	Kris Walsh (DP&E)	TN01
Prepared by	Hamid Safi	Date
		18 March 2020
Subject	Base Model Peer Review	

1 Introduction

Arup has been engaged by the Department of Planning and Environment (DP&E) to undertake an independent model review of the Parramatta Road Corridor Urban Transformation Transport Study (PRCUTS), within the Inner West Council (IWC) local government area, Aimsun model. DP&E, through their consultants, have prepared an Aimsun model of the Parramatta Road Urban Transformation Corridor.

This technical note summarises the findings of this review, which has been undertaken to assess whether the model developed provides an accurate reflection of base year conditions and will ultimately provide a robust basis from which to forecast future year performance and identify appropriate road infrastructure requirements to support planned urban growth.

The Parramatta Road Urban Transformation Corridor model file that was reviewed was named:

- 20190412 - PRRP Base Model V1.0.ang

The model review process set out in this note is in accordance with key model development items defined in Roads and Maritime Service's (RMS) modelling guidelines. The structure of this note is outlined below:

- Model development
- Demand development
- Key modelling parameters and assumptions
- Intersections and signalisation
- Public transport inputs
- Active transport and pedestrians
- Assignment and convergence
- Calibration and validation

274030-00

18 March 2020

2 Model development

The Parramatta Road Corridor hybrid (microscopic and mesoscopic) model was developed using the Aimsun software package to address the following needs:

- 1. To evaluate the impacts of future infrastructure upgrades of the study area
- 2. To investigate future developments and land use changes in the study area for the horizon years
- 3. To assess the maximum road network capacity and recommended public transport mode shift
- 4. To investigate the optimal configuration of intersection improvements at key intersections.

The network coding of this model was mainly based on inputs from the Parramatta Road Reconfiguration Program (PRRP) model. The road network was further refined to reflect the latest network geometry properties of the study area. These refinements were mainly related to changes to sections' capacities and speed limits, geometry alignments, lane and parking restrictions and public transport routes. A slope model was applied in the network coding of the model to better replicate the performance of road traffic, mainly heavy vehicles. This model was based on inputs received from Department of Finance, Services and Innovation Spatial Services.

The Sydney Strategic Travel Model (STM) was considered as the reference point in this project for demand adjustment. A subarea cordon was established from the STM based on the extent of the modelled network. This was used to interrogate the STM to extract the 2016 travel demands.

For the purpose of this project, a classified intersection counts data collection was conducted at 83 important intersections within the study area. This data was mainly used for demand adjustment and model calibration. Moreover, in order to validate the performance of the model, the travel time data of eight major routes through the study area were collected and processed from the TomTom database for a four-week period. Three modes of vehicle (light vehicles, heavy vehicles and buses) were included in the development of this Aimsun model.

School zones within the study area were identified, and appropriate rules were defined in the model to restrict the maximum speed of related sections to 40 km/hr during school hours (8:00–9:30AM and 2:30pm–4:00PM).

Accordingly, a hybrid (microscopic and mesoscopic) model was developed for two two-hour weekday peak periods (7:15am–9:15am and 4:30pm–6:30pm). For each peak period, a "warm-up" period of 60 minutes was also included.

2.1 Review findings

The overall structure and model development requirements of the Parramatta Road Corridor model were reviewed, and main findings are summarised in Table 1.

\GLOBALARUP.COMAUSTRALASIA\BNE\GROUP\CONS 225 |EG\TECHNICAL\TRAFFIC\PROJECTS\PARRAMATTARD MODEL REVIEW\\03-REPORTING\TO ISSUE\TNO\\
PARRAMATTARD MODEL REVIEW_FINALDOCX

Arun | F0.15 Page 2 of 22

274030-00 18 March 2020

Table 1: Main findings of the model development review

#	Item	Status	Finding		
1	Model Development				
1.1	Aimsun Version	No issue	Aimsun Next 8.2.3 (R54491)		
1.2	Methodology - Network coding	No issue	Generally acceptable		
1.3	Methodology - Demand processing	No issue	Generally acceptable		
1.4	Database definition and connection	Minor issue	Database of the model was not defined correctly. PM assignment results are not existing in the model.		
1.5	Data collection	No issue	Acceptable coverage		
1.6	Model dimensions / scale	No issue	Model determined to be correct scale based on spot checks		
1.7	Layers	No issue	Checked		
1.8	Background image file	No issue	Not available		
1.9	Background coordinate system	No issue	No issues identified		
1.10	Model Time Periods	No issue	Checked. Well supported		
1.11	Pre-Peak Warm-Up	No issue	Included		
1.12	Model Layout and Configuration	No issue	No issues identified		
1.13	Vehicle Types	No issue	Checked. Well documented		
1.14	Road and Lane Types	No issue	Reviewed. No issues identified		

3 Demand development

The strategic-level demand data was adjusted based on actual turn movement data, introduced to the model as RDS files. The matrix adjustment tool within Aimsun (static OD adjustment) was used for this analysis. Matrix adjustment is a procedure for adjusting a prior OD matrix, using observed traffic data. The goal of the procedure is to reduce the least squares error between observed traffic data and traffic flows assigned by the model.

Key aspects of the demand development process for the PRCUTS base year model are summarised as follows:

- The starting point of demand calibration was a subarea model, which was defined on Sydney Strategic Travel Model (STM) 2016 base case scenario
- The traversal demand matrices of the resulting cordon model, which included 96 centroids, was imported into Aimsun
- The collected turn movement data was processed and imported into the model for demand adjustment
- The strategic level demand matrices were adjusted using the Static OD adjustment tool based on the imported RDS files
- Resulting matrices were adjusted manually to improve calibration results, as required
- Adjusted demand matrices were profiled based on observed traffic data (RDS files) using the Static departure adjustment tool.
- 2-hour OD matrices for the AM peak (7:15-9:15AM) and PM peak (4:30-6:30PM) were generated based on traffic survey data;

274030-00 18 March 2020

- o A "warm-up" period of 60 minutes was included in the model to populate the road network;
- O Demands were split into 15-minute time slices and added to the model as an additional set of matrices

3.1 Review findings

The procedure of demand development for the Parramatta Road Corridor model was reviewed based on coded tools in the model and the provided report. Main findings are summarised below:

3.1.1 Zoning refinement

Considering the level of detail incorporated in a mesoscopic/microscopic model compared to a strategic model, it was expected that a refinement of the zoning system would have been required within the model to better replicate the behaviour of trip generators of the study area. No evidence was found in the report or the model in this regard.

3.1.2 Static OD adjustment – Sanity check

As a sanity check, Arup re-ran the existing model's "static OD adjustment" tool for AM peak period, using the provided strategic-level demand matrices and RDS files. This resulted in two relatively different matrices. Table 2 compares the total demand of cars and trucks in the existing and new matrices. It should also be noted that the resulting trip length distribution of the new run was slightly different compared to the existing run retrieved from the model.

Table 2: Comparison of existing and new OD adjustment results

	Existing matrices	New matrices	Diff	Diff (%)
Car - AM	63,217	65,944	2,727	4.3%
Truck - AM	2,870	2,572	- 298	-10.4%

3.1.3 PM peak-related assignments

Arup was unable to check the validity of PM assignment results in the model, as the received model did not include assignment/adjustment results for PM peak.

Due to an issue noticed in the defined public transport routes of the PM scenario, it was not possible to run the PM peak adjustment tools of the model. This issue is discussed further in Section 6.

3.1.4 Static departure adjustment

Inspection of the existing tools defined in the model showed that a warm-up period of 60 minutes was defined for the "static departure adjustment" tool in both the AM and PM periods. The "static departure adjustment" tool considers the simulated travel time of the network for profiling the demand for each origin-destination pair crossing an observation point. In other words, having realistic travel times form each origin to an observed point is crucial for an accurate demand profiling. Since this tool starts from an empty network, appropriate warm-up time is required to load the network sufficiently. This time for the PRCUTS model is around 60 minutes. In addition to the normal warm-up period, the "static departure adjustment" tool requires the network to work under a fully-loaded condition for some intervals to report realistic travel times for the crossing

274030-00 18 March 2020

origin-destination pairs. Due to the extent of the model, 60 minutes is an insufficient warm-up duration for a "static OD departure adjustment, and it is recommended to increase this interval.

3.1.5 Dynamic OD adjustment

An overall view of the implemented demand adjustment procedure was provided in Figure 3-3 of the PRCUTS Base Model Development Report. This figure states that Aimsun's "dynamic OD adjustment" tool was used for demand calibration, however no evidence of this was found in the model.

3.1.6 Findings summary

Review findings regarding the demand development are summarised in Table 3.

Table 3: Main findings of the demand development review

#	Item	Status	Finding
2	Demand Development		
2.1	Centroid Configuration	Minor issue	A zoning system refinement was expected considering the nature of the area
2.2	Centroid Configuration Name	No issue	No issues identified
2.3	Real Data Sets	No issue	Reviewed. No issues identified
2.4	Unavailable PM results	Moderate issue	No assignment results were existing in the database for PM period
2.5	Traffic Demands matrices	No issue	Reviewed. No issues identified
2.6	Origin - Destination Matrices	No issue	Reviewed. No issues identified
2.7	Origin - Destination Matrix Names	No issue	Reviewed. No issues identified
2.8	Traffic Demand Names	No issue	Reviewed. No issues identified
2.9	Static OD Adjustment	Major issue	Results of a re-run showed relatively different results
2.10	Static Departure Adjustment	Minor issue	Insufficient warm-up duration was considered in the model
2.11	Dynamic OD adjustment	Major issue	No evidence found in the model for this step
2.12	Path Assignment Names	No issue	Reviewed. No issues identified
2.13	Documentation of assumptions	No issue	Reviewed. No issues identified

4 Key modelling parameters and assumptions

As an operational traffic model, the Parramatta Road Corridor model consists of a significant number of parameters and assumptions. Based on extensive research and experience from other projects, Aimsun suggests default values for each of these parameters. Technically, any change to these default values needs to be recorded and justified. This section documents those important parameters that were changed from default values without appropriate justification.

4.1 Variation from software defaults

Based on observation of the model, a minimal intervention approach has been taken during the model development with most driver behaviour parameters were retained at the software default settings with the exceptions discussed below.

274030-00 18 March 2020

4.1.1 Reaction times

"Reaction Time at Stop" and "Reaction Time at Signals" were changed in the model without any justification:

- Reaction Time (mesoscopic) = 1.30 sec (default = 1.20 sec)
- Reaction Time at Traffic Light (mesoscopic) = 1.70 sec (default = 1.60 sec)

Additionally, "reaction time at stop" and "reaction time at signals" values used for turns in the Stochastic Route Choice (SRC) assignments are not consistent with similar factors for Dynamic User Equilibrium (DUE) assignments for both AM and PM periods.

4.1.2 Attractiveness weight

The "attractiveness weight" factor is an import parameter in dynamic route choice calculations, as it considers the importance of road hierarchy for users. This factor is useful for controlling rat-running on local streets, especially when the arterial network becomes congested. The Parramatta Road Corridor model has used an attractiveness factor of zero, which means the model does not differentiate between local and arterial roads in the route choice of users other than through travel speed and delays.

It is not apparent from the model results if rat-running is an issue in the base year model. However, this could become an issue in future year scenarios. Therefore, it is recommended that the modeller consider using the attractiveness weight factor in the dynamic assignment.

4.1.3 Give-way time

"Give-way time factor (mesoscopic)" for roundabout turns was increased from 1 to 2. Justification for this change was not included in reporting.

4.1.4 Queue discharge acceleration

The "queue discharge acceleration factor" was reduced from 1.0 to 0.5 for the "Paramatta Rd" and "City-West Link Rd" sections without justification.

4.1.5 Additional reaction time at stop and traffic light

"Additional reaction time at stop" and "additional reaction time at traffic light" are two local attributes which are sometimes used to calibrate the simulated traffic flow and right of way of intersections. The default value of these attributes is zero. Increasing this value for a turning movement means users will perform that movement with extra caution. It has been observed in the model that negative values were allocated for the "Additional reaction time at stop" and "Additional reaction time at traffic light" of the approaching section of the "City Rd" to "Parramatta Rd", while negative values for "Additional reaction time at stop" and "Additional reaction time at traffic light" are not justifiable.

4.1.6 Lane changing cooperation

"Lane changing cooperation" values for the sections listed in Table 4 were changed from 50% without justification. The increase of "lane changing cooperation" attributes for a section means vehicles will support each other for easier lane changing. The modification of this attribute requires justification.

274030-00 18 March 2020

Table 4: Lane changing cooperation variations

Name	Section name	Lane-Changing Cooperation
N13701_N11731	WB approach of Parramatta Rd & Sloane St intersection	100
N10601_N12028	WB approach of Anzac Bridge & Victoria Rd intersection	70
N12026_N12025	SB approach of Victoria Rd & Anzac Bridge intersection	70
N12026_N12025	SB approach of Victoria Rd & Anzac Bridge intersection	70
N16236_N10601	WB approach of Parramatta Rd & Sloane St intersection	60
N12028_N12026	SB approach of Victoria Rd & Anzac Bridge intersection	60

4.1.7 Acceleration factor

As shown in Figure 1, varying acceleration factors have been applied to sections within the network. No logic was identified for this allocation of acceleration factors.

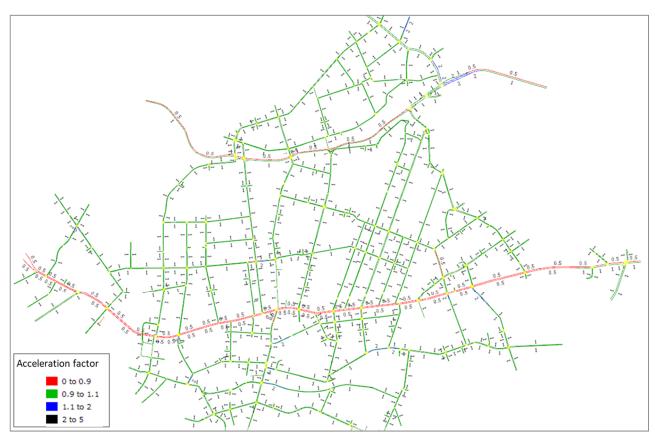


Figure 1: Acceleration factor visualisation of the road network

Increasing an acceleration factor means faster reaction of users, indirectly increasing the capacity of a section. Reduction of an acceleration factor has the inverse effect on capacity.

4.2 Review findings

Main findings regarding general modelling parameters and assumptions are summarised in Table 5.

274030-00 18 March 2020

Table 5: Review findings of general modelling parameters and assumptions

#	Item	Status	Finding
3.1	Modelling parameters and assumpti	ions - Gener	ral
3.1.1	Arrival Type	No issue	Reviewed. No issues identified
3.1.2	Attractiveness weight	Minor issue	It is recommended to increase this weight (from zero) to be able to consider the impact of road hierarchy in the route choice decisions of vehicles. The value of zero means that there is no difference between local and arterial roads for route choice of users
3.1.3	Reaction Time at Stop	Major issue	Inconsistent values used for turns in SRC and DUE assignments for both AM and PM periods
3.1.4	Reaction Time at Signals	Major issue	Inconsistent values used for turns in SRC and DUE assignments for both AM and PM periods
3.1.5	Dynamic Cost Functions	No issue	Reviewed. No issues identified

Main findings regarding those modelling parameters and assumptions related to turns are summarised in Table 6.

Table 6: Review findings of modelling parameters and assumptions related to turns

#	Item	Status	Finding	
3.2	3.2 Modelling parameters and assumptions - Turns			
3.2.1	Speeds	No issue	Reviewed. No issues identified	
3.2.2	Yellow Box Speeds	No issue	Reviewed. No issues identified	
3.2.3	Give Way Time Factor(s)	Minor issue	Give-way Time Factor (Meso) for roundabout turns increased to 2, while not reported	

Main findings regarding modelling parameters and assumptions related to sections are summarised in Table 7.

274030-00 18 March 2020

Table 7: Review findings of modelling parameters and assumptions related to sections

#	Item Status		Finding			
3.3	Modelling parameters and assumptions - Sections					
3.3.1	Road Type	No issue	Reviewed. No issues identified			
3.3.2	Speed	No issue	Reviewed. No issues identified			
3.3.3	Additional reaction time at stop		Negative values allocated to this attribute for the approaching section of the "City Rd" to "Parramatta Rd", which is not justifiable			
3.3.4	Additional reaction time at traffic light		Negative values allocated to this attribute for the approaching section of the "City Rd" to "Parramatta Rd", which is not justifiable			
3.3.5	Capacity	No issue	Reviewed. No issues identified			
3.3.6	Lane changing cooperation	Moderate issue	Lane changing cooperation of six sections increased from 50% without justification			
3.3.7	Queue discharge acceleration factor	Moderate issue	This factor was reduced from 1.0 to 0.5 for Paramatta Rd" and "City-West Link Rd" sections, without justification			
3.3.8	Acceleration factor	Major issue	No logic identified in the allocation of acceleration factor to road sections (See Figure 1)			

5 Intersections and signalisation

There are of 50 intersections within the study area which are signal controlled. Key aspects of the modelled signal operations are summarised as follows:

- Traffic signal data was sourced from the same day as the surveys and provided in the form of intersection diagnostic monitor (IDM) data;
- Roads and Maritime SCATS system was engaged to extract the intersection diagnostic monitor data;
 - o It is noted that the modelled signal operations are fixed-time based;
 - o Conversion of in-situ actuated signals to fixed time signals, using the average behaviour of the actuated signals within each hour of the two-hour peaks;
- A standard inter-green time of 6 seconds was applied, incorporating 4 seconds of amber time and 2 seconds of all-red time; and
- The LX Data was interpreted to inform the co-ordination between signals by including signal offsets.

274030-00 18 March 2020

5.1 Review findings

Review findings regarding intersections and signalisation are summarised in Table 8.

Table 8: Review findings of intersections and signalisation

#	Item	Status	Finding			
4	Intersections and signalisation					
4.1	Control Type	No issue	Reviewed. No issues identified			
4.2	Yellow Time	No issue	Reviewed. No issues identified			
4.3	Red Percentage	No issue	Reviewed. No issues identified			
			Node 82756 does not have any movement allocated to third phase. Phasing of the "N4528 SITE 47 – Parramatta Rd & Old Canterbury Rd &			
4.4	4.4 Phases Moderate issue	Tebbutt St" intersection appears to be incorrect – only one phase of movement defined (minor movements don't have any phase) Phasing of External ID 17437 appears to be incorrect				
4.5	Fixed time	No issue	All signalised intersections are modelled as fixed time based, due to the complexity of the network			
4.6	Permitted Movements	Moderate issue	Time allocated for pedestrian crossings at signals appear to be too high (assumed 16 seconds in every 80 sec) - (External IDs: 13124, 13604337, 22438)			
4.7	Sequences	Minor issue	Phasing of "N4528 SITE 86 - Parramatta Rd & Renwick St & Railway St" intersection appears to be incorrect – only one phase of movement defined (minor movements do not have any phase)			

6 Public transport inputs

Key aspects of the public transport modelling are summarised as follows:

- Bus route and timetable information was derived and imported using the General Transit Specification Feed (GTFS);
- Bus dwell time at all stations are defined as below (based on GTFS inputs):
 - o Mean = 30 seconds; and
 - o Standard deviation = 10 seconds.
- Train services were not modelled since all road-rail junctions in the study area are gradeseparated; and
- Light rail services were not modelled since all road-rail junctions in the study area are grade-separated.

6.1 Review findings

Review findings regarding the public transport inputs are summarised in Table 9.

274030-00 18 March 2020

Table 9: Review findings of the public transport inputs

#	Item	Status	Finding
5	Public Transport Inputs		
5.1	Public Transport Plans /Lines		44 bus routes are not connected for the PM peak model. It is caused because of a new section added to the model, but not updated in the routes of these PT lines
5.2	Rail Routes and Stations	No issue	Not existing
5.3	Light Rail Routes and Stops	No issue	Not existing
5.4	Public Transport Stops	No issue	Reviewed. No issues identified

7 Active transport and pedestrians

Pedestrians have not been directly modelled and cyclist volumes and infrastructure were not considered in the PRCUTS Study base year model (PRCUTS Base Model Development Report, pg. 31). The review has concluded that at signalised intersections containing a pedestrian crossing, signal timings have included a phase which holds back left turns to mimic delays experienced by vehicles.

Existing traffic signal timings used for the base year modelling consider the probability of vehicular delay caused by pedestrian crossings. This results in pedestrian phase times which are lower than minimum requirements for pedestrian crossings. Analysis has been undertaken on the signal timing and .lx files received from Roads and Maritime to derive averaged pedestrian crossing timing of three seconds or more. It is noted that traffic signal timings assume that pedestrian crossings are always activated, thus considered a conservative assumption.

Active transport and pedestrian activities on mid-blocks and for walking destinations were not completely coded in the model due to the lack of information.

7.1 Review findings

Review findings regarding active transport and pedestrian inputs to the model are summarised in Table 10.

Table 10: Review findings of active transport and pedestrian inputs

#	Item	Status	Finding
6	Active transport and pedestrians		
6.1	Pedestrian crossings at intersections	Minor issue	Mostly coded correctly (with some minor issues, such as Node IDs N_13124, 13604337, N_22438, where inappropriate pedestrian phase durations were defined in the model)
6.2	Allocating required time (intersections)	No issue	A conservative approach was chosen for coding the signal times
6.3	Pedestrian crossings on mid-blocks	No issue	Not coded completely due to the lack of information on mid- block pedestrian paths and walking destinations
6.4	Allocating required movement and time		Mostly coded correctly (with some minor issues, such as N4528 SITE 47, N_17437 and N4528 SITE 86, where phases without any movement were observed)

274030-00 18 March 2020

8 Assignment and convergence

Three different levels of assignment were used to replicate the traffic assignment performance of the network. These assignments were performed in the order shown below and the output of each step was used as the input of the next step. These assignment steps were:

- Static (Frank & Wolfe) assignment at macro level,
- Dynamic User Equilibrium (DUE) assignment at hybrid level,
- Stochastic Route Choice (SRC) assignment at hybrid level

User route choice was first recorded in the path file generated by the static level traffic assignment. This routing was subsequently used as the starting point for the DUE traffic assignment. Static assignment convergence settings were targeted to achieve a 0.10% relative gap within 50 iterations in each peak period.

According to the implemented methodology, the next step was a DUE assignment. In this type of traffic assignment, it is assumed that all the users of a transportation network are familiar with the network and always seeking to minimize their travel time/cost from origins to their respective destinations. At the end of this type of assignment:

- The journey times of all used routes (for any pair of origin-destination) are equal, and less than those which would be experienced by a single vehicle on any unused route (user optimisation)
- The average journey time of the network is minimized (system optimisation)

The model achieves convergence when the relative gap in route costs between successive iterations reduces to below a user-defined threshold. Hybrid DUE convergence outputs show that the models were set to target a convergence of a 3.00% relative gap within 20 iterations in each peak period. In order to accelerate the convergence procedure and reduce the number of possible paths in each iteration, it was defined in the assignment settings to ignore paths containing less than 5% of the total demand for any origin-destination pair.

In the next step, the path file of the DUE assignment at hybrid level was used as the input for a series of SRC assignments. Since operational assignment models (microscopic and mesoscopic) dynamically simulate the traffic interaction and driver behaviour in a stochastic way, small changes on a network element can have significant cumulative impacts upon congestion and delays. To address the stochasticity impact of operational assignment models, the RMS Traffic Modelling Guidelines provides a list of random seed values to be used in SRC assignments to produce small levels of variability, reflecting behaviours exhibited in the real world. In accordance with this, each scenario was simulated using five different seed values to test model stability. The random seed that results in the median level of total vehicle hours travelled (VHT) should be used for model calibration and validation, as well as all future scenario analysis.

8.1 Review findings

Review findings regarding the employed assumptions for assignments and convergence criteria are summarised in the following sections.

\\GLOBALARUP.COMAUSTRALASIA\BNE\GROUPICONS 225 \(\text{IEG\}\)TECHNICAL\\TRAFFIC\\PROJECTS\\PARRAMATTARD MODEL \(\text{REV\}\)iEW\\\03- \(\text{REPORTING\}\)TO ISSUE\\\TNO\\PARRAMATTARD MODEL \(\text{REV\}\)iEW\\\03- \(\text{REPORTING\}\)TO ISSUE\\\TNO\\PARRAMATTARD MODEL \(\text{REV\}\)iEW\\\03- \(\text{REPORTING\}\)TO ISSUE\\\TNO\\PARRAMATTARD MODEL \(\text{REV\}\)iEW\\\13- \(\text{REPORTING\}\)TO ISSUE\\\TNO\\\TANTARD\\\TA

274030-00 18 March 2020

8.1.1 Static assignment convergence

Static assignment does not achieve convergence for the AM period based on the 'Relative Gap' of 0.5 per cent (as specified in the tool). It achieved the relative gap of 0.91 after 50 iterations. Considering the importance of the static path file in this model, it is recommended to achieve the specified level of convergence by increasing the number of iterations.

• Convergence is a key modelling target, especially when the resulting path file is used as the main input for DUE and then SRC assignments at hybrid level. Since the calculation of additional path is disabled in the DUE assignment a high level of confidence in the resulting path file of the static assignment is desirable.

8.1.2 Dynamic User Equilibrium (DUE) convergence criteria

Dynamic User Equilibrium (DUE) convergence criteria is relatively loose:

- Relative Gap = 3.00% (default = 0.50%)
- Do Not Consider Paths with a Percentage Below = 5.00% (default = 1.00%)

8.1.3 Calculate additional path for hybrid DUE

The calculation of additional path for Hybrid DUE is disabled for both peak periods. It means that the DUE assignment will only use routes shortlisted in the static assignment results (maximum 3 routes for each origin-destination) and cannot add (or check) new routes.

Static assignment is a relatively inaccurate type of assignment, as it cannot directly consider the impact of signal controls or traffic congestion in route choice.

• As the AM period static assignment was not converged, disabling the calculation of additional paths for DUE could lead to significant shortcomings in the resultant assignment results.

To test the significance of this assumption, the AM and PM hybrid DUE models were re-run as part of the model review with the calculation of additional paths enabled. The resulting convergence graphs for these runs are compared to the original models in Figure 2.

Page 13 of 22

274030-00 18 March 2020

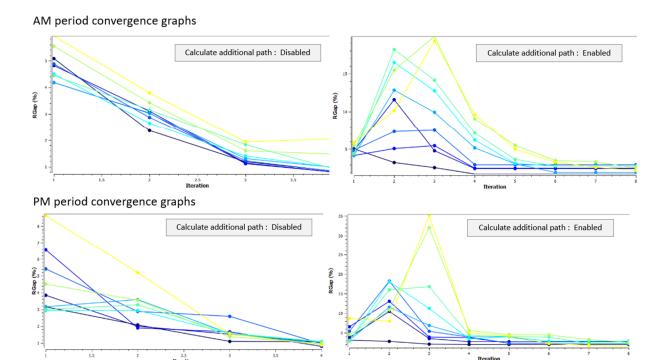


Figure 2: Convergence graphs of DUE hybrid assignments for AM and PM (with and without calculating additional path)

Figure 2 shows convergence graphs with and without calculating additional path have completely different behaviours, which indicates that the network is not under equilibrium condition when the possibility of calculating additional path is disabled.

As presented in Table 11, the comparison of modelling results with and without calculating additional path showed that performance through the model improved. In general, the use of static path file for DUE (without allowing adding new path) will cause more congestion on major roads and lead to:

- Higher delay times
- Lower speeds
- Higher total travel time

Table 11: Model results comparison (updated DUE parameters)

Peak period	Attribute	Unit	Additional Paths Enabled	Additional Paths Disabled	Diff	Diff (%)
	Delay time	sec/km	75.75	86.38	10.63	14.0%
AM Peak	Speed	km/h	27.07	25.89	- 1.18	-4.4%
AM Peak	VHT	h	6,766	7,091	324.51	4.8%
	VKT	km	165,848	162,216	- 3,632.20	-2.2%
	Delay time	sec/km	71.42	82.18	10.76	15.1%
DM D1-	Speed km/h 27.64	27.64	26.04	- 1.60	-5.8%	
PM Peak	VHT	h	7,089	7,835	746.84	10.5%
	VKT	km/h	183,901	181,934	- 1,966.67	-1.1%

274030-00 18 March 2020

8.1.4 SRC assignments - Seed numbers

The RMS Traffic Modelling Guidelines provides a list of random seed values to be used in SRC assignments and produce small levels of variability to reflect behaviours exhibited in the real world.

• One of the seed values which was supposed to be used in the model is 86524, while 86264 was used instead.

8.1.5 SRC assignments - Route choice variability

There are three different sets of SRC runs in the model for the AM peak period. Their difference is related to the share of users that can choose their route based on cost of each route.

- While three different shares (0%, 10% and 20%) were tested for the AM peak, only one value (0%) was tested for the PM peak
- It is not clear which share was used for the AM peak modelling results.

8.1.6 SRC assignments – Median or average

In figure 3-3 of the PRCUTS Base Model Development Report, it is stated that the median seed for each peak period was used for model calibration and reporting, but no evidence of this approach was found in the report.

8.1.7 Findings summary

Main findings of our review on the employed assumptions for assignments and convergence criteria are summarised Table 12.

Table 12: Review findings on the employed assumptions for assignments and convergence criteria

#	Item	Status	Finding				
7	Assignment and convergence						
7.1	Assignment Type	No issue	Reviewed. No issues identified				
7-2	Assignment convergence - Static	Major issue	Static assignment does not achieve convergence after 50 iterations for the AM period				
7.3	Assignment convergence - Hybrid	Moderate issue	Dynamic User Equilibrium (DUE) convergence criteria is relatively loose: • Relative Gap = 3.00% (default = 0.50%) • Do Not Consider Paths with a Percentage Below = 5.00% (default = 1.00%)				
7.4	Route Choice	Major issue	Calculation of additional path for Hybrid DUE was disabled				
7.5	Path Files	Minor issue	Only a sub-path of static assignment was used as inputs for DUE assignment				
7.6	Replication Seeds (SRC runs)	Minor issue	Five replications were developed, but no evidence found in the report for using the results of the median seed for reporting				
7.7	Seed Values	Minor issue	Instead of the recommended value by RMS guidelines (86524), 86264 was used as the seed number				
7.8	Route Choice Variability	Moderate issue	It is recommended to consider some level of variability in the route choice of SRC runs, but it is not considered for PM peak SRC runs				

Arun 150.15 Page 15 of 22

274030-00

18 March 2020

9 Calibration and validation

The PRCUTS model was developed as a Hybrid (microscopic/mesoscopic) model and it is stated in the base year model development report that the procedure of calibration and validation was according to the principles outlined in:

- Traffic Modelling Guideline (Roads and Maritime, 2013),
- Mesoscopic Network Representation Protocols for Model Handling (TfNSW, 2016), and
- Mesoscopic Network Representation Aimsun Network Coding Guidelines (TfNSW, 2016).

9.1 Model calibration

A comparison of assigned turning movement volumes against observed turning movement traffic count data was used to check the level of model calibration (PRCUTS Base Model Development Report, pg. 35). Table 11.1 of the RMS Traffic Modelling Guideline was referenced for checking the calibration of the PRCUTS model, for both the mesoscopic and microscopic sections of the model.

According to the criteria listed in Table 11.1 of the RMS guideline, the GEH value of at least 85% of turns should be less than 5 and justification is required for any turn with GEH greater than 10. However, revised criteria were agreed in a meeting with Department of Planning and Environment and Inner West Council on March 15th 2019, specifying that a GEH of less than 5 should be achieved for at least 75% of sites, and that a GEH of less than 10 should be achieved at 95% of sites (PRCUTS Base Model Development Report, pg. 35).

9.2 Model validation

Travel time data on eight major corridors of the study area was extracted and processed from the TomTom database for a four-week period. Table 11.5 of the RMS Traffic Modelling Guideline was referenced for checking the validity of the developed PRCUTS model. Accordingly, modelled and observed travel times along key routes should be within 15 per cent or one minute (whichever is greater) of the average observed travel time for the full length of the route for at least 95 per cent of observed travel time routes (PRCUTS Base Model Development Report, pg. 41).

9.3 Review findings

9.3.1 Core area calibration criteria

Although PRCUTS model was developed as a hybrid model, the calibration criteria for the "core area" (Table 11.2 of the RMS Traffic Modelling Guideline) was not checked for the microsimulation area of the model. The criteria used for checking microsimulation core area is based on comparison of flow differences rather than GEH.

Since the microsimulation area of the model is defined as the core area of the model, it is expected that the level of calibration of the model for this area be checked based on the criteria listed in Table 11.2 of the RMS guideline. However, only the "network wide" criteria from Table 11.1 of the RMS Traffic Modelling Guideline was used.

274030-00 18 March 2020

9.3.2 Adjusted criteria was not met

Based on the calibration results presented in the Table 4-3 of the PRCUTS base-year model development report, the developed model did not satisfy the adjusted criteria for one hour of the simulation period (5:30-6:30 PM). The statement provided in the report regarding this was that "this is attributed to the impacts of peak spreading for the PM peak hour and the dispersion of traffic from Parramatta Road to the surrounding road network due to congestions along the corridor." (PRCUTS Base Model Development Report, pg. 36). This is not considered to be an acceptable justification for the calibration results.

9.3.1 Reporting

According to Table 11.1 of the RMS Traffic Modelling Guideline, GEH =5 tolerance limits should be included in the plots of observed vs modelled hourly flows. These lines were not provided in the relevant figures in reporting (figures 4-1 to 4-8 of the PRCUTS base-year model development report).

According to Table 11.5 of the RMS Traffic Modelling Guideline, average and 95 per cent confidence intervals are to be plotted for observed and modelled travel times for each journey time route. These figures are missing in the report.

9.3.2 Validation criteria was not met

Sufficient information to justify the validation of travel times was not provided for this model. Based on RMS guidelines, the cumulative graph of travel time along each route should be created and observed and modelled results for each segment should be compared separately. These plots were not provided in reporting.

The processing of simulated travel time data for major routes of the study area showed that some key routes did not achieve the validation criteria:

- AM Peak period: The review of the modelled travel time outputs showed that the travel time criteria were not met for the WB direction of Route #4 (Booth Street and Moore Street between Paramatta Road and Catherine Street).
- PM Peak period: The validation criteria were not met for the EB direction of Route #5 (Collins Street and Marion Street between Johnston and Ramsay Streets) and the EB direction of Route #6 (Paramatta Road between Orrington Street and Princes Highway). It means that only 88% observed travel time routes met the criteria (which is less than 95%).

9.3.3 Stability check

As traffic simulation models are stochastic in nature, small changes in demand or supply can have significant cumulative impacts on modelling results. A sensitivity analysis must be undertaken to compare the relative performance of a model for a number of recommended seed values to evaluate the stability of modelling results. Section 11.7 of the RMS Modelling guidelines (RMS, 2013) provide guidance on model stability. No evidence of a stability check was found in the report.

9.3.4 Findings summary

The main findings of the review of calibration and validation results are summarised Table 13.

274030-00 18 March 2020

Table 13: Review findings on calibration and validation results

#	Item	Status	Finding
8	Model Calibration and Validation	•	
8.1	Model Calibration Check	Major issue	Calibration criteria for the "Core" area were not reported. Locations with GEH greater than 10 were not discussed.
8.2	Model Validation Check	Major issue	Sufficient information to justify the validation of travel times was not reported. It is noted that key routes did not achieve the validation criteria.
8.3	Model Stability Check	Major issue	Not provided
8.4	Reporting	Major issue	GEH =5 tolerance lines are missing in observed vs modelled hourly flow plots. Average and 95 percent confidence plots for observed and modelled travel times for each route is missing

10 Conclusion and recommendations

The review of the Parramatta Road Corridor Urban Transformation Transport Study base year model has shown that many aspects of the model should be updated to ensure it provides a robust basis from which to forecast future year performance and identify appropriate road infrastructure requirements to support planned urban growth.

We recommend the base model be revised primarily to address issues identified in the assignment process. The calibration results should also be revised and further information on validation checks are needed to ensure the model provides a suitable baseline representation of traffic movements on the network during both the AM and PM peak periods.

The main findings of the review are summarised in Table 14.

Table 14: Findings Summary

#	Item	Status	tus Finding	
1	Model Development			
1.1	Aimsun Version	No issue	Aimsun Next 8.2.3 (R54491)	
1.2	Methodology - Network coding	No issue	Generally acceptable	
1.3	Methodology - Demand processing	No issue	Generally acceptable	
1.4	Database definition and connection	Minor issue	Database of the model was not defined correctly. PM assignment results are not existing in the model.	
1.5	Data collection	No issue	Acceptable coverage	
1.6	Model dimensions / scale	No issue	Model determined to be correct scale based on spot checks	
1.7	Layers	No issue	Checked	
1.8	Background image file	No issue	Not available	
1.9	Background coordinate system	No issue	No issues identified	
1.10	Model Time Periods	No issue	Checked. Well supported	
1.11	Pre-Peak Warm-Up	No issue	Included	
1.12	Model Layout and Configuration	No issue	No issues identified	
1.13	Vehicle Types	No issue	Checked. Well documented	
1.14	Road and Lane Types	No issue	Reviewed. No issues identified	
2	Demand Development			
2.1	Centroid Configuration	Minor issue	A zoning system refinement was expected considering the nature of the area	
2.2	Centroid Configuration Name	No issue	No issues identified	
2.3	Real Data Sets	No issue	Reviewed. No issues identified	
2.4	Unavailable PM results	Moderate issue	No assignment results were existing in the database for PM period	
2.5	Traffic Demands matrices	No issue	Reviewed. No issues identified	
2.6	Origin - Destination Matrices	No issue	Reviewed. No issues identified	
2.7	Origin - Destination Matrix Names	No issue	Reviewed. No issues identified	
2.8	Traffic Demand Names	No issue	Reviewed. No issues identified	
2.9	Static OD Adjustment	Major issue	Results of a re-run showed relatively different results	
2.10	Static Departure Adjustment	Minor issue	Insufficient warm-up duration was considered in the model	
2.11	Dynamic OD adjustment	Major issue	No evidence found in the model for this step	
2.12	Path Assignment Names	No issue	Reviewed. No issues identified	
2.13	Documentation of assumptions	No issue	Reviewed. No issues identified	
3.1	Modelling parameters and assum	ptions - Gen	neral	
3.1.1	Arrival Type	No issue	Reviewed. No issues identified	
3.1.2	Attractiveness weight	Minor issue	It is recommended to increase this weight (from zero) to be able to consider the impact of road hierarchy in the route choice decisions of vehicles. The value of zero means that there is no difference between local and arterial roads for route choice of users	
3.1.3	Reaction Time at Stop	Major issue	Inconsistent values used for turns in SRC and DUE assignments for both AM and PM periods	
3.1.4	Reaction Time at Signals	Major issue	Inconsistent values used for turns in SRC and DUE assignments for both AM and PM periods	

274030-00 18 March 2020

#	Item	Status	Finding
3.1.5	Dynamic Cost Functions	No issue	Reviewed. No issues identified
3.2	Modelling parameters and assum	ptions - Tur	ns
3.2.1	Speeds	No issue	Reviewed. No issues identified
3.2.2	Yellow Box Speeds	No issue	Reviewed. No issues identified
3.2.3	Give Way Time Factor(s)	Minor issue	Give-way Time Factor (Meso) for roundabout turns increased to 2, while not reported
3.3	Modelling parameters and assum	ptions - Sect	ions
3.3.1	Road Type	No issue	Reviewed. No issues identified
3.3.2	Speed	No issue	Reviewed. No issues identified
3.3.3	Additional reaction time at stop	Moderate issue	Negative values allocated to this attribute for the approaching section of the "City Rd" to "Parramatta Rd", which is not justifiable
3.3.4	Additional reaction time at traffic light	Moderate issue	Negative values allocated to this attribute for the approaching section of the "City Rd" to "Parramatta Rd", which is not justifiable
3.3.5	Capacity	No issue	Reviewed. No issues identified
3.3.6	Lane changing cooperation	Moderate issue	Lane changing cooperation of six sections increased from 50% without justification
3.3.7	Queue discharge acceleration factor	Moderate issue	This factor was reduced from 1.0 to 0.5 for Paramatta Rd" and "City-West Link Rd" sections, without justification
3.3.8	Acceleration factor	Major issue	No logic identified in the allocation of acceleration factor to road sections (See Figure 1)
4	Intersections and signalisation		
4.1	Control Type	No issue	Reviewed. No issues identified
4.2	Yellow Time	No issue	Reviewed. No issues identified
4.3	Red Percentage	No issue	Reviewed. No issues identified
4.4	Phases	Moderate issue	Node 82756 does not have any movement allocated to third phase. Phasing of the "N4528 SITE 47 – Parramatta Rd & Old Canterbury Rd & Tebbutt St" intersection appears to be incorrect – only one phase of movement defined (minor movements don't have any phase) Phasing of External ID 17437 appears to be incorrect
4.5	Fixed time	No issue	All signalised intersections are modelled as fixed time based, due to the complexity of the network
4.6	Permitted Movements	Moderate issue	Time allocated for pedestrian crossings at signals appear to be too high (assumed 16 seconds in every 80 sec) - (External IDs: 13124, 13604337, 22438)
4.7	Sequences	Minor issue	Phasing of "N4528 SITE 86 - Parramatta Rd & Renwick St & Railway St" intersection appears to be incorrect – only one phase of movement defined (minor movements do not have any phase)
5	Public Transport Inputs		
5.1	Public Transport Plans /Lines	Moderate issue	44 bus routes are not connected for the PM peak model. It is caused because of a new section added to the model, but not updated in the routes of these PT lines
5.2	Rail Routes and Stations	No issue	Not existing

\\GLOBALARUP.COM/AUSTRALASIA\BNE\\GROUP\CONS 225 \| IEG\\TECHNICAL\\TRAFFIC\\PROJECTS\\PARRAMATTARD MODEL REVIEW\\03- REPORTING\\TO ISSUE\\TN01 PARRAMATTARD MODEL REVIEW_FINALDOCX

Page 20 of 22

274030-00 18 March 2020

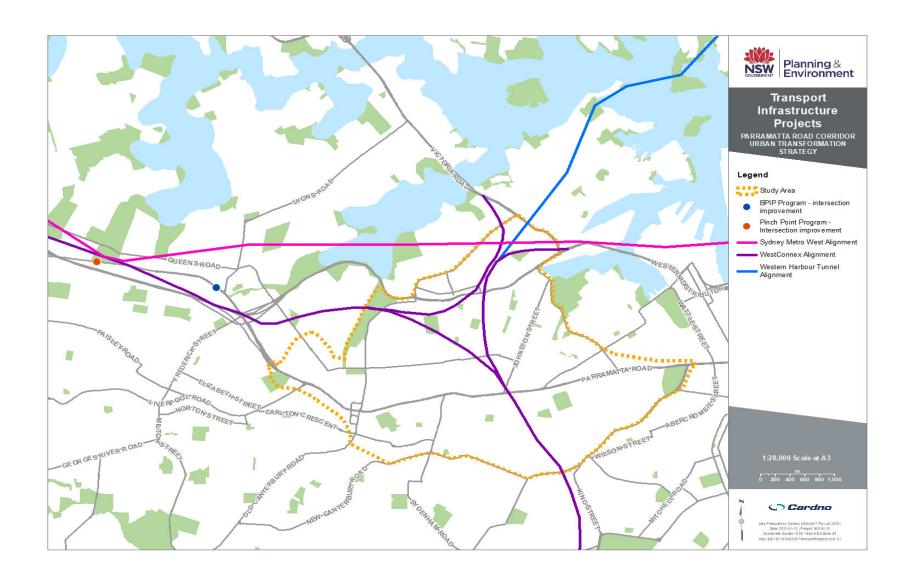
#	Item	Status	Finding
5.3	Light Rail Routes and Stops	No issue	Not existing
5.4	Public Transport Stops	No issue	Reviewed. No issues identified
6	Active transport and pedestrians		
6.1	Pedestrian crossings at intersections	Minor issue	Mostly coded correctly (with some minor issues, such as Node IDs N_13124, 13604337, N_22438, where inappropriate pedestrian phase durations were defined in the model)
6.2	Allocating required time (intersections)	No issue	A conservative approach was chosen for coding the signal times
6.3	Pedestrian crossings on mid-blocks	No issue	Not coded completely due to the lack of information on midblock pedestrian paths and walking destinations
6.4	Allocating required time (mid-blocks)	Minor issue	Mostly coded correctly (with some minor issues, such as N4528 SITE 47, N_17437 and N4528 SITE 86, where phases without any movement were observed)
7	Assignment and convergence		
7.1	Assignment Type	No issue	Reviewed. No issues identified
7-2	Assignment convergence - Static	Major issue	Static assignment does not achieve convergence after 50 iterations for the AM period
7.3	Assignment convergence - Hybrid	Moderate issue	Dynamic User Equilibrium (DUE) convergence criteria is relatively loose:
7.4	Route Choice	Major issue	• Relative Gap = 3.00% (default = 0.50%)
7.5	Path Files	Minor issue	• Do Not Consider Paths with a Percentage Below = 5.00% (default = 1.00%)
7.6	Replication Seeds (SRC runs)	Minor issue	Calculation of additional path for Hybrid DUE was disabled
7.7	Seed Values	Minor issue	Only a sub-path of static assignment was used as inputs for DUE assignment
7.8	Route Choice Variability	Moderate issue	Five replications were developed, but no evidence found in the report for using the results of the median seed for reporting
8	Model Calibration and Validation		
8.1	Model Calibration Check	Major issue	Calibration criteria for the "Core" area were not reported. Locations with GEH greater than 10 were not discussed.
8.2	Model Validation Check	Major issue	Sufficient information to justify the validation of travel times was not reported. It is noted that key routes did not achieve the validation criteria.
8.3	Model Stability Check	Major issue	Not provided
8.4	Reporting	Major issue	GEH =5 tolerance lines are missing in observed vs modelled hourly flow plots. Average and 95 percent confidence plots for observed and modelled travel times for each route is missing

Page 21 of 22

ARUP

DOCUMENT CHECKING (not mandatory for File Note)

	Prepared by	Checked by	Approved by	
Name	Hamid Safi	Roland Cathcart	Roland Cathcart	
Signature				


APPENDIX

C

TRANSPORT PROJECTS FOR MODELLING

No	Project	Program	Status	Description	Source	Coded in model	New data received? I.e. dwg/ signal data.
1	Parramatta Road public transport improvements	Future Transport 56	Planning	Planning and considerations. Note, there is nothing to be incorporated into modelling at this stage.	https://future.transport.nsw.gov.au/delivering-future-transport- 2056#greater-sydney https://www.infrastructureaustralia.gov.au/map/public-transport- capacity-parramatta-road-and-victoria-road-corridors	Nothing to be incorporated into the model	
2	Western Harbour Tunnel and Beaches Link		Planning	The Western Harbour Tunnel will connect to WestConnex at the Rozelle Interchange, cross under Sydney Harbour between the Birchgrove and Waverton areas and connect with the Warringah Freeway at North Sydney.	https://www.rms.nsw.gov.au/projects/index.html	~	
3	WestConnex	WestConnex	In construction	The WestConnex M4 Tunnels opened to traffic in July 2019. WestConnex M4 (the New M4 Tunnels and the Widened M4), includes 5.5km tunnels and around 7.5km of surface roads. The WestConnex M4 links to the M4 at Parramatta in the west, and Wattle Street and Parramatta Road at Haberfield to the east. The WestConnex M4 will also connect to the M4-M5 Link Tunnels and Rozelle Interchange in 2023. The M4-M5 Link Tunnels project is the final and most critical component of WestConnex, featuring twin tunnels between the New M4 Tunnels at Haberfield and the M8 at St Peters. Each tunnel will be approximately 7.5km long and able to accommodate up to four lanes of traffic in each direction.	https://www.westconnex.com.au/explore-westconnex/interactive-map/	4	
4	Intersection improvements at Parramatta Road and Shaftesbury Road, Concord	Pinch Point Program	In construction	Roads and Maritime Services is upgrading the intersection of Parramatta Road and Shaftesbury Road, Concord. The improvements will reduce congestion and improvement travel times on Parramatta Road, and increase the capa	https://www.rms.nsw.gov.au/projects/parramatta-rd-shaftesbury-rd-concord/index.html	Outside study area	
5	Arlington Street, Croydon Road and Parramatta Road intersection improvements (BPIP)	BPIP	Completed (Dec 2020)	In December 2020 work at the intersection of Parramatta Road, Arlington Street and Croydon Road, Five Dock and Croydon was completed.	https://www.rms.nsw.gov.au/projects/arlington-st-croydon-rd- parramatta-rd/index.html	Outside model area	
6	Sydney Metro West	Sydney Metro	Planning	The Sydney Metro West project will support a growing city and deliver world-class metro services to more communities. This new underground railway will connect Greater Parramatta and the Sydney CBD.	https://www.sydneymetro.info/west/project-overview	No road geometry changes	
7	City West Link, Dobroyd Parade and Wattle Street - Victoria Road, Rozelle to Parramatta Road, Ashfield	Sydney Clearways Strategy	Completed	New and extended clearways on City West Link, Dobroyd Parade and Wattle Street between Victoria Road, Rozelle and Parramatta Road, Ashfield.	https://www.rms.nsw.gov.au/projects/index.html	No road geometry changes	
8	City West Link improvement work		Completed	Roads and Maritime Services has completed the improvement of City West Link between Haberfield and Leichhardt in March 2019. An additional eastbound lane was opened to traffic in December 2018.	https://www.rms.nsw.gov.au/projects/city-west-link/index.html	4	
9	Parramatta Road improvement work, Leichhardt		Completed	Improving traffic flow along Parramatta Road between Rofe Street and Cannon Street, Leichhardt to make your journey easier, faster and safer. (Lengthen right turn lane into Crystal Street).	https://www.rms.nsw.gov.au/projects/parramatta-road-improvement-work-leichhardt/index.html	·	
10	Parramatta Road improvement work, Taverners Hill		Completed	Improving traffic flow and travel time reliability by adding a third lane on Parramatta Road	https://www.rms.nsw.gov.au/projects/parramatta-road-taverners- hill/index.html	*	

APPENDIX

STRATEGIC TRANSPORT MODELLING INTERFACE METHODOLOGY (VIAE CONSULTING, OCTOBER 2020)

Subject Strategic transport modelling interface methodology

Project Parramatta Road Corridor Urban Transformation Strategy –

Transport Modelling

Project No VC015 File VC010M01_Scoping report

review.docx

Prepared by Iwan Smith Phone No 0407 439 100

To James Hall Copies to Malcolm Bradley

1. Introduction

This memorandum outlines the proposed methodology for interfacing strategic transport modelling associated with Parramatta Road Corridor Urban Transformation Strategy (PRCUTS) with simulation traffic modelling being undertaken for each precinct by Local Government.

This memorandum covers the following components of this interface:

- Land use assumptions
- Public Transport Project Model (PTPM) Precinct Parking Module (PPM)
- Identification of nominal road network capacity

2. Land use assumptions

Land use assumptions have been adopted for the following precincts within the PRCUTS study area base on forecast population and employment from Councils:

- Granville (Cumberland Council and City of Parramatta Council)
- Auburn (Cumberland Council and City of Parramatta Council)
- Homebush (Canada Bay Council, Strathfield Council and Burwood Council)
- Burwood (Canada Bay Council and Burwood Council)
- Kings Bay (Canada Bay Council and Inner West Council)
- Taverners Hill (Inner West Council)
- Leichhardt (Inner West Council)
- Camperdown (Inner West Council)

These land use assumptions have been combined with the standard land use scenario (TZP2016) to form the basis of the forecast land use that will be used to assess the transport impacts of the changes in land use proposed as part of the PRCUTS.

3. Public Transport Project Model

The Public Transport Project Model (PTPM) has been run with the land use and travel demand from STM as noted in Section 2. The purpose of the PTPM for the PRCUTS transport modelling is to refine the multi-modal assignment of travel demand, in particular to generate traffic demand forecasts that are more accurately matched to the capacity of the road network as it would exist in future forecast years. This will be achieved through use of the Precinct Parking Module, which applied additional travel costs to the private vehicle mode to reduce the utility of private vehicle travel and reflect capacity constraints that would otherwise not be accounted for.

It is noted that PTPM only models the morning peak period and that additional pivoting of PTPM demand is required to generate evening peak traffic volume forecasts.

The key challenge in applying the PPM for the purposes of forecasting future traffic demand is to select a defensible value for the additional cost penalty used to suppress private car demand. Ideally, the penalty value would be applied globally across the GMA and the selection of the penalty value would be based on a comparison of the resulting traffic volumes from PTPM against an appropriate estimate of network traffic capacity. Identifying the network capacity to select the appropriate penalty value is the primary focus of this document.

To date, PTPM has been run with the following values for PPM penalty (on a global basis)

- No penalty
- 15-minute penalty
- 30-minute penalty
- 45-minute penalty
- 60-minute penalty

4. Identification of network capacity

The primary challenge of interfacing PTPM forecast traffic demand with more detailed simulation modelling is identifying the practical capacity of the road network under future traffic conditions. Two key considerations must be resolved to be able to select an appropriate penalty for car travel in PPM:

- Identifying the point at which a traffic network is at or close to capacity
- Matching the forecast traffic capacity in the simulation model with a forecast demand and accompanying PPM penalty in PTPM.

4.1. Identifying network traffic capacity

The practical capacity of the road network can be characterised as the point at which the delay experienced by vehicles making a trip during the peak period exceeds the utility that the vehicle gains by making the trip. This breakpoint is difficult to assess on a trip-by-trip basis within a model, however broader network-wide metrics can be used as a proxy to determine when the network capacity is exceeded:

- 1. Individual average trip speeds drop below a set level (say 10km/hr)
- 2. Unreleased vehicles exceed a given level (say more than 5% of total demand at aggregate level and more than 10% at the zone level))
- 3. Network throughput remains consistent across the modelled peak period.

For wide-area simulation models in urban environments, the primary model of failure when demand exceeds capacity is usually the result of network gridlock where vehicles become stuck in stationary queues and block throughput in the rest of the model.

This blocked state can be identified by plotting total vehicle throughput in the model over the modelled period, as shown in Figure 1.

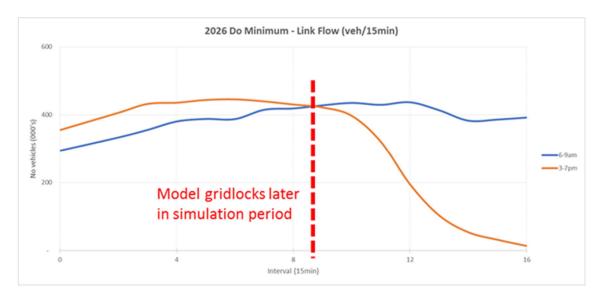


Figure 1 – Example of identification of network gridlock

Ideally, the network traffic capacity should correspond to the highest traffic demand that can be accommodated on the network during the peak period prior to the network reaching a "blocked" state, with throughput remaining relatively constant through the peak period as shown in Figure 2.

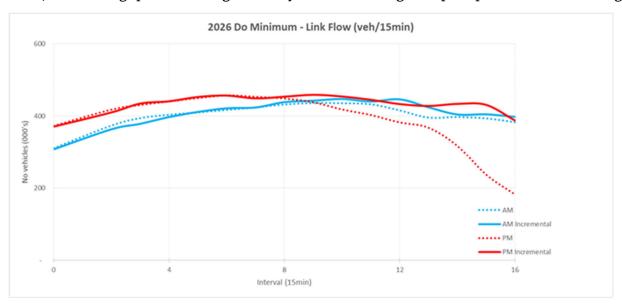


Figure 2 – Example of modelled throughput for a network at capacity

4.2. Matching network capacity between models

Once a practical peak period capacity has been identified, a metric is required to match the assigned traffic volume from PTPM with the identified network capacity from the simulation model. Metrics that would be candidates for this would be:

- 1. **Traffic volumes on specific links within the study area**: may be problematic due to differences in the detail of network and assignment between models
- 2. **Overall traffic demand or traffic growth within the study area**: may be problematic due to the differences in base travel demand and resolution of travel zones between models
- 3. **Cumulative VKT across the study area**: may be problematic to compare VKT directly, but equivalent proportional change in VKT may be a good metric.

To best account for the differences in model coverage, zonal resolution, base matrices and volume delay response, Option 3 (cumulative VKT) is considered the best candidate for matching equivalent demand scenarios between mesoscopic and strategic models.

5. Proposed strategic modelling interface

A summary of the proposed transport model interface is shown in Figure 3. This workflow describes the relationship of PTPM and mesoscopic model streams and process for selection and finalisation of treated demand is STFM as well as follow-up PTPM modelling to identify additional service requirements that may be required to support the modelled shift from private vehicle to other modes.

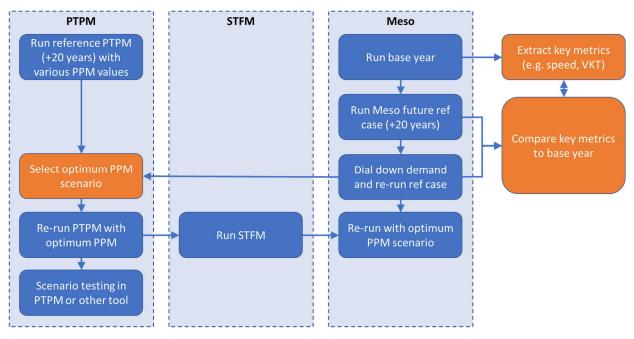


Figure 3 - Proposed strategic model interface

APPENDIX

Е

PRCUTS TRANSPORT MODEL UPDATE RECOMMENDATIONS ACTION PLAN (PWC, JUNE 2021)

Parramatta Road Corridor Urban Transformation Strategy Transport Model Update Action Plan Delivery Technical Note

To: Planning Delivery Unit, Department of Planning, Industry and Environment

From: PricewaterhouseCoopers

Date: 24 June 2021

Subject: Parramatta Road Corridor Urban Transformation Strategy (PRCUTS)

Transport Model Update Action Plan Delivery Technical Note

PwC was commissioned by the Department of Planning, Industry and Environment ("DPIE") to undertake a review of the Parramatta Road Corridor Urban Transformation Strategy ("PRCUTS") Inner West AIMSUN hybrid model and the methodology applied to estimate forecast traffic growth, put forward recommendations and develop an Action Plan to deliver those.

This technical note provides a summary of the delivery of the Action Plan which covers the following activities:

- 1. Land use redistribution (undertaken by Transport for NSW ("TfNSW").
- 2. Sydney Strategic Travel Model ("STM"), Public Transport Project Model ("PTPM") and Parking Precinct Module ("PPM") runs (undertaken by TfNSW).
- 3. Provision of PTPM car demand matrices in Travel Zone 2016 ("TZ16") format for morning ("AM") peak period (undertaken by TfNSW).
- 4. Application of RAND method growth in Sydney Strategic Traffic Forecasting Model ("STFM") to be in line with PTPM growth for cars (undertaken by PwC).
- 5. Extract cordon matrices and produce volume plots from STFM models for each of the PRCUTS traffic study teams (undertaken by PwC).
- 6. Test the updated growth matrices for the 2026 AM and evening ("PM") peak period without development scenarios for the Inner West City Council study area in AIMSUN (undertaken by PwC).

1. Land use redistribution (undertaken by TfNSW)

Individual PRCUTS teams provided land use information for their respective PRCUTS study area:

- 1. Inner West (growth provided by SGS and applied by PwC).
- 2. Canada Bay, Burwood and Strathfield (provided by Bitzios).
- 3. Parramatta and Cumberland (provided by GTA).

The following land use scenarios were modelled:

- 1. 2026 without development.
- 2. 2026 with development.
- 3. 2036 without development.
- 4. 2036 with development.

Population and employment forecasts from each of the three study areas were collated to modelling scenarios

PricewaterhouseCoopers ABN 52 780 433 757
One International Towers, Watermans Quay, Barangaroo NSW 2000 T: (02) 8266 0000, www.pwc.com.au

and redistributed by TfNSW across the whole of Sydney Greater Metropolitan Area ("GMA"). Table 1 and Table 2 below provide population and employment totals respectively, together with annual linear growth summary by study area.

Table 1: Population by PRCUTS study area with and without development.

	Population					Linear annual growth			
Study Area	STM Base	Without Development		With Development		Without Development		With Development	
	2016	2026	2036	2026	2036	2026	2036	2026	2036
Parramatta, Cumberland	17,936	28,278	30,441	34,029	48,574	6%	3%	9%	9%
Canada Bay, Burwood and Strathfield	34,896	36,369	36,369	62,088	94,250	0%	0%	8%	9%
Inner West	91,207	99,398	101,725	103,050	108,144	1%	1%	1%	1%

Table 2: Employment by PRCUTS study area with and without development.

	Employment					Linear annual growth			
Study Area	STM Base	Without Development		With Development		Without Development		With Development	
	2016	2026	2036	2026	2036	2026	2036	2026	2036
Parramatta, Cumberland	15,661	21,142	28,844	20,911	31,311	3%	4%	3%	5%
Canada Bay, Burwood and Strathfield	23,307	23,588	23,588	27,274	34,032	0%	0%	2%	2%
Inner West	48,133	55,454	66,702	62,033	74,115	2%	2%	3%	3%

2. STM, PTPM and PPM runs (undertaken by TfNSW)

TfNSW ran the STM with the updated land use. The STM mechanised demand was fed into the PTPM with the PPM applied.

3. Provision of PTPM car demand matrices in TZ16 format for AM peak (undertaken by TfNSW)

TfNSW extracted the AM car matrices from PTPM. The AM PTPM matrices were then transposed by TfNSW to serve as PM car matrices.

Light commercial vehicles ("LCV") and heavy vehicles ("HV") were sourced from the STM.

4. Application of RAND method growth in STFM to be in line with PTPM growth for car (undertaken by PwC)

The STFM is an all-vehicle model. PwC has segmented the STFM assignment from one user class into the following three user classes:

- 1. Car.
- 2. LCV.
- 3. HV.

This segmentation allows for the application of growth inline with how it is applied in the STM. The RAND method was applied to car vehicles only. The LCV growth is based on the Light Commercial Vehicle Model ("LCVM") and HV growth is based on the Freight Movement Model ("FMM").

Table 3 provides a summary of car growth in PTPM and STFM in the Inner West Council PRCUTS study area.

Table 3: Comparison of PTPM and STFM trip growth in 2-hour AM peak (Inner West Council area zones).

		Growth (Absolu	te)	Growth (%)							
From 2019 to 2026	Population Employment		Population + Employment Population		Employment	Population + Employment					
Population and Employment forecasting (Internal Zones)											
PRCUTS Zones	3,855	5,414	9,269	15.60%	21.90%	20.70%					
Other Zones	2,056 2,438		4,493	5.77% 6.84%		8.39%					
Total	5,911	7,851	13,762	9.80%	13.01%	13.99%					
From 2019 to 2026	Origin	Destination	Origin + Destination	Origin	Destination	Origin + Destination					
		PTPM AM	I 2-hour deman	d forecasting							
PRCUTS Zones	1,182	2,143	3,325	9.13%	25.28%	15.52%					
Other Zones	424	169	593	5.45%	1.63%	3.26%					
Total	1,606	2,312	3,918	7.75%	12.26%	9.89%					
		STFM AM	I 2-hour deman	d forecasting							
PRCUTS Zones	829	1,836	2,665	16.21%	30.78%	24.06%					
Other Zones	-18	84	66	-0.25%	1.42%	0.50%					
Total	811	1920	2731	6.60%	16.17%	11.30%					

5. Extract cordon matrices and produce volume plots from STFM models for each of the PRCUTS traffic study teams (undertaken by PwC)

2-hour AM and PM peak STFM all-vehicle volume plots and cordon matrices by user class have been extracted by study area.

Figure 1 compares the original STFM 2026 AM Low scenario (based on previous land use and without negative growth application) with the updated STFM 2026 AM scenario without development. The

comparison plot shows a reduction of up to 800 vehicles in a 2-hour peak on Parramatta Road.

scenario without development.

1.124
1.125
1.127
1.127
1.127
1.127
1.128
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129
1.129

Figure 1: 2-hour traffic volume difference between STFM 2026 AM Low scenario and the updated STFM 2026 AM

Note: Green indicates a reduction and red indicates an increase in the updated STFM 2026 AM scenario without development.

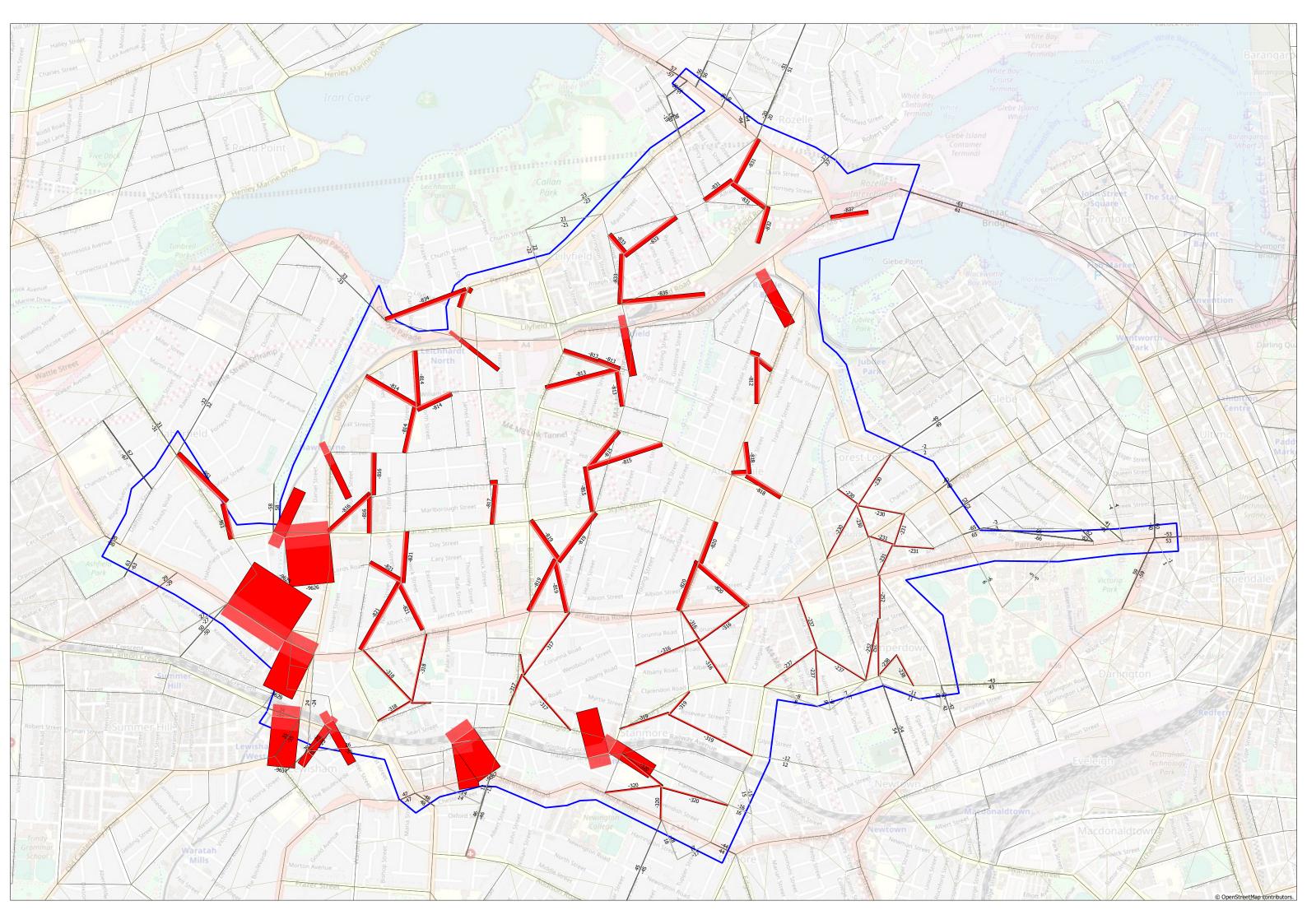
6. Test the updated growth matrices for the 2026 AM and PM without development scenario for the Inner West City Council study area in AIMSUN (undertaken by PwC).

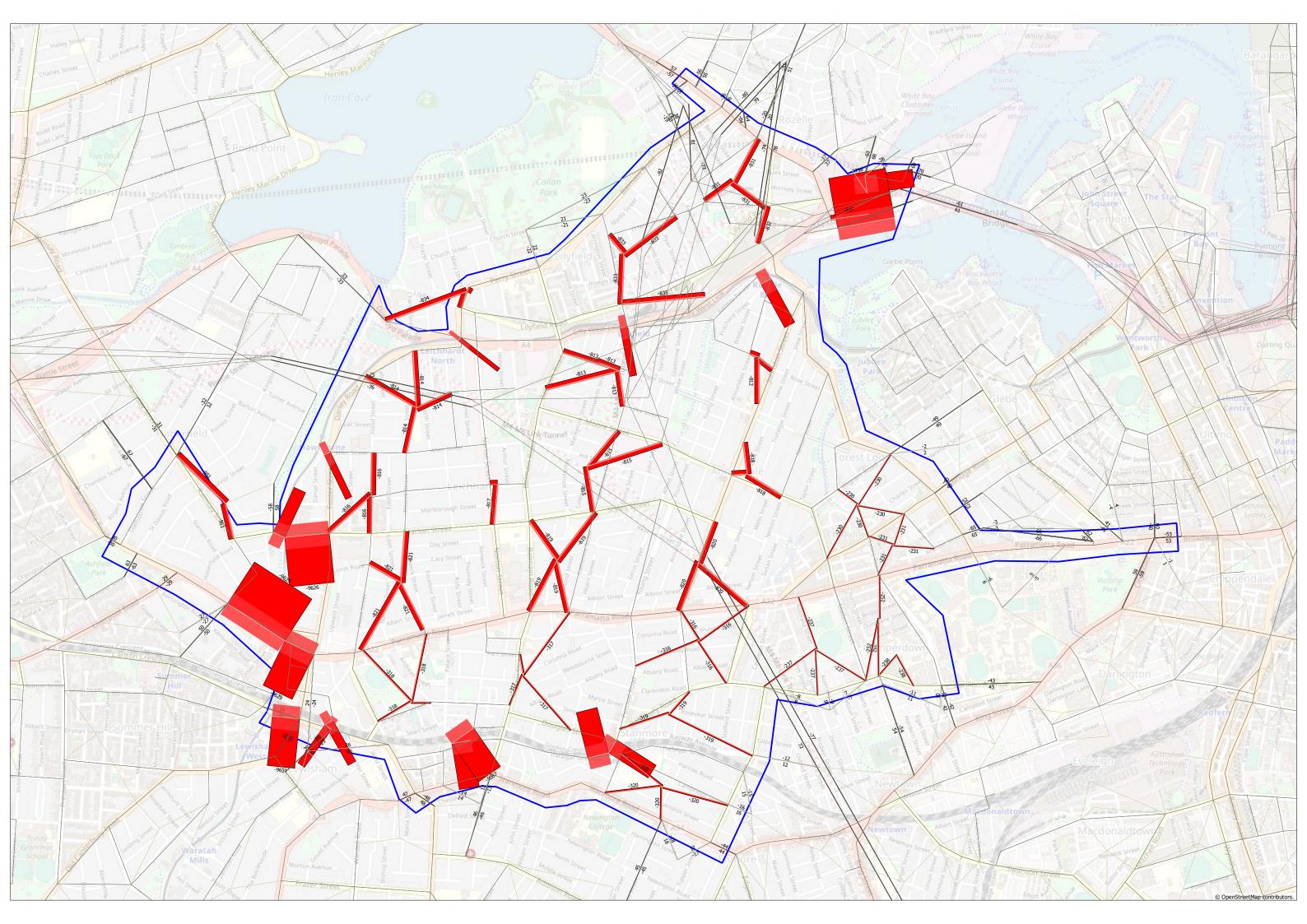
PwC has applied the absolute STFM growth to the AIMSUN base matrix to test the performance of the model. Table 4 shows the growth within the PRCUTS Inner West City Council study for the AIMSUN model is up to 7% points higher than the STFM demand in the 2026 AM and PM peak Without Development scenario. Table 5 shows that the network statistics and unreleased vehicles in 2026 are within an acceptable range and additional treatment of demand growth in AIMSUN is therefore not required.

Table 4: Inner West Council study area traffic growth between 2018 and 2026 without development scenarios in AIMSUN and STFM.

	Without Development				
2026-2018	AM	PM			
AIMSUN Growth (veh)	18,973	20,289			
AIMSUN Growth (%)	28%	27%			
STFM Growth (veh)	14,758	16,274			
STFM Growth (%)	22%	20%			

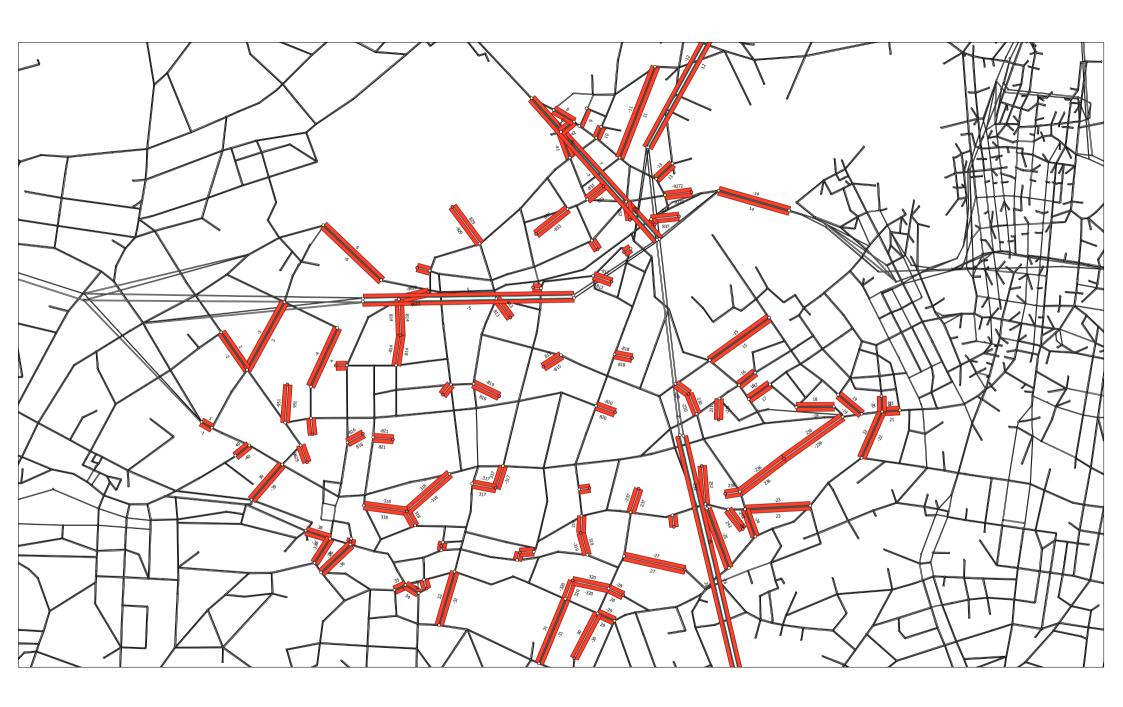
Table 5: Inner West Council AIMSUN network statistics for 2018 Base and 2026 without development AM and PM peak scenarios.


Network Statistics	2018	Base	2026 Without Development		
Network Statistics	AM	PM	AM	PM	
Demand	68,594	75,141	87,567	95,430	
Total Distance Travelled - All	168,922	188,415	195,206	207,381	
Total Travel Time - All	6,718	6,988	8,532	9,392	
Vehicles Waiting to Enter - All	4	3	14	1,854	
Total Number of Stops - All	113,316	101,730	110,256	106,004	
Average Speed (km/h)	25.1	27.0	22.9	22.1	


APPENDIX

F

PTPM CORDONS



APPENDIX

G

STFM CORDONS

APPENDIX

Н

INTERSECTION PERFORMANCE

# Intersection Type App. Approach name	D C B
N Darling St T 243 89.9 F 234 104.0	F D C B F D
T 243 89.9 F 234 104.0 E Victoria Rd L 57 38.4 C 998 33.2 R 144 32.1 C 128 25.9 R 154 84.2 F 251 85.0 D 1833 43.0 R 154 89.9 F 197 50.4 R 154 89.9 F 197 50.4 R 154 89.9 F 197 50.4 R 156 105.0 F 283 81.4 N Evans St T 124 91.3 F 108 86.5 R 56 105.0 F 40 86.2 R 56 105.0 F 40 80.2 R 6 105.0 F 40 80.2 R 6 105.0 F 40 80.2 R 6 105.0 F 40 80.2 R 105.0	D C B F F
Victoria Rd / Darling St E Victoria Rd T 1247 36.1 C 998 33.2 R 144 32.1 C 128 25.9 R 15.0 R 15.4 F 200 115.0 R 15.4 R 15.4 F 200 115.0 R 15.4 R 15	C B F D
Victoria Rd / Darling St	B F F
1 Victoria Rd / Darling St S S Darling St L 248 84.2 F 251 85.0 0 115.0 T 218 115.4 F 200 115.0 D 26 47.2 D 27 Darling St T 124 B 9.9 F 197 50.4 T 7 124 P 197 197 50.4 D 1833 51.9 D 1833 52.6 D 1833 53.6 D 18333 53.6	F F D
S Darling St	F D
T 218 115.4 F 200 115.0 W Victoria Rd L 21 54.2 D 26 47.2 W Victoria Rd T 2228 51.9 D 1833 43.0 R 154 89.9 F 197 50.4 R 154 89.9 F 197 50.4 Total 4786 55.7 D 1833 51.9 N Evans St T 124 91.3 F 108 88.5 R 56 105.0 F 40 86.2 E Victoria Rd T 1369 4.8 A 1154 3.0 S Evans St L 1369 4.8 A 1154 3.0 W Victoria Rd T 1136 53.2 D 1115 52.6 W Victoria Rd L 0 0 2 6.4 T 137 113 53.2 D 1115 52.6 Total 4497 18.8 B 3773 16.3 N Victoria Rd L 20 45.6 D 18 15.9 Total 4497 18.8 B 3773 16.3 Victoria Road / Robert Street S Victoria Rd T 1339 4.2 A 1146 3.4 S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total 5626 30.1 C 4914 28.4 N Balmain Rd L 67 6.6 A 60 7.2 Total 5626 30.1 C 4914 28.4	D
W Victoria Rd	
R	D
Total N Evans St L 300 94.6 F 283 81.4 N Evans St T 124 91.3 F 108 88.5 R 56 105.0 F 40 86.2 E Victoria Rd L 10 9.6 A 8 9.2 S Evans St L 8 77.4 F 10 42.3 T 11369 4.8 A 1154 3.0 S Evans St L 8 77.4 F 10 42.3 T 113 53.2 D 115 52.6 W Victoria Rd L 0 2 6.4 T 2517 10.2 A 2053 7.5 Total 4497 18.8 B 3773 16.3 S Victoria Rd L 20 45.6 D 18 15.9 T 2972 33.2 C 2502 33.7 E Robert St L 704 72.3 F 695 51.1 R 0 0 0 S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total 5626 30.1 C 4914 28.4 N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5	
N Evans St L 300 94.6 F 283 81.4	D
N Evans St T 124 91.3 F 108 88.5 R 56 105.0 F 40 86.2 E Victoria Rd L 10 9.6 A 8 9.2 T 1369 4.8 A 1154 3.0 S Evans St L 8 77.4 F 10 42.3 T 113 53.2 D 115 52.6 W Victoria Rd L 0 2 6.4 T 2517 10.2 A 2053 7.5 Total 4497 18.8 B 3773 16.3 N Victoria Rd L 20 45.6 D 18 15.9 T 2972 33.2 C 2502 33.7 E Robert St R 0 0 S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total S F 606 7.2 Total S F 606 7.2 Total T 145 5.2 A 134 5.5 Total T 145 145 145 145 145 145 145 145	D
Victoria Road / Evans Street S E Victoria Rd L 10 9.6 A 8 9.2	F
E Victoria Road / Evans Street E Victoria Rd	F
Victoria Road / Evans Street	F
Victoria Road / Evans Street	Α
S Evans St L 8 77.4 F 10 42.3	A
N Victoria Rd T 113 53.2 D 115 52.6 W Victoria Rd L 0 2 6.4 T 2517 10.2 A 2053 7.5 Total 4497 18.8 B 3773 16.3 T 2972 33.2 C 2502 33.7 T 2972 33.2 C 2502 33.7 T 2972 33.2 C 2502 33.7 R 0 0 0 S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total 5626 30.1 C 4914 28.4 N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5 T T 145 5.2 A 134 5.5 T T 145 5.2 A 134 5.5 T T T T T T T T T	С
W Victoria Rd T 2517 10.2 A 2053 7.5	D
Total N Victoria Rd E Robert St S Victoria Rd T 2517 10.2 A 2053 7.5 Total N Victoria Rd L 20 45.6 D 18 15.9 T 2972 33.2 C 2502 33.7 E Robert St R 0 0 S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5	Α
N Victoria Rd L 20 45.6 D 18 15.9 T 2972 33.2 C 2502 33.7 E Robert St E Robert St R 0 0 S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total 5626 30.1 C 4914 28.4 N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5 N Robert Street D 18 15.9 T 1399 4.2 A 1146 3.4 T 145 5.2 A 134 5.5 T 145 5.2 A 134 5.5 N Robert Street D 18 15.9 T 145 5.2 A 134 5.5 N Robert Street D 18 15.9 T 145 5.2 A 134 5.5 T T 145 5.2 A 134 5.5 T T 145 5.2 A 134 5.5 T T T T T T T T T	Α
N Victoria Rd T 2972 33.2 C 2502 33.7	В
T 2972 33.2 C 2502 33.7 E Robert St R 0 0 S Victoria Road / Robert Street S Victoria Rd T 1339 4.2 A 1146 3.4 R 591 22.4 B 553 28.0 Total N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5	В
S E Robert St R 0 0 0	С
3 Victoria Road / Robert Street S R 0 0 0	D
S Victoria Rd R 591 22.4 B 553 28.0 Total 5626 30.1 C 4914 28.4 N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5	
R 591 22.4 B 553 28.0	A
N Balmain Rd L 67 6.6 A 60 7.2 T 145 5.2 A 134 5.5	В
N Balmain Rd T 145 5.2 A 134 5.5	В
T 145 5.2 A 134 5.5	Α
L 8 31.1 C 17 25.7	Α
	В
E Lilyfield Rd T 3 14.7 B 2 16.1	В
R 3 37.6 C 4 19.6	В
E Relmain Read / Lilyfield Read S L 42 9.1 A 42 7.7	Α
5 Balmain Road / Lilyfield Road S S Balmain Rd T 323 10.0 A 291 8.4	Α
R 417 14.0 A 371 11.2	Α
L 0 0	
W Lilyfield Rd T 97 16.3 B 92 25.0	В
R 1 36.1 C 6 37.9	С
Total 1106 11.5 A 1019 11.0	Α
L 2888 5.9 A 2458 5.4	Α
N R 697 29.0 C 708 24.6	В
Victoria Rd T 1386 73.2 F 1304 55.8	D
6 The Crescent / Victoria Road S E R 1490 48.3 D 1329 42.5	
W The Crescent L 612 8.9 A 567 7.9	D
Total 7073 30.5 C 6366 25.9	A

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	0			0		
			N	Wharf Rd	Т	0			0		
					R	0			0		
					L	199	5.0	Α	186	6.6	Α
			E		Т	215	4.9	Α	273	6.1	Α
	Palmain Boad / Darry Street / Wharf			Balmain Rd	R	7	5.4	Α	18	6.2	Α
7	Balmain Road / Perry Street / Wharf Road	S			L	20	2.4	Α	15	3.7	Α
			S		T	24	2.9	Α	24	4.8	Α
					R	238	4.0	Α	219	5.6	Α
					L	15	4.6	Α	15	12.0	Α
			W	Perry St	Т	258	10.0	Α	292	9.8	Α
					R	3	8.8	Α	3	9.3	A
			Total			979	5.9	Α .	1045	7.2	Α .
			Е		L	763	5.8	A	777	4.1	A
				The Crescent	T .	1309	53.6	D	1223	49.2	D
	City West Link Bood / The Cressent	s	s		L	75	34.8	C	72	32.7	С
8	City-West Link Road / The Crescent	3			R	1095	60.3	E C	1020	64.1 24.8	E B
			W	City-West Link Rd	R	1718 71	32.8 99.3	F	1241 91	98.4	F
			Total		R	5031	99.3 41.1	С	4424	98.4 38.6	С
			I Otal		L	9	59.0	E	1	1.6	A
			N	Norton St	T	96	57.7	E	112	65.1	E
				TVOICOTI OT	L	94	24.7	В	90	28.6	C
			E	City-West Link Rd	T	1476	61.3	E	1409	55.7	D
			_	,	R	19	51.6	D	30	39.4	С
					L	56	80.5	F	53	95.5	F
9	City-West Link Road / Norton Street	S	s	Norton St	Т	186	105.2	F	206	112.6	F
					R	154	106.5	F	108	124.0	F
					L	0		<u> </u>	0		
			W	City-West Link Rd	Т	1519	8.3	Α	1118	11.4	Α
					R	107	59.4	Е	107	64.0	E
			Total			3716	42.8	D	3234	46.6	D
					L	69	45.0	D	47	39.0	С
			N	Balmain Rd	Т	115	18.3	В	120	21.3	В
					R	31	21.5	В	31	48.7	D
					L	41	7.0	Α	26	13.7	Α
			Е	City-West Link Rd	Т	1474	8.0	Α	1412	15.3	В
10	City-West Link Road / Brenan Street /	S			R	127	22.6	В	91	22.5	В
10	Balmain Road				L	32	178.6	F	40	81.3	F
			s	Balmain Rd	Т	336	183.2	F	314	71.4	F
					R	129	185.0	F	129	48.2	D
			W	City-West Link Rd	L	308	12.1	Α	288	19.7	В
					Т	1372	27.2	В	955	30.5	С
			Total			4034	37.9	С	3453	28.0	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
Г					L	194	45.7	D	190	47.6	D
			N	Catherine St	Т	294	36.5	С	281	37.5	С
	0				R	99	43.5	D	110	46.6	D
11	City-West Link Road / Brenan Street / Catherine Street	s	E	City-West Link Rd	Т	1389	16.9	В	1304	17.0	В
			S	Catherine St	L	59	35.9	С	30	40.2	С
			W	City-West Link Rd	Т	1591	26.6	В	1143	26.9	В
			Total	I		3626	25.3	В	3058	25.8	В
					L	177	4.3	Α	181	3.1	Α
			N	Catherine St	T	114	35.3	С	121	31.4	С
					R	0			0		_
			_		L	0	40.4		2	1.5	A
			E	Moore St	T	148	12.1	A	172	13.4	A
13	Catherine Street / Moore Street	s			R	103	15.5	В	76	15.1	С
			s	Catherine St	L T	43	30.7	С	54	31.2 34.3	C
			3	Catherine St		71	28.1	В	78 54		C
					R	39	32.8 27.7	С	54 1	33.2 44.2	D
			W	Moore St	L T	142	19.5	B B	109	20.7	
			Total		1	839	19.5 18.6	В	848	20.7 19.2	В
			I Otal		L	16	18.3	В	17	18.7	В
			N	Catherine St	T	106	25.0	В	108	19.4	В
			'`	Cathornic St	R	42	21.0	В	31	16.9	В
					L	13	12.0	A	14	6.7	A
			E	Styles St	T	152	10.3	A	147	9.0	A
			_		R	5	20.9	В	0	0.0	
14	Styles Street / Catherine Street	s			L	66	20.9	В	60	22.1	В
	,		s	Catherine St	T	57	26.0	В	71	22.7	В
					R	5	20.8	В	3	30.6	С
					L	91	21.2	В	113	24.5	В
			W	Styles St	Т	538	20.5	В	537	23.9	В
					R	20	22.4	В	18	26.4	В
			Total			1111	19.8	В	1119	21.0	В
					L	70	39.9	С	103	32.7	С
			N	Norton St	Т	179	41.8	С	190	32.5	С
					R	33	35.7	С	32	29.6	С
					L	93	25.4	В	97	27.1	В
			E	Marion St	Т	295	16.2	В	267	23.0	В
					R	3	25.4	В	6	36.9	С
19	Marion Street / Norton Street	S			L	30	31.0	С	38	22.2	В
			S	Norton St	Т	95	34.5	С	87	32.4	С
					R	7	29.9	С	5	46.2	D
					L	49	33.9	С	43	23.3	В
			W	Marion St	Т	745	26.3	В	690	26.4	В
					R	154	30.5	С	160	29.2	С
			Total			1753	28.0	В	1718	27.5	В

						7:15	AM - 8:15	5AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Balmain Rd	L	25	73.8	F	30	84.6	F
			14	Daimain Nu	R	135	97.1	F	124	72.3	F
			Е	Leichhardt St	Т	234	13.2	Α	219	12.9	A
				Leichhardt Ot	R	23	19.7	В	23	23.2	В
20	Marion Street / Leichhardt Street /	s			L	13	125.0	F	10	85.3	F
20	Balmain Road		S	Balmain Rd	Т	198	111.7	F	173	115.0	F
					R	3	115.8	F	1	133.2	F
			w	Marion St	L	266	27.8	В	245	31.0	С
				INGINETI CE	Т	714	23.7	В	720	28.1	В
			Total			1611	41.5	С	1545	41.1	С
					L	150	8.7	Α	123	7.5	Α
			N	Johnston St	Т	244	16.2	В	237	13.6	Α
					R	73	21.9	В	64	19.5	В
			E	Collins St	L	60	18.5	В	45	16.8	В
22	Johnston Street / Collins Street	S	s	Johnston St	L	92	31.6	С	86	37.9	С
					Т	452	37.5	С	415	34.3	С
			w	Collins St	L	374	20.7	В	394	15.9	В
				Commo ot	R	185	20.9	В	182	16.3	В
			Total			1630	24.2	В	1546	21.3	В
					L	44	53.0	D	50	57.4	E
			N	Johnston St	Т	214	56.0	D	199	59.3	E
					R	65	53.6	D	91	63.2	E
					L	23	17.2	В	15	9.9	Α
			E	Booth St	Т	245	22.3	В	261	26.7	В
					R	36	41.2	С	22	25.0	В
23	Johnston Street / Booth Street	S			L	1	50.2	D	3	39.1	С
			S	Johnston St	Т	520	37.3	С	481	38.0	С
					R	284	21.9	В	310	26.7	В
					L	74	36.6	С	61	30.3	С
			W	Booth St	Т	377	50.4	D	412	37.0	С
					R	137	56.3	D	108	41.3	С
			Total			2020	39.7	С	2013	37.9	С
			N	Wigram Rd	L	62	2.2	Α	40	2.2	Α
				<u> </u>	R	55	2.0	Α	47	1.7	Α
			E		Т	260	2.8	Α	233	3.0	Α
27	Booth Street / Wigram Road	RB		Booth St	R	128	2.8	Α	94	2.4	Α
			W		L	226	1.8	Α	230	1.6	Α
					Т	482	2.0	Α	510	1.8	Α
			Total			1213	2.8	Α	1154	3.0	Α

						7:15	AM - 8:15	AM	8:15	AM - 9:15	SAM .
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	66	15.5	В	69	13.3	Α
			N	Minogue Cres	Т	344	20.9	В	416	20.1	В
				Initiogue Ores	R	6	13.9	Α	2	17.0	В
					L	13	26.1	В	18	30.9	С
			E	Wigram Rd	Т	132	22.0	В	92	22.3	В
				Wigram ita	R	35	23.1	В	23	24.2	В
28	Minogue Crescent / Wigram Road	S			L	2	17.6	В	6	33.0	С
			S	Minogue Cres	Т	138	26.0	В	128	25.4	В
					R	29	10.5	Α	20	24.7	В
					L	5	18.9	В	3	13.9	Α
			W	Wigram Rd	Т	223	25.1	В	215	26.0	В
					R	0			0		
			Total			993	22.1	В	992	22.2	В
			N		L	49	29.3	С	54	27.3	В
				Ross St	Т	289	46.3	D	351	38.4	С
					L	65	14.1	Α	55	17.8	В
			E	Bridge Rd	Т	419	13.3	Α	414	15.5	В
					R	43	14.1	Α	28	30.6	С
29	Ross Street / Bridge Road	S	s	Ross St	L	151	56.5	D	106	49.4	D
					Т	143	57.4	E	142	47.4	D
					L	30	43.2	D	33	52.0	D
			W	Bridge Rd	Т	811	39.9	С	833	56.8	E
					R	18	20.9	В	8	30.9	С
			Total	I		2018	36.0	С	2024	41.7	С
			N	Booth St	L	321	85.1	F	335	56.7	E
					Т	386	68.1	Е	357	45.0	D
					L	16	18.4	В	43	15.0	В
			E	Pyrmont Bridge Rd	Т	234	22.5	В	207	12.7	Α
	Pyrmont Bridge Road / Booth Street /				R	72	56.7	E	65	66.4	E
30	Mallett Street	S			L	22	26.3	В	9	36.3	С
			S	Mallett St	Т	199	21.6	В	138	35.1	С
					R	96	33.6	С	115	45.2	D
			W	Pyrmont Bridge Rd	L	49	43.5	D	47	34.5	С
					Т	388	44.9	D	374	30.1	С
			Total			1783	51.0	D	1690	39.0	С
					L	1	2.6	Α	1	17.9	В
			N	Foster St	Т	111	31.1	С	91	24.3	В
					R	36	41.9	С	40	43.6	D
			E	Marion St	L	58	16.3	В	65	46.4	D
					Т	267	21.1	В	223	36.2	С
34	Marion Street / Foster Street	s			L	83	26.1	В	92	32.5	С
			S	Foster St	Т	389	32.7	С	471	36.0	С
					R	111	36.6	С	88	36.9	С
					L	282	26.3	В	305	48.9	D
			W	Marion St	Т	649	26.4	В	631	51.6	D
					R	94	26.7	В	101	59.1	E
			Total			2081	27.7	В	2108	43.5	D

						7:15	SAM - 8:15	SAM	8:15	AM - 9:15	AM
#	Intersection	Type	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	12	22.9	В	15	25.7	В
			N	Flood St	Т	96	26.5	В	73	19.5	В
					R	14	44.3	D	7	23.0	В
					L	151	42.1	С	147	7.3	A
			E	Marion St	Т	249	27.6	В	218	15.6	В
					R	6	21.4	В	10	37.9	С
35	Marion Street / Flood Street	S			L	31	27.5	В	33	33.0	С
			s	Flood St	Т	75	29.4	С	110	13.0	A
					R	229	34.2	С	172	39.1	С
					L	39	50.8	D	26	58.0	E
			W	Marion St	Т	951	66.5	Е	891	69.6	Е
					R	82	118.0	F	70	81.2	F
			Total			1935	53.0	D	1772	48.1	D
			N.	Damasu Ct	L	797	19.5	В	766	17.3	В
			N	Ramsay St	Т	1	116.8	F	1	28.1	В
			_	Marian Ct	L	28	20.3	В	26	24.0	В
36	Marion Street / Ramsay Street	S	E	Marion St	R	279	14.6	В	224	11.9	Α
				D 0t	Т	103	29.0	С	100	29.9	С
			S	Ramsay St	R	191	39.5	С	220	46.2	D
			Total			1399	22.0	В	1337	22.2	В
			_	Dawaratta Dd	L	375	2.5	Α	367	2.7	Α
			E	Parramatta Rd	Т	1232	59.8	E	1146	49.2	D
				Liverneel Dd	L	90	34.5	С	94	36.7	С
39	Parramatta Road / Liverpool Road (Hume Highway)	S	S	Liverpool Rd	R	793	51.9	D	693	62.5	E
	(Tame Figure 4)		١٨/	Dawa waatta Dd	Т	1310	17.5	В	1477	15.9	В
			W	Parramatta Rd	R	255	48.2	D	271	61.4	E
			Total			4055	38.0	С	4048	35.6	С
					L	7	50.5	D	11	97.0	F
			N	City-West Link Rd	Т	90	45.7	D	92	63.1	E
					R	89	46.9	D	122	78.8	F
			_	lomos Ct	L	255	0.8	Α	249	0.8	Α
			E	James St	Т	1277	3.8	Α	1213	2.4	Α
41	City-West Link Road / James Street	S			L	13	58.5	E	5	86.7	F
			s	City-West Link Rd	Т	177	55.8	D	205	57.4	E
					R	316	54.9	D	343	56.9	E
			147	James Ct	L	201	3.6	Α	239	2.8	Α
			W	James St	Т	1300	29.6	С	872	21.1	В
			Total			3725	21.7	В	3351	21.0	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Forster St	L	150	18.8	В	169	17.1	В
			IN	Forster St	Т	366	10.9	Α	327	13.0	Α
					L	39	23.4	В	33	24.8	В
			E	Lords Rd	Т	39	14.9	В	50	18.3	В
					R	20	11.7	Α	21	31.2	С
12	Tebbutt Street / Lords Road	S			L	25	7.5	Α	21	9.6	A
72	repout direct / Lords (Coad		s	Tebbutt St	Т	489	8.0	Α	550	12.5	Α
					R	221	13.5	Α	220	15.6	В
					L	22	24.8	В	25	27.6	В
			W	Lords Rd	Т	53	23.7	В	56	33.0	С
					R	25	19.1	В	26	28.8	С
			Total			1449	12.4	Α	1498	15.6	В
					L	83	4.3	Α	100	7.2	Α
			N	Mary St	Т	148	35.9	С	193	56.3	D
					R	8	46.1	D	13	54.2	D
					L	1	3.1	Α	3	2.9	Α
			E	Lilyfield Rd	Т	56	3.6	Α	41	4.1	Α
					R	1	20.8	В	0		
43	Lilyfield Road / James Street	s			L	25	24.8	В	29	19.2	В
			s	James St	Т	263	25.7	В	328	20.9	В
					R	88	27.4	В	90	19.0	В
					L	9	19.8	В	10	29.2	С
			w	Lilyfield Rd	Т	96	26.0	В	95	32.2	С
					R	30	26.6	В	24	23.7	В
			Total			808	24.2	В	926	27.6	В
					Т	67	9.1	Α	65	16.3	В
			N		R	386	13.4	Α	332	23.3	В
				Tebbutt St	L	85	4.9	Α	128	5.1	Α
44	Tebbutt Street / Hathern Street	s	S		Т	8	29.2	С	39	40.1	С
			\4,	11-4h O/	L	776	24.1	В	817	19.2	В
			W	Hathern St	R	103	28.7	С	127	26.6	В
			Total			1425	19.7	В	1508	20.0	В
					L	0			12	59.4	E
			N	Sloane St	Т	80	51.6	D	84	58.6	E
					R	30	80.5	F	27	61.8	E
			_	Darramette Del	L	9	5.8	Α	14	11.7	Α
AE	Darrametta Daad / Classes Chreet		E	Parramatta Rd	Т	1540	4.5	Α	1434	5.5	Α
45	Parramatta Road / Sloane Street	S		Sleana St	L	47	65.6	E	38	57.1	E
			S	Sloane St	Т	166	60.4	E	156	57.8	E
			\^/	Damamatte Dd	L	101	22.2	В	101	34.7	С
			W	Parramatta Rd	Т	2002	21.9	В	2027	37.8	С
			Total			3975	18.3	В	3893	27.4	В

							7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
## Paramatta Road / Old Canterbury Road Fee	#	Intersection	Туре	App.	Approach name	Turn			LOS			LOS
## Paramatta Road / Old Canterbury Road / Februti Street				N	Tebbutt St	L	171	39.4	С	190	69.6	E
A				F	Parramatta Rd	L	216	24.4	В	215	15.0	В
Marie	47		s		r urramatta r tu	Т	1435	15.0	В	1340	10.7	A
Total		Road / Tebbutt Street		S	Old Canterbury Rd	L	91	15.8		107	12.4	Α
Age					Parramatta Rd	Т						
August Paramatta Road / Roalway Paramatta Road / Flood Street / West Paramatta Road / Crystal Street Paramatta Road / Crystal Street Paramatta Road Paramatt				Total	I							
April				N	Old Canterbury Rd							
Paramatta Road / Norton Street Failway Terrace T												
Solid Canterbury Road / Railway Terrace / Longport Street Solid Canterbury Road / Railway Terrace / Longport Street Solid Canterbury Road / Railway Terrace / Longport Street Total				E	Railway Terrace							
Ferrace / Longport Street												
Nortan Secondaria Seconda	49	Old Canterbury Road / Railway Terrace / Longport Street	s	٩	Old Capterbury Pd							
Marian		OI .		3	Old Canterbury Nd			30.0			30.0	C
Comport St T 368 24.4 B 388 32.5 C 70tal								23.8	R		33.4	C
Total				W	Longport St							
Norton State Norton Street Norton State Nor				Total	<u> </u>	•						
Notion St						L						
Formal F				N	Norton St	\vdash						
Sample						Т	1201	3.3	Α	1125	3.3	Α
N	50	Parramatta Road / Norton Street	s	E		R	235	46.6	D	223	40.3	С
Total Tota				,,,	Parramatta Rd	L	4	0.7	Α	35	8.3	Α
Parramatta Road / Flood Street / West St				VV		Т	1600	21.7	В	1674	14.1	Α
Parramatta Road / Flood Street / West St				Total			3285	24.6	В	3321	14.7	В
Parramatta Road / Flood Street / West Street E Parramatta Road / Flood Street / West St E Parramatta Road / Flood Street / West St E Parramatta Road / C 1109 52.6 D						L	4	54.8	D	1	94.9	F
Parramatta Road / Flood Street / West Street Parramatta Rd L T 64.5 E 11 94.3 F				N	Flood St	Т	106	47.9	D	90	53.5	D
E Parramatta Rd T 1154 52.6 D 1109 52.6 D 152 B 25.6 E Parramatta Rd T 1154 52.6 D 1109 52.6 D 152 B 25.6 D 1						R	13	101.0	F	9	53.2	D
Parramatta Road / Flood Street / West St S S West St E West				E	Parramatta Rd	L						F
Street Street						Т	1154	52.6	D	1109	52.6	D
Formal F	51		s			L	235			211		
W Parramatta Rd L 74 38.8 C 92 40.0 C T 1401 37.5 C 1533 39.1 C R 470 147.5 F 456 148.5 F Total 3648 56.4 D 3672 56.4 D D T 1235 47.3 D 1150 88.8 F T 1235 47.3 D 1150 88.8 F T 1235 47.3 D 1150 88.8 F S Crystal St T 203 86.3 F 185 90.9 F R 147 81.7 F 148 80.7 F W Parramatta Rd T 1707 8.6 A 1774 5.8 A R 224 55.4 D 214 28.4 B		Sileei		S	West St			42.4	С		42.2	С
W Parramatta Rd T 1401 37.5 C 1533 39.1 C								4				
R 470 147.5 F 456 148.5 F				147	Dawrawa - # - D !							
Total Total 3648 56.4 D 3672 56.4 D				VV	Parramatta Rd							
E Parramatta Rd L 117 41.7 C 80 81.9 F T 1235 47.3 D 1150 88.8 F L 174 34.7 C 175 31.4 C S Crystal St T 203 86.3 F 185 90.9 F R 147 81.7 F 148 80.7 F W Parramatta Rd L 6 6.7 A 5 9.3 A W Parramatta Rd T 1707 8.6 A 1774 5.8 A R 224 55.4 D 214 28.4 B				Total		K						
E Parramatta Rd T 1235 47.3 D 1150 88.8 F L 174 34.7 C 175 31.4 C S Crystal St T 203 86.3 F 185 90.9 F R 147 81.7 F 148 80.7 F Balmain Road W Parramatta Rd T 1707 8.6 A 1774 5.8 A R 224 55.4 D 214 28.4 B				iotal		,						
S				E	Parramatta Rd							
S Crystal St T 203 86.3 F 185 90.9 F R 147 81.7 F 148 80.7 F H R 147 81.7 F 148 80.7 F R 148 80.												
52 Parramatta Road / Crystal Street / Balmain Road S R 147 81.7 F 148 80.7 F U E				s	Crystal St							
L 6 6.7 A 5 9.3 A	52		s									
W Parramatta Rd T 1707 8.6 A 1774 5.8 A R 224 55.4 D 214 28.4 B		Baimain Road	_									
R 224 55.4 D 214 28.4 B				W	Parramatta Rd							
10ta 3013 33.1 G 3/31 42.7 D				Total			3813	33.1	С	3731	42.7	D

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	12	60.0	E	1	314.3	F
			N	Catherine St	Т	48	60.4	E	31	231.3	F
					R	79	71.4	F	43	298.6	F
			E	Parramatta Rd	L	2	24.2	В	0		
	Parramatta Road / Catherine Street /				Т	1212	21.5	В	1176	76.7	F
53	Phillip Street	S			L	24	41.9	С	31	52.3	D
			S	Phillip St	T	75	44.7	D	60	56.6	E
					R	18	66.5	E	26	74.2	F
			W	Parramatta Rd	L	55	11.4	A	75	17.1	В
					Т	1780	4.2	Α	1849	4.2	A
			Total			3305	14.9	B -	3292	38.4	C
			N	Crystal St	L	66	103.1	F	60	97.9	F
					T	263	109.7	F	244	115.5 8.8	F
			E	Douglas St	L T	146 33	10.0 44.1	A D	160 33	46.3	A D
			_	Douglas St	R	0	44.1	U	5	70.5	F
					L	356	22.1	В	365	30.2	C
56	Crystal Street / Douglas Street / Brighton Street	S	s	Crystal St	T	516	23.8	В	499	24.8	В
				, - · , - · · · · · · · · · · · · · · ·	R	703	32.2	С	729	33.1	С
					L	32	48.3	D	37	30.3	С
			w	Brighton St	T	74	96.4	F	72	83.6	F
					R	144	123.8	F	130	108.3	F
			Total			2333	46.2	D	2334	45.4	D
					L	40	8.6	Α	60	17.6	В
			N	Crystal St	Т	462	10.5	Α	432	13.4	Α
					R	88	26.4	В	91	26.0	В
			E	Trafalger St	L	9	69.4	E	13	38.1	С
57	Crystal Street / Trafalgar Street	S	_	Trafaiger St	Т	46	35.2	С	69	28.4	В
31	Orystal Street / Trafalgal Street		s	Crystal St	L	23	14.9	В	27	27.4	В
				Crystal Ot	Т	1377	19.1	В	1363	28.0	В
			w	Trafalger St	L	196	35.9	С	217	25.1	В
					Т	180	26.9	В	213	33.1	С
			Total			2421	19.9	В	2485	25.4	В
					L	106	84.8	F	124	96.6	F
			N	Crystal St	Т	257	82.5	F	211	98.1	F
					R	110	90.5	F	105	102.6	F
			_		L	36	25.9	В	28	35.4	С
	New Canterbury Road / Stanmore		E	Stanmore Rd	T	372	32.3	С	380	36.8	С
58	Road / Crystal Street / Shaw Street	S			R	228	51.1	D	238	52.3	D
			s	Shaw St	L	2	19.3	В	2	49.3	D
					T	484	49.1	D	471 600	73.5	F
			W	New Canterbury Rd	L T	679 798	46.2 38.1	D C	688 790	45.6 36.4	D C
			Total		Т			D	790 3037		D
			TOLAI			3072	48.9	U	3037	54.6	U

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Gordon St	Т	411	12.5	Α	437	11.7	Α
			Е	Trafalger St	L	21	1.6	Α	21	1.2	Α
50	Gordon Street / Trafalgar Street	S		Traiaigei St	R	227	22.1	В	268	29.5	С
	Gordon Greet / Trainingal Greet		s	Gordon St	Т	222	24.3	В	229	23.2	В
				Gordon Gt	R	375	35.1	С	349	27.7	В
				Total		1256	22.9	В	1304	21.5	В
			N	Gordon St	L	118	43.0	D	102	48.3	D
				Gordon Gr	Т	318	51.3	D	353	54.5	D
					L	20	29.5	С	15	22.4	В
			E	New Canterbury Rd	Т	331	13.3	Α	307	16.0	В
60	New Canterbury Road / Gordon Street	S			R	159	30.6	С	184	30.3	С
	/ Livingstone Road		s	Livingstone Rd	L	21	34.5	С	21	45.3	D
					Т	404	34.6	С	346	34.7	С
			w	New Canterbury Rd	L	36	41.8	С	46	33.8	С
				Tron Camerany ria	Т	1344	35.4	С	1325	32.4	С
			Total			2751	34.6	С	2699	34.3	С
					L	269	36.4	С	170	34.3	С
			N	Dalhousie St	Т	85	33.9	С	154	32.2	С
					R	24	31.0	С	20	36.7	С
					L	85	23.7	В	64	46.0	D
			E	Ramsay St	Т	255	24.7	В	220	15.0	В
					R	29	33.5	С	24	36.3	С
62	Ramsay Road / Dalhousie Street	S			L	72	39.0	С	66	36.8	С
			S	Dalhousie St	Т	211	38.2	С	206	39.5	С
					R	87	28.8	С	99	33.8	С
					L	14	10.7	A	20	26.0	В
			W	Ramsay St	Т	502	19.0	В	535	18.6	В
					R	3	4.6	Α	1	2.2	Α
			Total			1636	28.0	В	1579	27.2	В
			N	Liberty St	L	326	33.2	С	319	30.0	С
				,	R	134	44.6	D	125	53.6	D
			Е		Т	493	7.4	Α	509	6.9	Α
65	Stanmore Road / Liberty Street	S		Stanmore Rd	R	365	18.8	В	326	16.0	В
			w		L	109	7.9	Α	76	10.7	A
					Т	864	18.4	В	859	33.8	С
			Total			2291	19.3	В	2214	24.8	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	129	12.9	Α	137	16.9	В
			N	Ross St	Т	274	12.1	Α	302	16.1	В
					R	16	17.3	В	17	19.5	В
					L	20	39.6	С	38	42.5	С
			E	St Johns Rd	Т	10	43.4	D	9	33.7	С
					R	108	41.7	С	83	48.1	D
66	Ross Street / St Johns Road	s			L	77	15.6	В	104	12.7	Α
			s	Ross St	Т	168	17.2	В	130	14.5	Α
					R	117	16.8	В	137	9.4	Α
					L	14	67.2	E	26	62.1	E
			W	St Johns Rd	Т	28	53.2	D	17	45.3	D
					R	3	87.2	F	2	56.1	D
			Total			964	20.5	В	1002	20.4	В
					L	31	43.5	D	24	66.6	E
			N	Young St	Т	195	46.5	D	169	49.9	D
					R	0			0		
			Е	Parramatta Rd	L	7	16.5	В	8	10.8	Α
	Parramatta Road / Young Street /				Т	1087	3.0	Α	1098	2.3	Α
67	Percival Road	S			L	35	54.1	D	25	75.5	F
			S	Percival Rd	Т	144	54.8	D	126	70.9	F
					R	106	71.0	F	104	91.8	F
			w	Parramatta Rd	L	4	30.4	С	6	41.7	С
					Т	1824	33.0	С	1888	40.8	С
			Total			3433	26.6	В	3448	32.0	С
					L	251	49.8	D	231	57.7	E
			N	Johnston St	Т	234	57.5	E	234	65.4	E
					R	0			0		
					L	12	6.4	Α	21	8.0	Α
			E	Parramatta Rd	T 	1100	19.2	В	1094	14.1	A
68	Parramatta Road /Northumberland Avenue / Johnston Street	s			R	128	95.7	F	118	107.3	F
	Averiue / Johnston Street		_		L	12	50.9	D	9	67.3	E
			S	Northumberland Dr	T	342	54.9	D	332	52.0	D
					R	69	89.3	F	58	62.9	E
			W	Parramatta Rd	L	57	25.8	В	55	34.6	С
			.		Т	1854	17.1	В	1898	27.9	В
			Total			4059	29.1	С	4050	32.9	С
			Е	Parramatta Rd	L	156	23.5	В	158	22.7	B
					T .	1195	16.3	В	1173	16.8	В
	D " D 1/2:: 5 :		s	Bridge Rd	L	0			0	a	
69	Parramatta Road / Bridge Road	S			R	488	74.6	F	446	61.9	E
			W	Parramatta Rd	T	1914	41.2	C	1984	54.4	D
			.		R	211	62.6	E	170	83.3	F
			Total			3964	38.2	С	3931	44.0	D

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	0			0		
			N	Pyrmont Bridge Rd	Т	28	61.6	E	20	56.9	Ε
					R	215	60.6	E	201	45.8	D
70	Parramatta Road /Pyrmont Bridge	s	E		L	34	15.9	В	30	24.4	В
'	Road / Denison Street			Parramatta Rd	Т	1121	3.0	Α	1103	1.6	Α
			W	r arramatta r ta	L	508	9.8	Α	511	10.1	Α
					Т	2054	13.4	Α	2115	15.1	В
			Total			3960	12.9	A	3980	12.5	Α
					L	130	38.6	С	122	50.7	D
			N	Mallett St	Т	229	47.1	D	255	44.7	D
					R	63	56.3	D	33	71.8	F
			E	Parramatta Rd	L	31	15.1	В	36	9.0	Α
					Т	1055	4.8	Α	1072	2.0	Α
71	Parramatta Road / Mallett Street	S			L	18	42.9	D	24	70.0	E
			S	Mallett St	Т	212	43.0	D	189	74.1	F
					R	65	48.3	D	80	149.8	F
			w	Parramatta Rd	L	49	25.3	В	14	34.0	С
					Т	1998	44.4	D	2108	49.4	D
			Total			3850	33.2	С	3933	39.3	С
					L	134	52.0	D	119	58.4	E
			N	Ross St	Т	54	61.8	E	68	64.9	E
					R	112	90.8	F	154	84.3	F
					L	15	9.2	Α	26	10.0	Α
			E	Parramatta Rd	Т	974	7.4	Α	979	11.8	Α
72	Parramatta Road / Ross Street /	s			R	113	167.4	F	97	367.1	F
-	Western Avenue				L	10	227.4	F	13	105.9	F
			S	Western Ave	Т	50	185.0	F	33	118.0	F
					R	29	159.5	F	33	128.4	F
			W	Parramatta Rd	L	192	33.4	С	248	40.9	С
					Т	1930	18.2	В	2034	25.3	В
			Total			3613	28.9	С	3804	37.6	С
			N	Glebe Point Rd	L	312	31.0	С	343	35.2	С
					R	73	56.5	E	61	64.1	E
	Groot Wootern Highway / Claha Daint		E		Т	1085	5.7	Α	1107	5.4	Α
73	Great Western Highway / Glebe Point Road	S		Great Western Hwy	R	224	85.1	F	227	89.5	F
			W		L	33	12.2	Α	27	21.7	В
					Т	2061	13.9	Α	2084	33.6	С
			Total			3788	18.0	В	3849	29.3	С

		Type App. Approach name			7:15	SAM - 8:15	5AM	8:15	AM - 9:15	AM	
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Bay St	L	24	15.3	В	29	21.2	В
			Е	Proodway	L	381	16.0	В	375	12.6	Α
			_	Broadway	Т	572	81.4	F	670	73.9	F
					L	732	15.7	В	668	23.3	В
74	Broadway / City Road (Princes	S	s	City Rd	Т	187	43.9	D	187	53.4	D
' -	Highway) / Bay Street	U			R	782	42.6	D	655	57.6	E
					L	164	12.3	Α	181	14.0	Α
			W	Great Western Hwy	Т	1202	12.9	Α	1284	17.4	В
					R	995	37.8	С	956	75.7	F
			Total			5039	32.0	С	5005	43.0	D
			E	Parramatta Rd	L	95	2.1	Α	89	2.0	Α
			_	T diffullatta 1 ta	Т	1098	1.9	Α	1093	3.6	Α
75	University Avenue / Parramatta Road /	S	S	University Ave	L	15	55.6	D	7	56.1	D
'	Derwent Street / Arundel Street			Oniversity 7 tve	R	9	78.5	F	12	194.8	F
			W	Parramatta Rd	Т	2073	36.2	С	2147	48.7	D
			Total			3290	24.0	В	3348	33.3	С
			N	Percival Rd	L	54	30.5	С	41	28.3	В
				r oronar na	R	70	24.7	В	86	26.6	В
			Е		Т	78	42.6	D	109	26.9	В
79	Douglas Street / Percival Road	S		Douglas St	R	133	96.8	F	118	47.9	D
			w	2009.000	L	654	34.7	С	644	24.2	В
					Т	97	45.4	D	105	36.4	С
			Total			1086	43.0	D	1103	28.5	С
			E	Railway Terrace	L	7	1.4	Α	13	1.5	Α
					Т	440	1.4	Α	475	1.6	Α
80	Railway Terrace / Victoria Street	Р	s	Victoria St	L	71	2.8	Α	67	2.7	Α
	Training Tolliago, Tigiona Guest				R	16	5.8	Α	14	4.0	Α
			W	Railway Terrace	Т	489	1.5	Α	546	1.6	Α
			Total			1023	5.8	Α	1115	4.0	Α
			N	Dalhousie St	L	65	38.2	С	123	45.9	D
			.,		R	125	69.6	E	106	66.5	E
			E		Т	1216	25.6	В	1122	12.5	A
81	Parramatta Road / Dalhousie Street	S		Parramatta Rd	R	93	51.8	D	100	34.4	С
			w	. andmata Na	L	94	39.3	С	113	50.2	D
					Т	1521	36.8	С	1605	50.8	D
			Total			3114	34.3	С	3169	37.0	С

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	83	12.8	Α	83	18.6	В
			N	Missenden Rd	Т	156	26.1	В	163	19.7	В
					R	34	33.5	С	45	31.2	С
					L	16	42.2	С	34	45.5	D
			E	Carillon Ave	Т	217	47.7	D	212	42.7	D
					R	60	42.3	С	61	39.1	С
82	Carillon Avenue / Missenden Road	S			L	194	15.2	В	153	21.0	В
			s	Missenden Rd	Т	184	35.0	С	188	35.0	С
					R	0			0		
					L	66	48.8	D	58	54.4	D
			W	Carillon Ave	Т	447	44.2	D	398	44.7	D
					R	16	34.1	С	21	40.5	С
			Total			1473	35.8	С	1416	35.8	С
					L	28	73.4	F	38	103.1	F
			N	Lyons Rd	Т	120	48.2	D	107	106.1	F
					R	6	61.2	E	9	105.2	F
			Е	Parramatta Rd	L	115	18.8	В	147	34.1	С
			_	r arramatta itu	Т	974	54.9	D	1007	58.9	E
83	Parramatta Road / Missenden Avenue	S			L	80	28.8	С	67	38.3	С
03	/ Lyons Road	3	s	Missenden Rd	Т	58	39.8	С	55	64.7	E
					R	30	41.9	С	48	81.3	F
					L	26	36.5	С	30	38.3	С
			W	Parramatta Rd	Т	1864	28.7	С	2018	35.7	С
					R	154	84.5	F	150	109.9	F
			Total			3455	39.7	С	3676	49.0	D

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Darling St	L	125	48.9	D	138	47.5	D
			IN	Daning St	Т	195	66.7	E	201	62.8	E
					L	64	18.5	В	70	28.1	В
			E	Victoria Rd	Т	2276	16.4	В	2389	13.7	Α
					R	115	45.1	D	122	48.5	D
1	Victoria Rd / Darling St	S	s	Darling St	L	286	69.2	E	297	85.3	F
			3	Danling St	Т	248	108.5	F	271	107.6	F
					L	80	43.5	D	93	43.1	D
			W	Victoria Rd	Т	1978	42.2	С	2103	47.1	D
					R	445	38.9	С	435	46.0	D
			Total			5812	36.8	С	2389	38.8	С
					L	74	59.8	E	64	62.9	E
			N	Evans St	Т	121	61.5	E	139	60.7	E
					R	51	62.1	E	56	62.5	Е
			_	Vietoria Pd	L	29	10.1	Α	41	15.3	В
	Viotorio Bood / Evere Street		E	Victoria Rd	Т	2383	11.4	Α	2498	9.4	Α
2	Victoria Road / Evans Street	S		5 Ot	L	21	51.9	D	39	51.9	D
			S	Evans St	Т	110	51.8	D	107	60.5	E
			100	Vieterie Del	L	20	2.9	Α	23	2.7	Α
			W	Victoria Rd	Т	2083	3.1	Α	2235	3.4	Α
			Total			4892	11.4	Α	5202	10.8	Α
				V: (: 5)	L	28	15.5	В	48	15.2	В
			N	Victoria Rd	Т	2207	56.0	D	2346	54.3	D
			_		L	646	27.9	В	637	28.5	С
3	Victoria Road / Robert Street	S	E	Robert St	R	21	81.5	F	15	107.9	F
			_		Т	2345	9.9	Α	2457	8.8	Α
			S	Victoria Rd	R	903	52.2	D	961	48.4	D
			Total			6150	34.8	С	6464	33.4	С
					L	60	6.1	Α	64	8.6	Α
			N	Balmain Rd	Т	230	7.5	Α	220	6.4	Α
					L	48	25.2	В	28	36.8	С
			Е	Lilyfield Rd	Т	48	29.2	С	58	27.0	В
					R	6	21.8	В	3	31.2	С
_					L	71	12.1	Α	66	10.7	Α
5	Balmain Road / Lilyfield Road	S	s	Balmain Rd	Т	302	11.0	Α	304	10.4	Α
					R	242	14.7	В	235	12.4	Α
					L	0			0		
			W	Lilyfield Rd	Т	1	1.6	Α	6	35.0	С
					R	0			0		
			Total			1008	12.5	Α	984	11.8	Α
					L	2076	4.5	Α	2155	4.8	Α
			N		R	758	76.5	F	813	75.4	F
			_	Victoria Rd	Т	1804	25.3	В	2039	24.6	В
6	The Crescent / Victoria Road	S	E		R	2898	33.6	С	3019	33.2	С
			W	The Crescent	L	733	18.4	В	814	16.6	В
			Total			8269	27.1	В	8840	26.7	В
						,=.0					

		Type App. Approach				7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	10	1.7	Α	17	1.7	A
			N	Wharf Rd	Т	23	1.6	Α	30	1.7	Α
					R	5	1.8	Α	1	1.9	Α
					L	253	3.5	Α	238	3.8	Α
			E		Т	442	4.0	A	467	4.2	Α
	Palmain Bood / Darny Street / Wharf			Balmain Rd	R	17	4.4	Α	21	4.8	Α
7	Balmain Road / Perry Street / Wharf Road	S			L	15	2.7	Α	16	2.0	Α
			S		Т	4	1.5	Α	11	2.2	Α
					R	204	3.1	Α	203	3.2	Α
					L	8	2.7	Α	9	2.8	Α
			W	Perry St	Т	245	2.8	Α	270	3.1	Α
			T		R	0	<i>a.</i>		0		
			Total		,	1226	3.4	A	1283	3.6	Α
			E		L	898	4.7	Α	991	5.6	A
				The Crescent	T	1698	31.5	С	1872	28.2	В
	City West Link Bood / The Crosset	s	s		L	209	27.4	В	208	37.2	С
0	City-West Link Road / The Crescent	3			R	792	67.5	E C	881	78.0	F
			W	City-West Link Rd	R	1987	32.5		1965	43.1 77.6	D
			Total		K	184 5768	82.5 34.1	F C	181 6098	38.3	F C
			I Otal		L	18	66.6	E	21	70.3	E
			N	Norton St	Т	189	70.1	Ē	190	75.4	F
				TVOICOTI OT	L	107	26.9	В	111	23.4	В
			E	City-West Link Rd	Т	2005	52.6	D	2082	48.3	D
			_	,	R	22	63.3	E	36	72.8	F
					L	73	39.5	С	79	35.3	С
9	City-West Link Road / Norton Street	S	s	Norton St	Т	160	58.0	Е	148	61.1	Е
					R	46	58.5	E	31	52.4	D
					L	0			0		
			W	City-West Link Rd	Т	1891	4.2	Α	1938	4.6	Α
					R	121	48.6	D	136	50.5	D
			Total			4632	33.0	С	4772	31.6	С
					L	126	44.8	D	120	38.5	С
			N	Balmain Rd	Т	202	24.4	В	195	29.5	С
					R	96	31.5	С	81	24.6	В
					L	162	16.2	В	148	28.6	С
			E	City-West Link Rd	Т	1863	16.7	В	2045	28.8	С
10	City-West Link Road / Brenan Street /	s			R	85	23.5	В	88	32.4	С
10	Balmain Road				L	125	65.6	E	121	94.7	F
			S	Balmain Rd	Т	361	64.2	E	346	85.8	F
					R	78	59.8	Е	109	74.3	F
			W	City-West Link Rd	L	142	12.9	Α	156	18.4	В
					Т	1800	36.2	С	1834	52.8	D
			Total			5040	30.2	С	5243	43.3	D

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
Г					L	64	53.1	D	62	57.9	E
			N	Catherine St	Т	297	48.6	D	319	50.7	D
	Oit Marthing David / Durance Otherst				R	58	57.4	E	62	44.3	D
11	City-West Link Road / Brenan Street / Catherine Street	s	E	City-West Link Rd	Т	1916	14.5	Α	2072	19.9	В
			S	Catherine St	L	0			0		
			W	City-West Link Rd	Т	2087	30.4	С	2090	40.9	С
			Total	I		4422	25.4	В	4605	32.4	С
					L	102	1.7	Α	118	1.6	Α
			N	Catherine St	T	92	30.6	С	95	34.7	С
					R	10	39.8	С	7	56.8	E
			_		L	0		_	0		
			E	Moore St	T	296	9.8	A	303	11.4	Α
13	Catherine Street / Moore Street	s			R	2	8.4	A	7	10.9	A
			s	Catherine St	L T	9	35.9	C	11 87	27.5 35.0	B C
			3	Catherine St		113	34.7				
					R	24	31.2	С	27	33.2 26.6	В
			W	Moore St	L T	124	23.3	B B	2 103	26.6 17.0	В
			Total		1	774	16.6 17.3	В	760	17.0 17.7	В
\vdash			I Otal		L	0	17.3	В	0	17.7	В
			N	Catherine St	T	128	23.0	В	125	28.7	С
			'\	Catherine St	R	34	23.8	В	32	29.4	С
					L	25	10.2	A	30	5.7	A
			E	Styles St	T	283	10.2	A	313	9.8	A
			_	Styles of	R	200	13.0	A	3	5.4	A
14	Styles Street / Catherine Street	s			L	55	26.5	В	44	27.0	В
			s	Catherine St	T	25	26.2	В	25	21.9	В
					R	1	39.2	С	2	26.0	В
					L	71	14.4	A	53	17.7	В
			W	Styles St	Т	392	16.6	В	402	19.0	В
					R	19	17.5	В	34	21.1	В
			Total	<u> </u>		1035	16.4	В	1063	17.8	В
					L	61	42.7	D	63	30.9	С
			N	Norton St	Т	154	38.3	С	161	34.3	С
					R	33	42.8	D	56	38.6	С
					L	149	34.9	С	173	41.0	С
			Е	Marion St	Т	523	26.9	В	519	34.4	С
					R	48	24.9	В	50	32.8	С
19	Marion Street / Norton Street	s			L	44	30.5	С	37	25.5	В
			s	Norton St	Т	74	33.2	С	81	31.9	С
					R	0			0		
					L	30	8.7	Α	15	18.7	В
			W	Marion St	Т	403	9.0	Α	379	11.9	Α
					R	56	10.1	Α	62	11.1	Α
			Total			1575	24.5	В	1596	28.3	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	SAM .
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Balmain Rd	L	33	70.8	F	21	59.4	E
			IN	Daimain Nu	R	262	70.8	F	242	52.8	D
			Е	Leichhardt St	Т	352	19.4	В	383	22.3	В
				Leicillardt St	R	40	26.0	В	26	33.9	С
20	Marion Street / Leichhardt Street /	s			L	35	72.4	F	41	89.4	F
20	Balmain Road	3	s	Balmain Rd	Т	132	82.2	F	144	85.2	F
					R	9	76.5	F	1	60.5	E
			W	Marion St	L	206	27.0	В	200	33.4	С
				Walloff Ot	Т	387	27.4	В	383	36.4	С
			Total			1456	40.5	С	1441	41.7	С
					L	13	22.1	В	4	26.6	В
			N	Johnston St	Т	418	46.9	D	414	19.5	В
					R	71	34.3	С	59	30.8	С
			E	Collins St	L	16	22.8	В	21	20.5	В
22	Johnston Street / Collins Street	s	s	Johnston St	L	215	37.3	С	245	42.0	С
			3	Johnston St	Т	409	34.9	С	454	37.6	С
			W	Collins St	L	180	18.8	В	179	23.1	В
			VV	Collins St	R	91	19.6	В	110	19.4	В
			Total			1413	35.5	С	1486	29.7	С
					L	82	69.9	E	107	81.6	F
			N	Johnston St	Т	445	68.7	E	445	68.2	E
					R	92	50.8	D	90	59.9	E
					L	65	18.3	В	59	19.5	В
			E	Booth St	Т	272	28.5	С	281	28.6	С
					R	73	33.5	С	90	34.1	С
23	Johnston Street / Booth Street	S			L	0			0		
			S	Johnston St	Т	407	17.4	В	460	55.1	D
					R	154	25.1	В	155	9.9	Α
					L	57	15.3	В	65	17.4	В
			W	Booth St	Т	144	25.7	В	108	25.6	В
					R	26	35.4	С	28	40.3	С
			Total			1817	37.9	С	1888	47.0	D
			N	Wigram Rd	L	51	1.9	Α	48	1.9	Α
			1 N	wigiaiii i tu	R	107	1.5	Α	94	1.4	A
			Е		Т	285	2.8	Α	316	3.2	Α
27	Booth Street / Wigram Road	RB		Booth St	R	169	2.8	Α	180	3.3	A
			W	20011 01	L	143	1.5	Α	116	1.5	Α
					Т	270	1.6	Α	274	1.5	Α
			Total			1025	2.8	Α	1028	3.3	Α

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	105	19.0	В	114	11.3	Α
			N	Minogue Cres	Т	219	20.5	В	245	13.6	Α
				iviniogue ores	R	0			0		
					L	2	24.7	В	5	29.7	С
			E	Wigram Rd	Т	135	24.0	В	117	22.4	В
					R	93	27.2	В	89	23.9	В
28	Minogue Crescent / Wigram Road	S			L	42	6.1	Α	48	7.4	Α
			S	Minogue Cres	Т	315	10.7	Α	341	16.5	В
					R	62	10.7	Α	92	11.8	Α
					L	0			0		
			W	Wigram Rd	Т	112	30.3	С	112	28.7	С
					R	44	29.0	С	32	22.9	В
			Total			1129	18.8	В	1195	17.2	В
			N	D 0/	L	59	20.6	В	66	23.8	В
				Ross St	T	202	32.8	С	213	21.1	В
			_		L	35	21.7	В	25	24.5	В
			E	Bridge Rd	T	703	22.6	В	784	25.9	В
00	D 01 1/D:1 D 1				R	106	27.3	В	108	28.0	В
29	Ross Street / Bridge Road	S	s	Ross St	L	217	44.9	D	259	46.6	D
					T	353	39.5	С	411	41.4	С
			,,	Daida a Dd	L	83	35.2	С	86	27.6	В
			W	Bridge Rd	T R	459	41.0	С	505	49.1	D
			Total		K	2217	32.8	С	2457	35.1	С
			Total		L	174	24.2	В	196	21.7	В
			N	Booth St	T	232	30.7	С	232	27.2	В
					L	108	12.1	A	117	17.6	В
			E	Pyrmont Bridge Rd	T	512	11.7	A	578	15.0	В
			_	r yimeni Briage na	R	138	41.5	C	158	43.1	D
30	Pyrmont Bridge Road / Booth Street /	s			L	27	39.4	С	36	34.4	С
"	Mallett Street	_	s	Mallett St	 T	146	30.6	С	155	30.8	С
					R	42	37.4	С	63	36.4	С
					L	49	34.6	С	65	37.7	С
			W	Pyrmont Bridge Rd	T	261	27.1	В	264	30.9	С
			Total	<u> </u>		1689	23.8	В	1864	25.2	В
					L	24	27.0	В	19	26.7	В
			١	Foster St		400	23.1	В	421	29.2	С
			N	i Uster St	T	100	_0				
			N	i oster ot	R	80	28.9	С	61	36.2	С
									61 130	36.2 40.4	C C
			E	Marion St	R	80	28.9	С			
0.4	Marian Obrasa / E. J. Cir.				R	80 122	28.9 50.4	C D	130	40.4	С
34	Marion Street / Foster Street	S			R L T	80 122 433	28.9 50.4 39.5	C D C	130 464	40.4 25.9	C B
34	Marion Street / Foster Street	S	E	Marion St	R L T	80 122 433 169	28.9 50.4 39.5 14.3	C D C A	130 464 176	40.4 25.9 17.4	C B
34	Marion Street / Foster Street	S	E	Marion St	R L T L	80 122 433 169 433	28.9 50.4 39.5 14.3 20.1	C D C A B	130 464 176 442	40.4 25.9 17.4 25.1	C B B
34	Marion Street / Foster Street	S	E	Marion St	R L T L T	80 122 433 169 433 69	28.9 50.4 39.5 14.3 20.1 25.6	C D C A B	130 464 176 442 86	40.4 25.9 17.4 25.1 31.1	C B B C
34	Marion Street / Foster Street	S	E S	Marion St Foster St	R L T L T R	80 122 433 169 433 69 79	28.9 50.4 39.5 14.3 20.1 25.6 46.9	C D C A B D	130 464 176 442 86 68	40.4 25.9 17.4 25.1 31.1 33.9	C B B C C

		Type App. Approach name				7:15	5AM - 8:15	5AM	8:15	AM - 9:15	AM
#	Intersection	Type	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	0			1	18.0	В
			N	Flood St	Т	105	30.8	С	125	20.4	В
					R	11	34.3	С	18	27.8	В
					L	239	10.6	Α	279	14.3	Α
			E	Marion St	Т	418	8.5	Α	426	12.6	Α
					R	24	9.7	Α	23	5.2	Α
35	Marion Street / Flood Street	S			L	95	41.4	С	121	40.5	С
			s	Flood St	Т	100	30.2	С	126	23.8	В
					R	163	47.2	D	130	38.8	С
					L	12	19.3	В	14	24.9	В
			W	Marion St	Т	444	15.4	В	473	18.4	В
					R	34	25.2	В	40	32.2	С
			Total			1645	19.8	В	1776	20.2	В
			N.	Damasu Ct	L	357	9.6	Α	341	11.4	Α
			N	Ramsay St	Т	70	47.6	D	69	41.3	С
			_	Marian Ot	L	103	10.6	Α	99	10.6	Α
36	Marion Street / Ramsay Street	S	E	Marion St	R	415	9.7	Α	415	14.3	Α
				D 04	Т	95	24.9	В	87	22.2	В
			S	Ramsay St	R	150	30.3	С	138	21.8	В
			Total			1190	15.8	В	1149	16.2	В
			_	Dawawatta Dd	L	898	7.8	Α	882	6.1	Α
			E	Parramatta Rd	Т	1540	31.2	С	1570	61.6	E
				Lister and Del	L	154	24.2	В	171	26.2	В
39	Parramatta Road / Liverpool Road (Hume Highway)	S	S	Liverpool Rd	R	431	67.2	E	456	56.2	D
	(Tame Figure 4)		١٨/	Dawawatta Dd	Т	1228	10.4	Α	1264	22.0	В
			W	Parramatta Rd	R	333	159.2	F	328	126.2	F
			Total			4584	33.5	С	4671	43.1	D
					L	0			2	160.2	F
			N	City-West Link Rd	Т	265	87.9	F	290	117.7	F
					R	129	90.0	F	135	121.7	F
			Е	James St	L	436	0.9	Α	388	0.8	Α
				Janies St	Т	1636	8.0	Α	1772	6.9	Α
41	City-West Link Road / James Street	S			L	24	62.0	E	36	49.6	D
			s	City-West Link Rd	Т	200	65.8	E	189	56.7	E
					R	330	57.1	E	322	51.9	D
			\^/	James St	L	182	4.2	Α	179	6.1	Α
			W	James St	Т	1672	29.9	С	1754	31.5	С
			Total			4874	27.2	В	5067	29.4	С

						7:15	AM - 8:15	AM	8:15	AM - 9:15	SAM .
#	Intersection	Туре	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Forster St	L	59	13.3	A	43	16.1	В
			IN	l dister St	Т	703	17.5	В	721	16.7	В
					L	23	27.7	В	20	30.0	С
			E	Lords Rd	Т	41	23.2	В	41	37.7	С
					R	118	25.7	В	145	27.8	В
42	Tebbutt Street / Lords Road	s			L	20	36.1	С	22	25.4	В
	Tobbatt Giloot / Edido Hodd		S	Tebbutt St	Т	490	6.9	Α	477	6.6	Α
					R	102	14.8	В	104	10.3	Α
					L	16	33.4	С	6	17.2	В
			W	Lords Rd	Т	51	27.7	В	43	33.7	С
					R	33	36.6	С	35	41.0	С
			Total			1656	16.0	В	1657	16.1	В
					L	100	8.3	Α	101	119.7	F
			N	Mary St	Т	317	96.5	F	342	259.4	F
					R	19	92.3	F	17	250.7	F
					L	0			0		
			E	Lilyfield Rd	Т	32	48.6	D	48	30.1	С
					R	40	43.6	D	39	40.4	С
43	Lilyfield Road / James Street	S			L	57	18.5	В	56	34.3	С
			S	James St	Т	278	21.1	В	286	23.5	В
					R	43	28.7	С	30	23.9	В
					L	32	48.5	D	40	41.6	С
			W	Lilyfield Rd	Т	71	42.9	D	72	34.1	С
					R	60	42.9	D	56	37.1	С
			Total			1049	49.4	D	1087	113.7	F
			N		Т	36	26.9	В	38	50.3	D
				Tebbutt St	R	825	36.7	С	829	46.1	D
			s		L	188	11.1	Α	184	9.0	Α
44	Tebbutt Street / Hathern Street	S			Т	63	34.4	С	80	30.8	С
			W	Hathern St	L	579	12.7	Α	554	12.6	Α
					R	83	26.7	В	78	29.2	С
			Total			1774	25.4	В	1763	30.3	С
					L	27	75.4	F	22	70.6	F
			N	Sloane St	Т	157	66.0	E	157	61.8	E
					R	73	95.3	F	73	64.7	E
			E	Parramatta Rd	L	32	18.6	В	26	27.9	В
45	Parramatta Road / Sloane Street	s			Т	2313	20.5	В	2348	24.4	В
		-	s	Sloane St	L	48	63.2	E	52	56.5	E
					Т	150	54.8	D	144	57.3	E
			w	Parramatta Rd	L	72	14.6	В	79	26.0	В
					Т	1612	12.5	Α	1688	25.1	В
			Total			4484	22.3	В	4589	28.3	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Tebbutt St	L	121	14.4	Α	116	12.4	Α
			Е	Parramatta Rd	L	230	16.4	В	238	16.5	В
47	Parramatta Road / Old Canterbury	s		i airamatta i u	Т	2242	20.4	В	2304	15.9	В
''	Road / Tebbutt Street		S	Old Canterbury Rd	L	107	11.9	Α	97	12.6	Α
			W	Parramatta Rd	Т	1365	14.2	Α	1462	19.9	В
			Total			4065	17.7	В	4217	17.1	В
			N	Old Canterbury Rd	L	2	46.8	D	1	55.7	D
				_	Т	1225	30.5	С	1220	31.9	С
			E	Railway Terrace	L	25	33.7	С	28	30.1	С
					Т	683	35.3	С	701	26.9	В
49	Old Canterbury Road / Railway Terrace / Longport Street	s	_		L	85	31.6	С	94	30.8	С
	Terrace / Longport Street		S	Old Canterbury Rd		629	27.0	В	608	25.9	В
					R	0	07.0		0	20.4	
			W	Longport St	L -	81	27.0	В	63	22.1	В
			Tatal		T	484	25.7	В	469	26.8	В
_			Total	I		3214	30.1	С	3184	28.7	С
			N	Norton St	L	236	40.4	C E	263	48.5	D
					R	101 1815	65.9 24.5	В	99 1849	68.1 20.8	В
50	Parramatta Road / Norton Street	s	E		R	280		С	327	34.4	С
30	r anamatta Noau / Norton Street	3		Parramatta Rd	L	79	29.1 34.3	С	79	12.4	A
			W		T	1084	40.3	С	1191	39.1	C
			Total		<u> </u>	3595	32.0	С	3808	30.7	С
			1000		L	3	56.5	E	6	31.8	С
			N	Flood St		178	39.4	С	185	94.5	F
					R	77	49.6	D	93	162.4	F
					L	8	66.0	Е	12	68.7	Е
			E	Parramatta Rd	Т	1812	73.1	F	1831	63.2	E
	Parramatta Road / Flood Street / West				L	335	26.4	В	416	35.2	С
51	Street	S	s	West St	Т	184	35.3	С	206	45.2	D
					R	0			0		
					L	93	30.8	С	139	30.4	С
			W	Parramatta Rd	Т	1069	36.6	С	1112	33.9	С
					R	289	131.3	F	339	125.3	F
			Total			4048	59.1	E	4339	59.4	E
			Е	Parramatta Rd	L	231	30.7	С	256	26.4	В
				i airainatta Nu	Т	1852	28.9	С	1907	25.5	В
					L	237	73.6	F	235	57.9	E
	Downson otto Da - d / Om - t / Ot / /		S	Crystal St	Т	134	146.1	F	150	102.4	F
52	Parramatta Road / Crystal Street / Balmain Road	S			R	134	152.8	F	112	117.9	F
					L	35	23.2	В	28	17.4	В
			w	Parramatta Rd	Т	1118	17.5	В	1225	17.2	В
					R	230	60.7	E	254	59.5	Ε
			Total			3971	38.4	С	4167	32.2	С

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	7	64.4	E	9	46.4	D
			N	Catherine St	Т	22	86.9	F	35	46.6	D
					R	99	63.0	E	105	55.9	D
			Е	Parramatta Rd	L	7	22.3	В	7	36.3	С
	Parramatta Road / Catherine Street /				Т	1949	33.6	С	1996	41.0	С
53	Phillip Street	S	_		L	10	75.6	F	12	76.3	F
			S	Phillip St	T	63	48.0	D	60	36.7	С
					R	26	52.7	D	10	46.3	D
			W	Parramatta Rd	L T	36 1188	6.5 2.7	A	37 1271	4.9 2.9	A
			Total		1	3407	24.3	В	3542	2.9	В
			IOlai		L	3407	67.9	E	38	61.0	E
			N	Crystal St	T	410	70.8	F	450	81.7	F
					L	546	18.0	В	533	18.4	В
			Е	Douglas St	 T	37	65.7	E	42	44.9	D
				_	R	12	94.8	F	6	93.1	F
	Crystal Street / Douglas Street /				L	301	26.7	В	286	16.7	В
56	Brighton Street	S	s	Crystal St	Т	520	28.8	С	505	13.6	Α
					R	297	28.4	В	304	16.8	В
					L	24	31.9	С	26	24.3	В
			W	Brighton St	Т	17	86.9	F	17	81.7	F
					R	188	105.6	F	184	110.9	F
			Total			2391	41.3	С	2391	37.8	С
					L	21	21.7	В	22	18.4	В
			N	Crystal St	Т	938	18.4	В	968	18.3	В
					R	223	18.9	В	195	20.3	В
			Ε	Trafalger St	L	18	54.5	D	20	65.5	E
57	Crystal Street / Trafalgar Street	s			T	128	60.6	E	140	54.3	D
			s	Crystal St	L	41	11.9	Α	39	13.1	A
					T	957	24.7	В	962	23.9	В
			W	Trafalger St	L T	160 99	30.4 44.4	C D	128 92	32.0 50.6	C D
			Total		I	2585	24.8	В	92 2566	24.6	В
			· Jiai		L	139	58.3	E	155	69.7	E
			N	Crystal St	T	476	61.4		472	71.6	F
					R	352	88.2	F	385	110.2	F
					L	15	33.1	С	26	35.9	С
			Е	Stanmore Rd	T	622	29.2	С	618	45.9	D
58	New Canterbury Road / Stanmore Road / Crystal Street / Shaw Street	s			R	336	42.5	С	332	63.7	E
	Trodu / Orystal Stiest / Slidw Stiest			Chave Ct	L	22	52.6	D	19	52.4	D
			S	Shaw St	Т	362	47.0	D	372	51.8	D
			\^/	Now Contorbury Bd	L	294	52.5	D	284	58.7	E
			W	New Canterbury Rd	Т	509	44.5	D	535	51.9	D
			Total			3127	50.4	D	3198	63.2	E

						7:15	SAM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
Г			N	Gordon St	Т	595	8.2	Α	653	7.8	Α
			Е	Trafalger St	L	25	1.1	Α	24	1.1	Α
50	Gordon Street / Trafalgar Street	S	_	Traiaiger St	R	342	70.6	F	322	75.0	F
39	Gordon Street / Traiaigai Street	3	s	Gordon St	Т	342	20.0	В	302	18.0	В
				Gordon St	R	462	36.6	С	559	38.9	С
				Total		1766	29.9	С	1860	30.3	С
			N	Gordon St	L	148	38.7	С	136	37.4	С
				Gordon Gt	Т	475	47.9	D	529	48.1	D
					L	45	20.7	В	61	23.0	В
			E	New Canterbury Rd	Т	878	15.2	В	879	19.4	В
60	New Canterbury Road / Gordon Street	S			R	208	26.4	В	198	27.3	В
00	/ Livingstone Road	3	s	Livingstone Rd	L	100	39.2	С	102	34.7	С
			3	Livingstone Ru	Т	559	36.6	С	621	36.1	С
			١٨/	Now Contorbury Dd	L	37	32.7	С	42	27.1	В
			W	New Canterbury Rd	Т	665	31.2	С	683	31.0	С
			Total			3115	30.4	С	3251	31.6	С
					L	106	30.2	С	75	20.3	В
			N	Dalhousie St	Т	165	24.8	В	165	23.2	В
					R	61	26.4	В	60	26.1	В
					L	69	19.2	В	64	18.8	В
			Е	Ramsay St	Т	308	21.3	В	324	19.0	В
					R	87	20.9	В	82	22.5	В
62	Ramsay Road / Dalhousie Street	s			L	107	30.0	С	128	33.9	С
			s	Dalhousie St	Т	115	28.9	С	142	33.9	С
					R	46	30.5	С	36	27.8	В
					L	55	19.5	В	66	17.9	В
			W	Ramsay St	Т	309	17.8	В	349	14.0	Α
					R	23	15.1	В	42	18.8	В
			Total			1451	23.1	В	1533	21.6	В
				Libanto Ct	L	336	28.2	В	320	34.5	С
			N	Liberty St	R	207	47.7	D	216	42.6	D
			_		Т	854	13.6	Α	837	12.3	Α
65	Stanmore Road / Liberty Street	s	E	04	R	365	15.5	В	366	19.4	В
			141	Stanmore Rd	L	124	29.2	С	148	16.6	В
			W		Т	515	33.6	С	530	9.7	Α
			Total			2401	24.0	В	2417	18.7	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	70	17.8	В	78	14.3	Α
			N	Ross St	Т	271	25.5	В	275	24.3	В
					R	0			0		
					L	67	42.6	D	49	37.7	С
			Е	St Johns Rd	Т	13	38.4	С	13	30.7	С
					R	224	45.7	D	291	41.3	С
66	Ross Street / St Johns Road	s			L	1	2.8	Α	2	6.5	Α
			s	Ross St	Т	275	18.2	В	312	21.8	В
					R	97	26.2	В	96	27.9	В
					L	70	63.2	E	72	61.8	E
			W	St Johns Rd	Т	29	60.6	E	27	38.5	С
					R	6	65.0	E	9	72.9	F
			Total			1123	32.0	С	1224	30.8	С
					L	0			0		
			N	Young St	Т	122	51.1	D	135	47.7	D
					R	0			0		
			Е	Parramatta Rd	L	89	10.7	Α	81	16.1	В
	D " D 1/V 01 1/			T arramatta rtu	Т	1851	5.2	Α	1891	7.4	Α
67	Parramatta Road / Young Street / Percival Road	S			L	29	43.0	D	31	48.9	D
			s	Percival Rd	Т	93	49.6	D	77	45.9	D
					R	56	57.8	E	60	50.5	D
			w	Parramatta Rd	L	20	29.3	С	19	26.7	В
				i arramatta itu	Т	1208	26.0	В	1309	24.0	В
			Total			3468	16.7	В	3603	17.1	В
					L	120	45.6	D	146	39.8	С
			N	Johnston St	Т	333	75.7	F	332	68.1	E
					R	82	106.8	F	81	106.3	F
					L	89	12.6	Α	100	18.3	В
			Е	Parramatta Rd	Т	1795	11.1	Α	1812	16.9	В
68	Parramatta Road /Northumberland	s			R	248	75.3	F	256	82.3	F
	Avenue / Johnston Street				L	70	50.4	D	83	42.4	С
			S	Northumberland Dr	Т	321	50.4	D	356	44.8	D
					R	23	56.9	E	28	50.2	D
			W	Parramatta Rd	L	62	17.8	В	57	29.0	С
					Т	1144	17.6	В	1219	31.1	С
			Total			4287	28.3	В	4470	33.8	С
			Е	Parramatta Rd	L	355	35.3	С	348	39.7	С
					Т	2013	30.0	С	2020	33.0	С
			s	Bridge Rd	L	6	71.5	F	5	44.0	D
69	Parramatta Road / Bridge Road	S		_	R	198	56.5	D	236	56.9	E
			W	Parramatta Rd	Т	1143	6.6	Α	1235	10.1	Α
					R	161	59.4	E	193	114.8	F
			Total			3876	26.2	В	4037	31.9	С

						7:15	AM - 8:15	8:15AM		8:15AM - 9:15AM	
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	0			0		
			N	Pyrmont Bridge Rd	Т	43	92.8	F	59	113.6	F
					R	480	85.1	F	536	115.5	F
70	Parramatta Road /Pyrmont Bridge	s	E		L	17	53.1	D	27	69.6	E
'	Road / Denison Street		_	Parramatta Rd	Т	1837	34.4	С	1823	60.6	E
			W	r arramatta r ta	L	315	9.5	Α	332	8.0	Α
					Т	1126	11.9	A	1214	12.1	Α
			Total			3818	32.8	С	3991	49.7	D
					L	94	59.0	E	92	66.1	E
			N	Mallett St	Т	215	58.1	E	222	69.1	E
					R	34	88.7	F	43	184.6	F
			E	Parramatta Rd	L	51	6.4	Α	42	10.5	Α
					Т	1744	9.6	Α	1773	9.2	Α
71	Parramatta Road / Mallett Street	S			L	62	68.8	E	57	77.9	F
			S	Mallett St	Т	135	65.0	E	129	77.6	F
					R	21	134.8	F	22	137.0	F
			w	Parramatta Rd	L	30	16.7	В	34	7.8	Α
					Т	1108	11.2	Α	1180	4.7	Α
			Total			3494	19.1	В	3594	19.3	В
					L	160	37.0	С	135	39.8	С
			N	Ross St	Т	76	57.8	E	88	59.4	E
					R	106	48.8	D	112	61.8	E
					L	9	40.7	С	9	27.2	В
			E	Parramatta Rd	Т	1576	40.0	С	1657	14.4	Α
72	Parramatta Road / Ross Street /	s			R	214	79.0	F	247	82.0	F
-	Western Avenue				L	4	58.0	E	8	84.0	F
			S	Western Ave	Т	63	47.6	D	74	65.5	E
					R	17	53.2	D	23	97.8	F
			W	Parramatta Rd	L	96	51.3	D	100	37.9	С
					Т	998	52.6	D	1077	25.0	В
			Total			3319	47.4	D	3530	28.4	В
			N	Glebe Point Rd	L	293	24.6	В	319	23.1	В
					R	158	53.9	D	145	64.8	E
	Groot Wootern Highway / Cloha Baint		E		Т	1657	22.6	В	1746	22.7	В
73	Great Western Highway / Glebe Point Road	S		Great Western Hwy	R	216	54.6	D	217	37.0	С
					L	43	15.0	В	37	10.7	Α
				W	Т	1205	36.4	С	1242	12.1	Α
			Total			3572	30.6	С	3706	21.5	В

		Type App. Approach name				7:15	AM - 8:15	5AM	8:15	AM	
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Bay St	L	45	10.4	Α	47	6.3	Α
			Е	Broadway	L	630	11.3	Α	624	11.1	Α
			_	Dioauway	Т	1158	38.4	С	1176	34.9	С
					L	713	34.7	С	785	45.3	D
74	Broadway / City Road (Princes	S	s	City Rd	Т	182	53.0	D	181	63.4	Е
' -	Highway) / Bay Street	U			R	536	50.6	D	565	55.4	D
					L	97	22.2	В	96	25.5	В
			W	Great Western Hwy	Т	786	19.4	В	801	27.1	В
					R	629	78.6	F	663	86.8	F
			Total			4776	37.8	С	4938	42.2	С
			E	Parramatta Rd	L	77	5.0	Α	58	6.1	Α
			_	T diffamatta rea	Т	1746	2.8	Α	1844	4.1	Α
75	University Avenue / Parramatta Road /	S	S	University Ave	L	55	60.4	E	47	75.7	F
'	Derwent Street / Arundel Street			Oniversity 7 tve	R	48	68.0	E	54	64.8	E
			W	Parramatta Rd	Т	1208	6.9	Α	1218	23.7	В
			Total			3134	6.4	Α	3221	13.6	Α
			N	Percival Rd	L	36	17.4	В	40	19.8	В
				r orona rta	R	320	21.5	В	321	20.7	В
			Е		Т	64	35.1	С	76	38.8	С
79	Douglas Street / Percival Road	S		Douglas St	R	113	41.2	С	116	43.4	D
			w		L	269	9.7	Α	274	11.0	A
					Т	70	36.4	С	89	37.5	С
			Total			872	22.5	В	916	23.8	В
			E	Railway Terrace	L	74	1.4	Α	51	1.7	Α
					Т	714	1.6	Α	723	1.7	Α
80	Railway Terrace / Victoria Street	Р	s	Victoria St	L	5	5.0	Α	9	3.9	Α
	Training Tolliago, Tigiona Guest				R	9	4.7	Α	7	4.8	Α
			W	Railway Terrace	Т	481	1.5	Α	472	1.5	Α
			Total			1283	5.0	Α	1262	4.8	Α
			N	Dalhousie St	L	143	41.9	С	145	53.1	D
			.,		R	118	93.5	F	128	81.7	F
			Е		Т	1478	21.7	В	1542	28.6	С
81	Parramatta Road / Dalhousie Street	S		Parramatta Rd	R	181	53.6	D	220	70.2	E
				Parramatta Rd	L	72	39.1	С	79	33.6	С
			W		Т	1559	41.1	С	1593	36.1	С
			Total			3551	35.4	С	3707	37.2	С

						7:15	AM - 8:15	AM	8:15AM - 9:15		AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	163	11.0	Α	150	18.5	В
			N	Missenden Rd	Т	170	27.2	В	174	25.9	В
					R	58	43.6	D	67	45.1	D
					L	36	46.7	D	39	39.8	С
			E	Carillon Ave	Т	462	46.1	D	437	40.8	С
					R	106	42.0	С	101	37.7	С
82	Carillon Avenue / Missenden Road	S			L	123	18.9	В	122	19.7	В
			S Missenden Rd	Missenden Rd	Т	188	30.8	С	212	33.9	С
				R	2	9.3	Α	1	55.9	D	
					L	45	47.6	D	56	59.5	E
			W	Carillon Ave	Т	254	40.0	С	323	45.7	D
					R	40	52.1	D	41	57.4	E
			Total			1647	35.8	С	1723	36.9	С
					L	24	42.9	D	25	57.5	Ε
			N	Lyons Rd	Т	127	47.3	D	136	51.9	D
					R	0			0		
			Е	Parramatta Rd	L	125	33.0	С	122	41.3	С
			_	T diffullatta 1 ta	Т	1574	64.9	E	1645	43.6	D
83	Parramatta Road / Missenden Avenue	s			L	155	59.9	E	152	45.6	D
	/ Lyons Road		S	Missenden Rd	Т	133	65.3	E	153	63.7	E
					R	46	70.3	E	38	58.7	E
					L	29	16.5	В	29	10.9	Α
			W	Parramatta Rd	Т	1018	9.1	Α	1098	12.4	Α
					R	200	68.4	E	166	83.0	F
			Total			3431	46.0	D	3564	37.0	С

						7:15AM - 8:		AM	8:15AM - 9:15AM		AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Darling St	L	365	64.1	Е	302	65.6	E
				Darling St	Т	173	84.4	F	196	88.3	F
					L	98	17.5	В	82	22.4	В
			E	Victoria Rd	Т	120	16.3	В	128	17.4	В
					R	235	52.3	D	207	62.9	E
1	Victoria Rd / Darling St	S	S	Darling St	L	230	75.5	F	217	80.7	F
				Darling St	Т	194	114.1	F	197	122.3	F
					L	29	43.8	D	37	44.6	D
			W	Victoria Rd	Т	385	26.9	В	287	24.0	В
					R	123	37.8	С	149	39.2	С
			Total			1952	56.2	D	302	61.1	E
					L	313	55.4	D	300	53.2	D
			N	Evans St	Т	120	50.7	D	98	51.9	D
					R	27	48.3	D	46	58.2	E
			Е	Victoria Rd	L	19	22.1	В	24	15.6	В
2	Victoria Road / Evans Street	S		VIOLOTIA INA	Т	401	9.2	Α	345	13.0	Α
-	Victoria Road / Evaris Girect		S	Evans St	L	26	55.8	D	22	40.4	С
				Evans of	Т	129	47.4	D	120	42.1	С
			W	Victoria Rd	L	4	1.6	Α	0		
			VV	Victoria ixu	Т	811	14.7	В	618	13.9	Α
			Total			1850	26.1	В	1573	27.4	В
			N	Victoria Rd	L	26	2.2	Α	25	6.4	Α
			IN	Victoria IXu	Т	1371	11.3	Α	1193	11.9	Α
			Е	Robert St	L	798	54.0	D	781	50.7	D
3	Victoria Road / Robert Street	S	-	Nobelt St	R	0			0		
			S	Victoria Rd	Т	350	2.8	Α	323	3.0	Α
			3	Victoria ixu	R	628	34.3	С	535	55.9	D
			Total			3173	25.6	В	2857	29.7	С
			N	Balmain Rd	L	72	3.0	Α	52	6.0	Α
				Buillani Nu	Т	86	3.8	Α	212	6.7	Α
					L	9	28.9	С	54	28.4	В
			E	Lilyfield Rd	Т	31	26.6	В	48	27.8	В
					R	6	22.8	В	20	22.0	В
5	Balmain Road / Lilyfield Road	S			L	33	10.7	Α	23	6.5	Α
	Dannam Noda / Enymela Noda	3	S	Balmain Rd	Т	227	6.7	Α	250	4.8	Α
					R	565	10.9	Α	601	9.5	Α
					L	45	34.2	С	5	34.1	С
			W	Lilyfield Rd	Т	77	17.3	В	115	19.9	В
					R	2	29.4	С	7	23.7	В
			Total			1153	11.1	Α	1387	10.6	Α
			N		L	816	17.0	В	816	12.8	Α
			L	· Victoria Rd	R	1263	20.3	В	1114	14.0	Α
6	The Crescent / Victoria Bood	S	_	VICIONA NU	Т	1470	62.2	E	1302	56.4	D
0	The Crescent / Victoria Road	3	E	E	R	401	44.1	D	348	44.0	D
			W	The Crescent	L	876	15.6	В	767	15.7	В
			Total			4826	33.7	С	4347	29.1	С

						7:15	SAM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	0			0		
			N	Wharf Rd	Т	0			0		
					R	3	1.8	Α	0		
					L	152	3.7	Α	260	5.9	Α
			E		Т	207	4.8	A	120	5.7	Α
				Balmain Rd	R	7	4.0	Α	11	5.5	Α
7	Balmain Road / Perry Street / Wharf Road	S		Daimain No	L	19	2.6	Α	15	3.5	Α
			S		Т	22	2.7	Α	15	3.8	Α
					R	200	3.6	Α	211	5.0	Α
					L	12	6.8	Α	13	9.7	Α
			W	Perry St	Т	250	8.4	Α	264	9.7	Α
					R	20	5.9	Α	11	12.6	Α
			Total			892	5.3	Α	920	6.8	Α
			Е		L	824	14.1	Α	785	17.7	В
				The Crescent	Т	1828	6.5	Α	1558	6.6	Α
			s		L	46	47.3	D	49	36.0	С
8	City-West Link Road / The Crescent	S			R	0	0.0	Α	0	0.0	Α
			W	City-West Link Rd	Т	490	9.0	Α	409	11.5	Α
					R	250	89.8	F	280	84.0	F
			Total			3438	15.3	В	3081	17.6	В
			N		L	53	24.5	В	24	40.7	С
				Norton St	Т	97	55.1	D	73	60.7	E
					L	308	25.8	В	342	22.9	В
			E	City-West Link Rd	Т	1700	57.7	E	1614	52.2	D
					R	3	113.0	F	4	39.1	С
9	City-West Link Road / Norton Street	S			L	63	183.7	F	55	251.1	F
			S	Norton St	Т	141	199.5	F	94	290.1	F
					R	237	201.7	F	230	273.3	F
					L	3	2.7	Α .	4	5.2	A
			W	City-West Link Rd	T	1424	14.1	Α	1371	15.6	В
			T-1-1		R	205	70.7	F	181	78.2	F
-			Total			4234	55.5	D	3992	59.4	E
			NI NI	Ralmain Pd	L	48	31.3	С	41	36.2	С
			N	Balmain Rd	Т	59	19.9	В	30	23.9	В
					R	47	32.5	C	256	21.4	В
			E	City-West Link Rd	L T	1994	7.1	Α	51 1650	15.5	В
			=	Ony-vvest Link Ku	-	1884	7.9	A	1650	17.5	В
10	City-West Link Road / Brenan Street / Balmain Road	S			R	152	19.8	В	170	27.4	В
			s	Balmain Rd	L T	39 155	75.5 57.0	F E	33 165	66.9	E E
				Daimain Nu	-						
					R L	181	53.4	D	275	48.4 20.6	D
		W	W	City-West Link Rd	T	508	16.8	В	528		B C
			Total		1	1205	25.4	В	1114	33.1	
			Total			4336	19.2	В	4313	26.7	В

						7:15	5AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	204	43.1	D	142	44.8	D
			N	Catherine St	Т	328	33.0	С	358	37.9	С
	0", W				R	87	32.9	С	46	39.2	С
11	City-West Link Road / Brenan Street / Catherine Street	S	E	City-West Link Rd	Т	1751	25.3	В	1547	26.5	В
			S	Catherine St	L	155	42.4	С	174	47.4	D
			W	City-West Link Rd	Т	1444	19.3	В	1449	29.6	С
			Total			3969	25.5	В	3716	30.7	С
					L	216	18.0	В	272	78.3	F
			N	Catherine St	Т	118	40.7	С	144	49.5	D
					R	1	2.1	Α	5	55.5	D
					L	21	8.7	Α	21	12.8	Α
			E	Moore St	Т	94	13.4	Α	110	11.2	Α
13	Catherine Street / Moore Street	s			R	182	15.6	В	188	14.1	Α
					L	64	35.9	С	77	39.1	С
			S	Catherine St	Т	141	34.8	С	231	43.5	D
					R	47	38.1	С	51	40.1	С
			w	Moore St	L	17	34.3	С	12	51.2	D
				INIOGIO GE	Т	145	28.1	В	143	34.1	С
			Total			1046	25.5	В	1254	42.6	D
					L	5	21.7	В	13	38.5	С
			N	Catherine St	Т	133	59.9	Е	156	60.6	E
					R	42	77.1	F	34	53.3	D
					L	72	17.7	В	56	45.4	D
			E	Styles St	Т	175	17.8	В	115	27.9	В
					R	24	31.3	С	19	43.3	D
14	Styles Street / Catherine Street	S			L	50	39.2	С	48	33.3	С
			S	Catherine St	Т	89	42.5	D	149	35.8	С
					R	11	36.9	С	15	45.2	D
					L	111	26.3	В	168	77.1	F
			W	Styles St	Т	563	25.6	В	620	86.1	F
					R	33	24.3	В	46	82.9	F
			Total	I		1308	31.2	С	1439	66.8	E
					L	90	48.8	D	150	76.0	F
			N	Norton St	Т	253	46.0	D	262	51.4	D
					R	25	43.0	D	10	48.2	D
					L	87	24.7	В	49	27.9	В
			E	Marion St	Т	254	18.4	В	241	20.0	В
					R	42	38.6	С	11	50.3	D
19	Marion Street / Norton Street	S			L	44	25.8	В	28	24.0	В
			S	Norton St	Т	94	37.5	С	71	32.5	С
					R	2	44.1	D	30	44.2	D
			w		L	20	16.1	В	9	114.1	F
				_	Т	762	20.8	В	702	91.4	F
					R	149	28.1	В	168	99.6	F
			Total			1822	27.8	В	1731	68.3	E

						7:15	5AM - 8:15	AM	8:15AM - 9:15AM			
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS	
			N	Balmain Rd	L	20	173.8	F	34	62.3	E	
			IN	Daimain Ku	R	83	110.1	F	53	58.7	E	
			Е	Leichhardt St	Т	253	16.6	В	210	14.0	Α	
			_	Leichhaidt St	R	20	44.8	D	8	28.2	В	
20	Marion Street / Leichhardt Street /	s			L	18	76.1	F	3	80.2	F	
20	Balmain Road	3	S	Balmain Rd	Т	101	68.1	E	115	80.8	F	
					R	28	72.0	F	19	78.1	F	
			w	Marion St	L	249	25.9	В	257	52.3	D	
				INIGHOU OF	Т	771	25.3	В	828	55.2	D	
			Total			1543	34.9	С	1527	51.4	D	
					L	118	10.6	Α	140	8.3	Α	
			N	Johnston St	Т	339	20.0	В	268	20.6	В	
					R	148	28.2	В	98	17.8	В	
			Е	Collins St	L	62	15.0	В	101	16.9	В	
22	Johnston Street / Collins Street	S	s	Johnston St	L	89	101.5	F	66	36.5	С	
				dominatori et	Т	475	86.3	F	372	36.2	С	
			w	W Collins St	L	409	52.4	D	409	27.7	В	
				Comins of	R	204	58.5	E	268	29.8	С	
			Total			1844	52.4	D	1722	26.3	В	
					L	41	95.4	F	28	72.5	F	
			N	Johnston St	Т	343	65.5	Е	211	64.5	E	
					R	60	53.2	D	58	50.1	D	
					L	64	20.5	В	50	14.8	В	
			E	Booth St	Т	279	30.6	С	280	27.4	В	
					R	56	52.9	D	44	37.4	С	
23	Johnston Street / Booth Street	S			L	7	121.4	F	10	66.5	E	
			S	Johnston St	Т	489	76.9	F	506	56.7	E	
					R	316	122.8	F	302	63.3	E	
					L	31	153.4	F	31	226.6	F	
			W	Booth St	Т	417	189.0	F	372	264.3	F	
					R	121	222.9	F	190	274.9	F	
			Total			2224	103.5	F	2082	112.7	F	
			N	Wigram Rd	L	85	32.8	С	118	82.8	F	
				g	R	65	24.7	В	68	83.3	F	
			E		Т	267	5.0	Α	253	4.0	Α	
27	Booth Street / Wigram Road	RB		Booth St	R	237	3.5	Α	276	3.6	Α	
	,		W	Booth St	L	263	65.7	E	238	90.7	F	
					Т	505	74.0	F	421	96.3	F	
			Total			1422	74.0	F	1374	96.3	F	

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	68	20.1	В	72	13.4	Α
			N	Minogue Cres	Т	480	23.8	В	522	21.4	В
					R	9	22.8	В	52	28.8	С
					L	15	24.2	В	12	15.4	В
			E	Wigram Rd	Т	142	17.2	В	128	21.9	В
				3 ** *	R	56	31.0	С	43	28.0	В
28	Minogue Crescent / Wigram Road	S			L	19	20.9	В	24	17.0	В
			S	Minogue Cres	Т	195	23.7	В	150	22.1	В
					R	22	24.3	В	23	25.4	В
					L	19	31.7	С	81	28.4	В
			W	Wigram Rd	Т	216	23.4	В	225	30.1	С
					R	0			0		
			Total			1241	23.2	В	1332	23.4	В
			N		L	43	54.7	D	112	37.2	С
				Ross St	Т	431	45.4	D	402	45.2	D
					L	43	10.5	Α	69	13.6	Α
			E	Bridge Rd	Т	461	10.9	Α	443	16.1	В
					R	48	15.0	В	47	17.9	В
29	Ross Street / Bridge Road	S	s	Ross St	L	130	50.0	D	117	38.1	С
					Т	174	61.4	E	143	53.3	D
					L	67	35.1	С	52	54.7	D
			W	Bridge Rd	Т	883	45.2	D	820	64.2	E
					R	23	35.4	С	13	41.8	С
			Total			2303	38.4	С	2218	44.8	D
			N	Booth St	L	384	109.6	F	321	130.8	F
					Т	492	106.4	F	503	131.2	F
					L	52	25.3	В	72	18.3	В
			E	Pyrmont Bridge Rd	Т	214	24.4	В	236	13.6	Α
	Durmont Dridge Dood / Dooth Ctroot /				R	67	67.7	E	72	66.0	E
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S			L	13	7.9	Α	23	27.1	В
			S	Mallett St	Т	218	31.1	С	170	44.0	D
					R	119	51.5	D	76	56.3	D
			w	Pyrmont Bridge Rd	L	97	50.4	D	190	37.6	С
					Т	390	43.2	D	446	35.8	С
			Total			2046	68.5	E	2109	72.5	F
					L	5	123.7	F	1	40.2	С
			N	Foster St	Т	273	90.3	F	297	41.9	С
					R	68	118.9	F	106	64.5	E
			Е	Marion St	L	116	27.0	В	36	58.4	Е
					Т	271	28.2	В	251	54.5	D
34	Marion Street / Foster Street	s			L	91	63.2	Е	107	28.8	С
			S	Foster St	Т	465	80.3	F	518	37.0	С
					R	73	105.9	F	69	41.0	С
					L	423	21.1	В	352	72.7	F
			w		Т	649	22.2	В	566	73.1	F
					R	134	27.0	В	105	74.2	F
			Total			2568	47.5	D	2408	56.0	D

						7:15	5AM - 8:15	AM	8:15AM - 9:15AM		
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	6	15.1	В	6	9.7	Α
			N	Flood St	Т	212	30.7	С	190	19.4	В
					R	71	39.2	С	41	18.3	В
					L	121	30.8	С	168	12.0	Α
			E	Marion St	Т	247	28.0	В	182	11.1	Α
					R	34	20.3	В	8	37.0	С
35	Marion Street / Flood Street	S			L	39	31.6	С	44	25.2	В
			S	Flood St	Т	223	31.9	С	271	19.4	В
					R	270	38.3	С	281	31.6	С
					L	43	28.0	В	77	45.2	D
			W	Marion St	Т	851	32.5	С	727	54.1	D
					R	137	43.0	D	118	85.5	F
			Total			2254	32.9	С	2113	36.4	С
			N	Ramsay St	L	822	21.9	В	755	18.1	В
				itanisay ot	Т	9	35.9	С	24	59.1	E
			Е	Marion St	L	28	59.8	E	41	15.7	В
36	Marion Street / Ramsay Street	S		IVIATION St	R	301	81.0	F	354	20.5	В
			٩	S Ramsay St	Т	242	7.5	Α	208	24.5	В
				Trainisay of	R	321	19.0	В	210	36.0	С
			Total			1723	30.4	С	1592	22.4	В
			Е	Parramatta Rd	L	337	5.4	A	414	3.5	Α
				i arramatta ivu	Т	1214	59.4	E	1400	65.9	E
			S	Liverpool Rd	L	58	36.5	С	92	99.5	F
39	Parramatta Road / Liverpool Road (Hume Highway)	S		Liverpoorita	R	986	55.6	D	956	131.0	F
			w	Parramatta Rd	Т	1383	18.1	В	1243	14.3	Α
				r arramatta rea	R	271	75.0	F	270	62.5	E
			Total			4249	41.5	С	4375	60.1	E
					L	8	48.2	D	2	98.2	F
			N	City-West Link Rd	Т	87	46.5	D	71	45.5	D
					R	77	50.4	D	51	47.5	D
			Е	James St	L	445	1.0	Α	417	1.0	Α
				Janes Ot	Т	1320	4.4	Α	1251	2.8	Α
41	City-West Link Road / James Street	S			L	22	81.4	F	26	100.2	F
			S	City-West Link Rd	Т	222	80.6	F	237	114.8	F
					R	519	74.7	F	533	105.5	F
			w	James St	L	224	3.1	A	255	3.3	A
			V V	odines of	Т	1108	24.7	В	1024	18.8	В
			Total			4032	25.1	В	3867	30.0	С

						7:15	SAM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Forster St	L	187	20.0	В	174	18.6	В
			IN	i dister St	Т	593	16.4	В	507	8.8	Α
					L	73	23.2	В	81	23.1	В
			Е	Lords Rd	Т	50	22.9	В	49	14.7	В
					R	38	26.2	В	64	31.4	С
42	Tebbutt Street / Lords Road	s			L	26	45.0	D	22	17.5	В
			S	Tebbutt St	Т	535	42.1	С	539	13.9	Α
					R	264	60.7	E	260	22.9	В
					L	17	22.2	В	35	26.4	В
			W	Lords Rd	Т	79	24.3	В	33	34.5	С
					R	26	18.9	В	33	35.4	С
			Total			1888	31.7	С	1797	16.3	В
					L	82	8.1	Α	49	8.1	Α
			N	Mary St	Т	120	42.9	D	68	42.2	С
					R	7	49.5	D	6	50.6	D
					L	23	2.9	Α	37	3.0	Α
			E	Lilyfield Rd	Т	55	5.0	Α	52	9.1	Α
					R	3	63.2	E	0		
43	Lilyfield Road / James Street	S			L	18	26.9	В	31	19.1	В
			S	James St	Т	277	26.4	В	312	20.9	В
					R	150	30.6	С	148	20.7	В
					L	15	26.6	В	8	32.6	С
			W	Lilyfield Rd	Т	85	27.2	В	99	30.5	С
					R	25	34.6	С	14	16.3	В
			Total			860	26.3	В	824	21.7	В
			N		Т	77	12.7	Α	58	28.8	С
				Tebbutt St	R	619	19.1	В	569	28.5	С
			s		L	60	9.8	Α	42	7.7	Α
44	Tebbutt Street / Hathern Street	S			Т	31	26.8	В	23	29.6	С
			w	Hathern St	L	870	26.2	В	875	19.4	В
					R	184	32.4	С	211	27.9	В
			Total			1841	23.3	В	1778	23.5	В
					L	29	58.2	E	59	59.9	E
			N	Sloane St	Т	102	53.4	D	92	65.5	Е
					R	21	82.7	F	33	67.1	E
			E	Parramatta Rd	L	18	6.6	Α	24	14.3	Α
45	Parramatta Road / Sloane Street	s			Т	1527	6.1	Α	1736	10.0	Α
			s	Sloane St	L	33	79.8	F	40	81.9	F
					Т	273	62.1	E	227	63.1	E
			w	Parramatta Rd	L	251	22.9	В	170	23.2	В
					Т	2215	17.5	В	2115	17.7	В
			Total			4469	18.4	В	4496	19.7	В

						7:15	5AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Tebbutt St	L	261	31.4	С	279	28.3	В
			Е	Parramatta Rd	L	236	32.5	С	296	26.2	В
47	Parramatta Road / Old Canterbury Road /	S		Farramatta Nu	Т	1402	17.5	В	1581	22.4	В
"	Tebbutt Street	J	S	Old Canterbury Rd	L	126	21.4	В	172	19.6	В
			W	Parramatta Rd	Т	2155	35.0	С	2106	31.2	С
			Total			4180	28.4	В	4434	27.1	В
			N	Old Canterbury Rd	L	92	21.2	В	72	16.1	В
					Т	828	16.3	В	792	14.9	В
			E	Railway Terrace	L	33	63.1	E	16	83.5	F
					Т	456	59.3	E	470	111.1	F
49	Old Canterbury Road / Railway Terrace / Longport Street	s	_		L	70	45.4	D	58	18.8	В
	Longport Street		S	Old Canterbury Rd	T	1075	49.4	D	1098	30.9	C
					R	6	59.6	E	1	54.3	D
			W	Longport St	L	109	42.6	D	126	48.0	D
			Total		Т	519 3188	47.1 40.9	D C	438 3071	49.7 42.1	D C
			TOtal		L	195	46.2	D	220	46.9	D
			N	Norton St	R	78	61.4	E	78	49.2	D
	Derromette Bood / Nesten Chart				Т	1106	4.1	A	1320	2.7	A
50	Parramatta Road / Norton Street	s	E		R	283	113.1	F	261	45.7	D
				Parramatta Rd	L	35	19.4	В	31	15.9	В
			W		Т	1780	17.8	В	1706	19.4	В
			Total	ı		3477	23.8	В	3616	17.5	В
					L	13	139.8	F	2	437.8	F
			N	Flood St	Т	176	163.5	F	129	486.3	F
					R	20	242.5	F	13	1207.4	F
			Е	Parramatta Rd	L	16	81.2	F	18	206.4	F
				T diffamatia iva	Т	1050	62.2	Е	1293	221.2	F
51	Parramatta Road / Flood Street / West	s			L	342	49.4	D	339	41.7	С
	Street	_	S	West St	Т	267	71.4	F	342	66.8	E
					R	6	54.2	D	1	94.6	F
			,		L	153	33.0	С	140	29.0	С
			W	Parramatta Rd	T	1673	33.0	C	1635	28.2	В
			Tetal		R	588	81.5	F	607	89.7	F
_			Total			4304	57.3		4519	113.0	F
			Е	Parramatta Rd	L T	115 1093	67.8 88.3	F	211 1346	53.6 52.3	D D
					L	262	54.6	D	213	58.5	E
			S	Crystal St	T	146	116.4	F	134	181.9	F
52	Parramatta Road / Crystal Street /	S		- ,	R	260	122.0	F	268	207.3	F
	Balmain Road				L	4	11.8	Α	2	9.8	A
			w	Parramatta Rd	Т	1896	10.2	A	1867	10.1	Α
					R	217	89.9	F	185	65.6	Е
			Total			3993	51.6	D	4226	48.6	D

						7:15	5AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	4	405.4	F	28	731.0	F
			N	Catherine St	Т	30	661.8	F	64	888.2	F
					R	93	510.8	F	143	881.0	F
			E	Parramatta Rd	L	4	172.9	F	0		
	Dayromatta Road / Catharina Street /			. arramata re	Т	1083	140.9	F	1285	75.6	F
53	Parramatta Road / Catherine Street / Phillip Street	S			L	26	39.9	С	32	38.5	С
			S	Phillip St	Т	54	41.4	С	53	42.9	D
					R	21	43.6	D	23	48.4	D
			w	Parramatta Rd	L	110	30.8	С	175	20.4	В
					Т	2030	16.2	В	1936	12.3	Α
			Total			3455	76.0	F	3739	88.9	F
			N	Crystal St	L	64	65.1		65	88.5	F
					T .	253	69.7	E	301	85.6	F
			_	Davida Ot	L	249	22.3	В	247	16.2	B
			E	Douglas St	T	74	87.2	F	107	58.5	E
					R	2	76.4	F	7	65.1	E
56	Crystal Street / Douglas Street / Brighton Street	s	S	Crystal St	L T	373 683	13.8 15.3	A B	254 627	12.2 11.8	Α
			3	Crystal St	R		32.4	С	705	20.4	A B
					L	823 38	28.5	С	25	21.7	В
			w	Brighton St	T	72	58.0	E	68	63.6	E
			''	Brighton Ct	R	132	103.2	F	80	96.3	F
			Total		1	2763	34.4	С	2486	32.0	C
					L	85	23.9	В	162	50.5	D
			N	Crystal St	Т	524	10.0	Α	482	44.0	D
				-	R	73	30.5	С	70	43.5	D
					L	26	38.5	С	69	44.2	D
		_	E	Trafalger St	Т	74	44.1	D	122	48.9	D
57	Crystal Street / Trafalgar Street	S		0	L	114	29.7	С	155	36.0	С
			S	Crystal St	Т	1668	33.2	С	1391	40.9	С
			w	Trafalger St	L	212	41.4	С	189	31.6	С
				Traiaiyer St	Т	390	45.7	D	480	35.5	С
			Total			3166	31.3	С	3120	40.7	С
					L	101	81.9	F	74	157.6	F
			N	Crystal St	Т	299	82.1	F	316	166.1	F
					R	143	62.6	E	152	72.2	F
					L	68	29.7	С	96	35.1	С
	Now Cantorbury Bood / Stanmara Band /		E	Stanmore Rd	Т	556	41.9	С	582	47.4	D
58	New Canterbury Road / Stanmore Road / Crystal Street / Shaw Street	S			R	360	100.4	F	360	76.7	F
			s	Shaw St	L	9	90.6	F	64	103.6	F
					Т	627	79.7	F	526	111.3	F
			W	New Canterbury Rd	L	794	53.3	D	670	42.9	D
			W	,	Т	893	38.9	С	864	34.3	С
			Total			3850	60.0	Ε	3704	69.4	E

						7:15	5AM - 8:15	AM	8:15	SAM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Gordon St	Т	547	14.3	Α	455	10.1	Α
			Е	Trofolger St	L	39	2.3	Α	45	2.0	Α
	Cordon Ctroot / Trofolagy Ctroot		_	Trafalger St	R	282	34.9	С	261	35.5	С
59	Gordon Street / Trafalgar Street	S	s	Gordon St	Т	248	35.0	С	275	34.9	С
			3	Gordon St	R	568	58.8	E	662	52.7	D
				Total		1684	35.5	С	1698	34.4	С
			N	Gordon St	L	214	52.4	D	173	43.7	D
			IN	Gordon St	Т	385	56.3	D	310	53.2	D
					L	9	25.1	В	8	16.9	В
			E	New Canterbury Rd	Т	405	24.9	В	435	19.5	В
00	New Canterbury Road / Gordon Street /	S			R	290	79.8	F	400	86.4	F
60	Livingstone Road	8		Livingston - Dd	L	41	30.8	С	45	38.1	С
			S	Livingstone Rd	Т	437	32.2	С	434	38.3	С
			,,,,	No. Control of B.I.	L	91	50.5	D	106	41.7	С
			W	New Canterbury Rd	Т	1470	48.4	D	1331	35.8	С
			Total			3342	47.1	D	3242	42.4	С
					L	279	38.1	С	238	40.4	С
			N	Dalhousie St	Т	131	35.4	С	135	39.8	С
					R	45	43.6	D	49	38.6	С
					L	99	27.9	В	132	23.3	В
			Е	Ramsay St	Т	240	22.6	В	285	15.1	В
					R	43	38.5	С	18	31.4	С
62	Ramsay Road / Dalhousie Street	s			L	88	47.4	D	74	42.5	D
			s	Dalhousie St	Т	182	41.1	С	202	37.3	С
					R	113	40.6	С	82	30.9	С
					L	31	33.9	С	21	26.9	В
			W	Ramsay St	Т	540	35.0	С	514	23.9	В
					R	124	36.8	С	97	31.8	С
			Total			1915	35.4	С	1847	29.2	С
			N.I	Liborty St	L	297	27.6	В	382	26.5	В
			N	Liberty St	R	218	54.7	D	229	63.6	E
					Т	685	8.6	Α	706	9.7	Α
65	Stanmore Road / Liberty Street	s	E	Stanmara Bd	R	441	26.3	В	449	23.5	В
			147	Stanmore Rd	L	108	8.9	Α	139	20.6	В
			W		Т	963	24.8	В	881	36.5	С
			Total			2712	23.0	В	2786	27.7	В

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	170	13.5	Α	135	17.2	В
			N	Ross St	Т	342	14.4	Α	369	17.1	В
					R	22	20.3	В	19	25.1	В
					L	22	42.0	С	29	37.0	С
			E	St Johns Rd	Т	15	42.2	С	24	44.8	D
					R	115	49.4	D	100	43.2	D
66	Ross Street / St Johns Road	S			L	105	21.0	В	89	12.4	Α
			S	Ross St	Т	166	22.9	В	139	13.5	Α
					R	151	24.8	В	183	13.7	Α
					L	23	64.7	E	15	72.0	F
			W	St Johns Rd	Т	29	40.5	С	17	45.9	D
					R	5	12.2	Α	9	58.0	E
			Total	I		1165	23.5	В	1128	20.8	В
				_	L	44	79.0	F	41	112.1	F
			N	Young St	Т	142	88.7	F	204	102.1	F
					R	2	112.7	F	1	51.2	D
			E	Parramatta Rd	L	25	81.6	F	14	12.3	Α
	Parramatta Road / Young Street /	_			Т	1084	86.5	F	1129	12.0	Α
67	Percival Road	S			L	14	65.4	E	11	95.5	F
			S	Percival Rd	Т	184	59.4	E	129	66.4	E
					R	117	67.6	E	114	106.8	F
			W	Parramatta Rd	L	40	45.3	D	11	54.3	D
					Т	1992	42.8	D	2027	42.3	С
			Total	I		3644	60.1	_ E	3681	40.0	С
			l		L	267	65.6	E	397	154.8	F
			N	Johnston St	T	318	62.2	E	255	109.6	F
					R	0	50.0		0	40.0	
			_	D	L	26	59.6	E	19	18.3	В
			E	Parramatta Rd	T	1127	52.5	D	1094	12.5	A
68	Parramatta Road /Northumberland Avenue / Johnston Street	s			R	95	91.0	F	71	91.9	F
			S	Northumberland Dr	L T	23	53.6	D	19	57.3 60.1	E
				Normanibeliana Di	R	323	53.7 89.2	D F	225	60.1	E F
					L	26 138	89.2 47.9	F D	130	255.6 42.8	D D
			W	Parramatta Rd	T	1933	43.6	D	2003	42.6	С
			Total		1	4276	51.1	D	4257	52.6	D
			Total		L	205	19.9	В	195	18.7	В
			E	Parramatta Rd	T	1194	15.8	В	1154	16.7	В
					L	18	167.1	F	15	98.9	F
69	Parramatta Road / Bridge Road	s	S	Bridge Rd	R	471	123.6	F	481	96.8	F
					T	2045	52.5	D	2163	41.2	С
			W	Parramatta Rd	R	145	74.3	F	235	59.6	E
			Total			4078	49.6	D	4243	40.9	C
			- Jul			+010	+3.0		+443	40.3	-

						7:15	5AM - 8:15	AM	8:15	AM - 9:15	АМ
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	0			0		
			N	Pyrmont Bridge Rd	Т	14	46.5	D	22	54.5	D
					R	207	55.5	D	239	59.5	E
70	Parramatta Road /Pyrmont Bridge Road /	s	Е		L	32	20.5	В	26	17.1	В
"	Denison Street			Parramatta Rd	Т	1159	3.1	Α	1087	1.7	Α
			W	i airamatta itu	L	583	11.6	Α	733	5.9	Α
					Т	2175	13.6	Α	2117	6.2	Α
			Total			4170	12.6	Α	4224	8.3	Α
					L	103	38.7	С	86	45.7	D
			N	Mallett St	Т	373	49.6	D	472	52.0	D
					R	90	142.5	F	50	58.6	E
			E	Parramatta Rd	L	80	10.9	Α	70	9.2	Α
					Т	1065	4.8	Α	1059	1.4	Α
71	Parramatta Road / Mallett Street	S			L	22	172.5	F	13	279.8	F
			S	Mallett St	Т	267	165.3	F	174	233.4	F
					R	144	224.0	F	106	374.8	F
			w	Parramatta Rd	L	27	39.2	С	59	22.9	В
					Т	2131	46.3	D	2094	25.1	В
			Total	I		4302	51.4	D	4183	41.0	С
					L	184	88.5	F	177	65.0	E
			N	Ross St	Т	87	91.2	F	95	68.2	E
					R	99	137.3	F	130	68.9	E
					L	27	7.5	Α	45	11.1	Α
			E	Parramatta Rd	T	1001	7.2	Α	1041	8.2	Α
72	Parramatta Road / Ross Street / Western	s			R	123	194.5	F	103	234.6	F
	Avenue				L	16	311.3	F	15	206.8	F
			S	Western Ave	T	43	226.7		36	164.8	
					R .	19	240.0	F	27	170.5	F
			W	Parramatta Rd	L	248	38.5	С	279	42.2	С
			T = 1 - 1		Т	2049	21.9	В	1905	25.4	В
			Total			3896	36.7	С	3853	34.8	С
			N	Glebe Point Rd	L	257	30.8	С	244	33.9	С
					R	70	55.7	D	83	58.9	E
70	Great Western Highway / Glebe Point		Е		T	1114	5.5	Α	1188	6.2	Α
73	Road	S		Great Western Hwy	R	253	92.9	F	212	76.9	F
			W		L	56	12.1	A	71	18.6	В
			Total		Т	2172	17.9	В	2053	25.2	В
			Total			3922	20.7	В	3851	23.3	В

						7:15	5AM - 8:15	AM	8:15	SAM - 9:15	AM
	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Bay St	L	37	21.3	В	16	18.3	В
			Е	Broadway	L	412	14.3	Α	402	14.4	Α
				Dioadway	Т	646	165.8	F	750	155.7	F
					L	708	15.4	В	656	15.3	В
74	Broadway / City Road (Princes Highway) /	s	S	City Rd	Т	120	47.2	D	120	42.7	D
	Bay Street				R	778	44.2	D	719	43.7	D
					L	153	10.6	Α	152	12.3	Α
			W	Great Western Hwy	Т	1283	16.0	В	1212	14.7	В
					R	978	37.6	С	932	49.1	D
			Total			5115	43.7	D	4959	47.4	D
			E	Parramatta Rd	L	109	2.1	Α	114	3.2	Α
				r arramata rea	Т	1121	2.1	Α	1177	3.9	Α
75	University Avenue / Parramatta Road /	s	S	University Ave	L	20	67.4	E	27	60.3	E
' '	Derwent Street / Arundel Street			Oniversity 7.ve	R	12	68.1	E	13	106.1	F
			W	Parramatta Rd	Т	2218	33.2	С	2113	34.7	С
			Total			3480	22.5	В	3444	23.6	В
			N	Percival Rd	L	49	25.1	В	60	25.6	В
				i ercivaritu	R	178	32.4	С	175	27.4	В
			Е		Т	112	102.7	F	131	22.5	В
79	Douglas Street / Percival Road	S		Douglas St	R	134	160.5	F	76	36.2	С
			W	Douglas of	L	739	66.3	E	611	20.7	В
					Т	96	64.8	E	94	29.9	С
			Total			1308	72.8	F	1147	24.0	В
			Е	Railway Terrace	L	30	2.8	Α	33	24.4	В
				INaliway Terrace	Т	488	2.3	Α	485	21.0	В
80	Railway Terrace / Victoria Street	Р	s	Victoria St	L	77	2.6	Α	71	12.9	Α
00	Trailway Terrace / Victoria Street			violona ot	R	54	5.1	Α	50	9.8	Α
			W	Railway Terrace	Т	617	2.1	Α	510	1.6	Α
			Total			1266	5.1	Α	1149	24.4	В
			N	Dalhousie St	L	288	40.2	С	266	83.6	F
				Daniousic Ot	R	96	68.5	Е	119	135.5	F
			Е		Т	1166	25.2	В	1355	16.4	В
81	Parramatta Road / Dalhousie Street	S		Parramatta Rd	R	88	56.1	D	120	48.2	D
			w	i airamana Nu	L	109	35.0	С	84	36.4	С
			V V		Т	1564	34.4	С	1408	34.7	С
			Total			3311	33.3	С	3352	35.2	С

						7:15	SAM - 8:15	AM	8:15	SAM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	86	22.9	В	105	17.1	В
			N	Missenden Rd	Т	165	31.3	С	164	24.5	В
					R	61	32.1	С	73	30.5	С
					L	19	64.0	E	25	55.6	D
			E	Carillon Ave	Т	260	60.7	E	222	54.6	D
					R	72	57.6	Е	90	52.7	D
82	Carillon Avenue / Missenden Road	S			L	210	21.9	В	217	19.8	В
			S	Missenden Rd	Т	221	39.4	С	213	37.8	С
					R	0			0		
					L	135	87.5	F	150	116.0	F
			W	Carillon Ave	Т	454	84.6	F	425	120.3	F
					R	36	86.3	F	43	105.5	F
			Total			1719	56.3	D	1727	64.7	E
					L	38	112.5	F	23	110.5	F
			N	Lyons Rd	Т	174	101.5	F	143	98.6	F
					R	37	119.1	F	7	91.6	F
			E	Parramatta Rd	L	103	22.4	В	124	27.9	В
				r arramana r a	Т	1001	54.9	D	1059	58.9	E
83	Parramatta Road / Missenden Avenue /	s			L	72	65.3	Е	35	88.9	F
	Lyons Road		S	Missenden Rd	Т	110	82.5	F	136	95.5	F
					R	81	120.5	F	86	134.5	F
					L	94	34.8	С	79	29.8	С
			W	Parramatta Rd	Т	2010	27.6	В	1873	30.8	С
					R	127	76.6	F	189	86.5	F
			Total			3847	45.6	D	3754	49.9	D

						7:15	5AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Darling St	L	310	57.0	E	297	46.1	D
			IN	Darling St	Т	138	75.1	F	129	74.4	F
					L	63	17.9	В	68	29.6	С
			E	Victoria Rd	Т	362	5.8	Α	382	7.1	Α
					R	231	53.7	D	263	57.7	E
1	Victoria Rd / Darling St	S	S	Darling St	L	225	82.3	F	250	67.0	E
				Darling St	Т	240	129.6	F	228	106.8	F
					L	74	25.0	В	73	35.4	С
			W	Victoria Rd	Т	587	27.9	В	652	31.1	С
					R	354	44.2	D	421	40.5	С
			Total			2584	49.2	D	652	45.0	D
					L	97	64.4	E	106	53.6	D
			N	Evans St	Т	139	63.7	E	141	63.8	E
					R	54	55.8	D	57	67.5	E
			Е	Victoria Rd	L	54	14.6	В	63	11.2	Α
2	Victoria Road / Evans Street	S		VIOLOTIA INA	Т	573	11.8	Α	624	7.0	Α
-	Victoria Road / Evaris Girect		S	Evans St	L	31	56.8	E	45	52.8	D
				Evans of	Т	114	52.9	D	110	52.9	D
			w	Victoria Rd	L	16	2.5	Α	23	1.8	Α
				Victoria IXu	Т	888	8.4	Α	942	7.6	Α
			Total			1966	20.8	В	2111	18.5	В
			N	Victoria Rd	L	46	6.3	Α	44	10.7	Α
				Victoria iXu	Т	1140	32.1	С	1109	36.5	С
			Е	Robert St	L	711	22.2	В	735	25.0	В
3	Victoria Road / Robert Street	S		Nobelt of	R	12	49.4	D	16	58.0	E
			S	Victoria Rd	Т	523	6.9	Α	533	11.8	Α
				Victoria iXu	R	888	39.0	С	986	77.5	F
			Total			3320	27.6	В	3423	41.8	С
			N	Balmain Rd	L	160	9.2	Α	98	11.0	Α
					Т	266	8.5	Α	387	13.9	Α
					L	74	29.6	С	83	30.5	С
			E	Lilyfield Rd	Т	54	34.2	С	61	23.6	В
					R	17	26.4	В	18	27.9	В
5	Balmain Road / Lilyfield Road	S			L	117	12.8	Α	117	9.8	Α
			S	Balmain Rd	Т	295	7.3	Α	244	9.0	Α
					R	463	12.3	Α	458	10.7	Α
					L	1	7.3	Α	7	55.0	D
			W	Lilyfield Rd	Т	19	35.4	С	30	33.7	С
					R	39	25.1	В	81	77.2	F
			Total	I		1505	12.8	Α	1584	16.9	В
			N		L	0	0.0	Α	0	0.0	Α
				· Victoria Rd	R	0	0.0	Α	0	0.0	Α
6	The Crescent / Victoria Road	s	Е		Т	1715	24.5	В	1694	23.9	В
					R	825	20.3	В	874	20.8	В
			W	The Crescent	L	1015	37.0	С	1114	36.2	С
			Total			3555	27.1	В	3682	26.9	В

						7:15	5AM - 8:15 <i>/</i>	ΑM	8:15	SAM - 9:15	AM
#	Intersection	Туре	Арр.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	18	1.7	Α	18	1.7	Α
			N	Wharf Rd	Т	22	1.6	Α	33	1.6	Α
					R	3	1.7	Α	1	1.8	Α
					L	263	3.8	Α	431	3.9	Α
			E		Т	316	4.3	Α	205	4.2	Α
	Delegain Daniel (Daniel Obrach / Wharf			Balmain Rd	R	11	5.8	Α	21	6.2	Α
7	Balmain Road / Perry Street / Wharf Road	S			L	46	2.0	Α	35	2.1	Α
			S		Т	20	1.9	Α	19	2.1	Α
					R	180	2.6	Α	163	2.4	Α
					L	9	3.9	Α	14	3.2	Α
			W	Perry St	Т	237	6.1	Α	247	4.3	Α
					R	124	17.2	В	55	8.1	Α
<u> </u>			Total			1249	5.4	A	1242	3.9	Α
			Е		L	905	14.6	В	954	14.5	В
				The Crescent	T .	2046	6.7	A	1976	6.9	A
	City Wast Link Band / The Consent		S		L	262	49.7	D	294	104.3	F
8	City-West Link Road / The Crescent	S			R	0	0.0	A	0	0.0	A
			W	City-West Link Rd		146	55.7	D	141	55.0 92.1	D
			Total		R	153 3512	95.4 17.9	F B	173 3538	92.1 23.1	F B
\vdash			TOtal		L	12	48.6	D	11	6.5	A
			N	Norton St	T	166	66.6	E	177	61.4	E
				TVOITOR OF	L	337	25.0	В	377	26.9	В
			E	City-West Link Rd	T	2052	48.4	D	2222	47.2	D
				,	R	7	70.2	E	15	82.2	F
					L	105	178.8	F	104	142.2	F
9	City-West Link Road / Norton Street	S	s	Norton St	Т	125	185.6	F	160	174.2	F
					R	99	199.6	F	90	228.0	F
					L	5	5.3	Α	0		
			W	City-West Link Rd	Т	1516	6.9	Α	1577	9.7	Α
					R	185	70.4	Е	131	66.6	E
			Total			4609	44.5	D	4864	44.1	D
					L	140	41.2	С	193	35.1	С
			N	Balmain Rd	Т	131	35.8	С	143	45.1	D
					R	252	35.9	С	378	30.4	С
					L	134	19.4	В	107	22.4	В
			Е	City-West Link Rd	Т	1968	20.4	В	2015	29.6	С
10	City-West Link Road / Brenan Street /	S			R	241	33.9	С	198	31.5	С
10	Balmain Road				L	135	73.7	F	135	74.9	F
			S	Balmain Rd	Т	193	66.0	E	192	68.8	E
					R	104	61.8	E	129	53.0	D
			w	City-West Link Rd	L	425	25.5	В	404	33.9	С
			W	2.1, 1.130t Ellint Nu	Т	1191	63.7	E	1284	81.8	F
			Total			4914	37.9	С	5178	46.7	D

						7:15	5AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Type	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	85	45.8	D	115	68.9	E
			N	Catherine St	Т	429	80.3	F	349	64.5	E
	City West Link Dood / Droppy Street /				R	37	63.8	E	14	61.7	E
11	City-West Link Road / Brenan Street / Catherine Street	S	E	City-West Link Rd	Т	2000	23.4	В	1982	22.8	В
			S	Catherine St	L	147	77.6	F	142	119.2	F
			W	City-West Link Rd	Т	1466	21.0	В	1599	28.8	С
			Total	I		4164	31.2	С	4201	33.2	С
					L	361	3.1	Α	318	2.5	Α
			N	Catherine St	Т	141	33.2	С	113	34.4	С
					R	13	27.4	В	6	38.3	С
					L	39	6.9	Α	33	16.0	В
			E	Moore St	Т	313	11.9	Α	327	14.5	В
13	Catherine Street / Moore Street	s			R	214	14.0	A	160	16.1	В
					L	42	31.8	С	41	44.7	D
			S	Catherine St	Т	188	37.3	С	167	34.5	С
					R	31	27.5	В	46	35.8	С
			W	Moore St	L	96	18.6	B	88	18.2	В
					Т	118	20.7	В	106	15.9	В
			Total	I		1556	17.1	В	1405	18.0	В
			l		L	9	41.8	С	4	28.3	В
			N	Catherine St	T	175	44.3	D	133	28.0	В
					R	79	42.1	С	68	26.3	В
			_		L	115	9.1	Α	76	9.5	A
			E	Styles St	T	202	10.7	A	287	10.6	A
١					R	21	11.8	A	20	21.0	В
14	Styles Street / Catherine Street	S		Outlier in Ot	L	35	23.1	В	46	31.5	С
			S	Catherine St	T	44	29.4	С	52	47.9	D
					R	11	51.7	D	30	55.3	D
			14/	Styles St	L	139	21.9	В	115	23.3	В
			W	Styles St	T	440	21.7	В	504	24.3	В
			Total		R	35 1305	26.5	В	52 1397	24.9	В
			Total		,	1305	23.8 51.7	В	1387	22.8 73.6	В
			N	Norton St	L T	96 230	51.7	D D	97 189	73.6 46.7	F D
			11	TAUTION OL	R	41	43.5 76.7	F	189	59.1	E
					L	171	76.7 37.2	С	197	35.7	C
			E	Marion St	T	325	23.8	В	324	26.8	В
			-	WIGHOTI OL	R	43	33.8	С	324 84	35.7	С
10	Marion Street / Norton Street	s			L	79	33.8	С	64	36.6	С
19	INGITOTI SUEEL/ NOTOTI SUEEL		S	Norton St	T	79 56	44.0	D	89	42.5	D
				TAUTION OL	R	4	99.8	F		110.9	F
					L	25	13.4		4 17	25.7	В
			W	Marion St	T		8.9	Α Δ	547	13.7	
			"	WIGHOTI OL	R	482 125	14.6	В	143	19.5	A B
			Total		Ι.Υ.						
			Total			1677	27.4	В	1784	30.1	С

						7:15	SAM - 8:15	AM	8:15	SAM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Balmain Rd	L	10	54.4	D	18	41.6	С
				Baimain Ru	R	135	50.2	D	128	38.3	С
			E	Leichhardt St	Т	321	16.8	В	391	22.2	В
			_	Leichhardt Ot	R	21	25.8	В	28	35.2	С
20	Marion Street / Leichhardt Street /	s			L	2	63.4	Е	5	61.3	E
	Balmain Road		S	Balmain Rd	Т	61	70.2	E	65	69.5	E
					R	1	41.5	С	1	50.8	D
			w	Marion St	L	265	26.7	В	203	45.8	D
					Т	524	29.1	С	583	48.5	D
			Total			1340	29.9	С	1422	40.6	С
					L	3	21.0	В	7	14.2	Α
			N	Johnston St	Т	380	47.8	D	543	24.3	В
					R	169	43.3	D	176	38.8	С
			Е	Collins St	L	74	16.1	В	85	17.9	В
22	Johnston Street / Collins Street	S	s	Johnston St	L	129	33.7	С	207	37.4	С
				ournicion of	Т	536	35.9	С	494	39.7	С
			w	Collins St	L	254	19.1	В	287	22.6	В
				Commis of	R	206	18.7	В	201	22.8	В
			Total			1751	33.7	С	2000	30.0	С
					L	33	59.9	E	38	77.2	F
			N	Johnston St	Т	479	70.6	F	546	75.2	F
					R	80	57.8	E	126	52.6	D
					L	118	34.2	С	182	59.1	E
			E	Booth St	Т	464	51.5	D	414	71.2	F
					R	54	50.1	D	74	82.0	F
23	Johnston Street / Booth Street	S			L	74	15.8	В	42	68.7	E
			S	Johnston St	Т	493	22.2	В	411	54.5	D
					R	196	23.6	В	292	21.5	В
					L	37	16.9	В	52	24.4	В
			W	Booth St	Т	273	31.4	С	212	28.9	С
					R	12	38.2	С	42	57.9	E
			Total			2313	42.1	С	2431	56.9	E
			N	Wigram Rd	L	100	2.3	Α	84	7.6	Α
					R	186	1.6	Α	266	7.2	Α
			E		Т	413	6.5	Α	422	37.0	С
27	Booth Street / Wigram Road	RB		Booth St	R	323	6.2	Α	312	29.5	С
			w	2550100	L	392	1.9	Α	417	1.8	Α
					Т	240	1.9	Α	295	1.9	Α
			Total			1654	6.5	Α	1796	37.0	С

						7:15	AM - 8:15	AM	8:15	6AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	99	13.9	Α	115	17.0	В
			N	Minogue Cres	Т	223	22.1	В	215	17.9	В
				, images cres	R	10	26.4	В	12	24.6	В
					L	10	23.4	В	8	21.0	В
			E	Wigram Rd	Т	119	22.6	В	135	20.6	В
					R	140	29.6	С	115	27.2	В
28	Minogue Crescent / Wigram Road	S			L	148	12.5	Α	220	15.4	В
			S	Minogue Cres	Т	420	15.2	В	439	18.7	В
					R	56	12.5	Α	78	18.6	В
					L	2	35.1	С	0		
			W	Wigram Rd	Т	145	44.6	D	126	68.0	E
					R	211	49.4	D	212	66.1	E
			Total			1583	25.0	В	1675	28.6	С
			N		L	109	31.2	С	173	34.6	С
				Ross St	Т	322	40.4	С	253	27.9	В
					L	40	20.8	В	38	23.0	В
			E	Bridge Rd	Т	662	23.7	В	615	22.4	В
				2ago . tu	R	180	26.3	В	217	30.0	С
29	Ross Street / Bridge Road	S	s	Ross St	L	185	47.8	D	199	48.6	D
				11000 01	Т	470	45.2	D	536	51.0	D
					L	94	30.4	С	101	27.8	В
			W	Bridge Rd	Т	491	37.3	С	432	40.9	С
					R	0			0		
			Total			2553	34.8	С	2564	35.8	С
			N	Booth St	L	243	32.5	С	240	29.1	С
					Т	285	63.6	E	279	49.2	D
					L	147	15.2	В	150	24.6	В
			E	Pyrmont Bridge Rd	Т	368	11.9	Α	358	18.0	В
	Durmont Pridge Road / Rooth Street /				R	161	39.3	С	179	47.1	D
30	Pyrmont Bridge Road / Booth Street / Mallett Street	S			L	19	61.8	Е	29	43.9	D
			S	Mallett St	Т	275	41.4	С	264	37.6	С
					R	74	54.6	D	80	55.8	D
			W	Pyrmont Bridge Rd	L	134	42.0	С	135	37.1	С
					Т	245	27.0	В	205	19.4	В
			Total			1951	34.8	С	1919	33.3	С
					L	30	48.8	D	16	49.7	D
			N	Foster St	Т	533	38.4	С	471	39.4	С
					R	177	42.5	С	160	41.5	С
			E	Marion St	L	101	50.5	D	134	40.1	С
					Т	371	37.6	С	441	29.5	С
34	Marion Street / Foster Street	s			L	223	16.5	В	173	24.8	В
			S	Foster St	Т	392	22.3	В	388	26.5	В
					R	170	26.7	В	147	36.2	С
					L	125	89.2	F	140	48.1	D
			W	Marion St	Т	366	81.1	F	401	46.4	D
					R	63	91.5	F	83	48.9	D
			Total			2551	43.9	D	2554	36.7	С

						7:15	5AM - 8:15	AM	8:15	5AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	24	34.1	С	29	25.5	В
			N	Flood St	Т	143	25.8	В	203	26.7	В
					R	12	37.1	С	25	37.8	С
					L	188	12.6	Α	179	15.9	В
			Е	Marion St	Т	374	10.2	Α	418	14.5	Α
					R	58	17.1	В	44	23.8	В
35	Marion Street / Flood Street	S			L	71	40.4	С	102	30.0	С
			S	Flood St	Т	190	34.2	С	255	27.7	В
					R	181	45.0	D	231	37.3	С
					L	70	12.5	Α	35	27.2	В
			W	Marion St	Т	567	16.2	В	585	22.7	В
					R	42	20.0	В	55	33.3	С
			Total			1920	21.1	В	2161	24.0	В
			N	Ramsay St	L	356	12.1	Α	373	15.1	В
			IN	Railisay St	Т	89	57.1	E	73	56.2	D
			Е	Marion St	L	133	10.9	Α	154	11.2	Α
36	Marion Street / Ramsay Street	S	-	INIATION St	R	481	14.2	Α	466	15.3	В
	manon outdoor rambay outdoor		S	Domasy Ct	Т	172	29.9	С	220	23.4	В
			3	Ramsay St	R	188	35.1	С	175	28.4	В
			Total			1419	20.7	В	1461	19.7	В
			Е	Parramatta Rd	L	887	5.1	Α	877	6.7	Α
			_	Fariamatta Nu	Т	1553	37.0	С	1536	35.6	С
			S	Liverpool Rd	L	183	30.9	С	188	53.4	D
39	Parramatta Road / Liverpool Road (Hume Highway)	S	3	Liverpool Ku	R	485	66.8	E	537	88.6	F
			W	Parramatta Rd	Т	1183	6.4	Α	1291	6.4	Α
			VV	Parramatia Ku	R	408	60.8	E	394	53.6	D
			Total			4699	28.2	В	4823	30.6	С
					L	13	105.4	F	6	59.0	E
			N	City-West Link Rd	Т	135	92.6	F	85	71.7	F
					R	123	117.4	F	97	87.3	F
			E	James St	L	613	1.1	Α	686	1.0	Α
			-	Janes St	Т	1541	8.9	Α	1638	10.3	Α
41	City-West Link Road / James Street	s			L	47	85.9	F	47	109.8	F
			S	City-West Link Rd	Т	141	89.8	F	157	119.3	F
			S		R	381	75.9	F	424	109.7	F
			W	lamos St	L	358	3.9	Α	363	3.8	Α
			VV	James St	Т	1299	22.0	В	1276	25.8	В
			Total			4651	25.4	В	4779	28.7	С

						7:15	5AM - 8:15	AM	8:15	5AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Forster St	L	57	18.5	В	57	16.3	В
			IN	l dister st	Т	786	19.9	В	769	18.2	В
					L	111	34.8	С	140	39.2	С
			E	Lords Rd	Т	46	32.2	С	48	30.0	С
					R	93	35.0	С	65	35.1	С
42	Tebbutt Street / Lords Road	s			L	27	5.5	Α	22	7.5	Α
-			S	Tebbutt St	Т	587	15.4	В	550	12.0	Α
					R	106	19.7	В	146	19.7	В
					L	53	28.5	В	49	32.1	С
			W	Lords Rd	Т	6	40.0	С	17	35.1	С
					R	44	26.8	В	33	32.7	С
			Total			1916	20.6	В	1896	19.5	В
					L	63	7.9	Α	73	1.7	Α
			N	Mary St	Т	198	95.1	F	100	81.7	F
					R	26	72.7	F	25	64.2	E
					L	18	11.6	Α	18	41.9	С
			E	Lilyfield Rd	Т	48	32.2	С	57	30.4	С
					R	23	33.3	С	17	25.7	В
43	Lilyfield Road / James Street	S	S		L	45	29.6	С	58	29.1	С
				James St	Т	383	41.3	С	340	39.6	С
					R	65	45.8	D	127	53.5	D
					L	39	51.4	D	30	38.1	С
			W	Lilyfield Rd	Т	77	50.0	D	72	35.6	С
					R	51	31.8	С	41	38.1	С
			Total			1036	49.6	D	958	41.8	С
			N		Т	31	20.3	В	22	25.5	В
			.,	Tebbutt St	R	965	25.1	В	972	32.0	С
			S	Tobbutt Ot	L	299	23.9	В	238	16.5	В
44	Tebbutt Street / Hathern Street	s			Т	40	41.5	С	37	42.8	D
			W	Hathern St	L	703	9.8	Α	705	10.5	Α
					R	83	39.3	С	121	34.4	С
			Total			2121	20.7	В	2095	23.3	В
					L	59	59.0	Е	35	85.4	F
			N	Sloane St	Т	191	66.3	Е	226	63.7	E
					R	131	90.4	F	128	93.1	F
			Е	Parramatta Rd	L	61	29.2	С	56	32.3	С
45	Parramatta Road / Sloane Street	s			Т	2255	29.1	С	2195	26.0	В
			S	Sloane St	L	61	45.7	D	74	57.0	E
					Т	180	48.5	D	167	53.7	D
			w	Parramatta Rd	L	192	15.8	В	243	17.2	В
					Т	1671	19.3	В	1742	22.4	В
			Total			4801	29.6	С	4866	29.7	С

						7:15	SAM - 8:15	AM	8:15	SAM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Tebbutt St	L	114	25.0	В	143	9.7	Α
			Е	Darrametta Dd	L	204	13.1	Α	214	14.1	Α
47	Parramatta Road / Old Canterbury Road /	S		Parramatta Rd	Т	2257	12.7	Α	2230	6.7	Α
41	Tebbutt Street	3	S	Old Canterbury Rd	L	76	20.7	В	53	16.8	В
			W	Parramatta Rd	Т	1356	40.4	С	1542	33.5	С
			Total			4007	22.6	В	4182	17.2	В
			N	Old Canterbury Rd	L	113	48.3	D	52	30.8	С
					Т	1330	54.0	D	1372	35.3	С
			E	Railway Terrace	L	57	32.9	С	52	22.0	В
					Т	727	33.8	С	681	28.3	В
49	Old Canterbury Road / Railway Terrace / Longport Street	S	_		L	124	71.9	F	152	80.1	F
	Longport Street		S	Old Canterbury Rd	T	742	76.1	F	707	87.5	F
					R	1	137.3	F	1	176.7	F
			W	Longport St	L T	95	24.1	В	145	38.2	С
			Total		ı	610 3799	30.3 50.0	C D	602 3764	46.8 47.4	D D
			TOtal		L	335	136.4	F	212	98.2	F
			N	Norton St	R	85	176.1	F	171	161.4	F
					Т	1692	24.8	В	1586	25.8	В
50	Parramatta Road / Norton Street	S	E	≣	R	386	46.0	D	431	60.4	E
				Parramatta Rd	L	18	31.4	С	17	56.9	Е
			W		Т	942	38.7	С	1090	36.6	С
			Total	ı		3458	45.5	D	3507	44.5	D
					L	12	87.9	F	5	328.3	F
			N	Flood St	Т	210	134.2	F	181	172.0	F
					R	91	372.5	F	35	625.6	F
			Е	Parramatta Rd	L	39	44.8	D	50	48.1	D
				T diffamatia iva	Т	1680	59.0	Е	1661	59.1	E
51	Parramatta Road / Flood Street / West	s			L	476	47.4	D	471	63.8	E
	Street	_	S	West St	Т	273	54.7	D	319	64.8	E
					R	1	126.4	F	1	62.7	E
			ļ ,		L	204	23.1	В	235	22.1	В
			W	Parramatta Rd	T	890	21.4	В	1092	23.6	В
			Tetal		R	366	227.6	_ F	357	188.5	F
			Total			4242	72.8	F C	4407	69.0	E
			Е	Parramatta Rd	L T	255 1755	28.9 37.0	С	195 1632	48.4 55.7	D D
					L	273	59.8	E	338	66.7	E
			S	Crystal St	T	62	79.2	F	75	98.8	F
52	Parramatta Road / Crystal Street /	s		- ,	R	143	84.5	F	168	128.4	F
	Balmain Road	_			L	1	27.6	В	0	.20.1	
			w	Parramatta Rd	Т	1112	16.5	В	1087	17.0	В
					R	247	114.9	F	253	90.2	F
			Total			3848	39.6	С	3748	51.6	D

			7:15AM - 8:15AM Type App. Approach name Turn Volume Delay LOS				AM	8:15AM - 9:15AM			
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	12	68.6	Е	40	95.2	F
			N	Catherine St	Т	65	67.2	E	35	114.9	F
					R	189	81.8	F	106	154.1	F
			E	Parramatta Rd	L	2	50.0	D	6	184.4	F
	Parramatta Road / Catherine Street /				Т	1731	39.5	С	1639	94.4	F
53	Phillip Street	S			L	41	49.4	D	47	49.0	D
			S	Phillip St	Т	50	27.1	В	60	30.1	С
					R	21	43.1	D	12	42.4	С
			w	Parramatta Rd	L	59	27.5	В	93	20.9	В
					Т	1159	9.9	A	1119	11.0	Α
			Total			3329	32.0	С	3157	63.0	
			N	Crystal St	L	72	59.5		45	59.4	
					T .	412	69.8	E	386	66.5	E
			E	Douglas St	L	548	25.0	B F	550	30.7	С
			_	Douglas St	T R	62 32	74.2 65.6		93 51	79.6 87.3	F
					L	167	19.1	E B	179	11.0	A
56	Crystal Street / Douglas Street / Brighton Street	s	S	Crystal St	T	483	28.6	С	534	12.3	A
				Orystal St	R	411	36.0	С	409	17.3	В
					L	31	21.5	В	41	28.6	С
			w	Brighton St	T	20	92.0	F	29	94.9	F
					R	138	103.8	F	162	104.3	F
			Total			2376	43.0	D	2479	37.7	С
					L	27	46.6	D	36	23.6	В
			N	Crystal St	Т	888	34.6	С	914	32.1	С
					R	203	33.3	С	209	30.1	С
				T () 0:	L	67	68.8	E	73	115.8	F
	O THE STATE OF THE		E	Trafalger St	Т	140	68.3	Е	139	95.2	F
57	Crystal Street / Trafalgar Street	S		On ratal Ot	L	93	18.7	В	120	28.1	В
			S	Crystal St	Т	910	30.4	С	978	29.2	С
			w	Trafalger St	L	153	39.7	С	145	31.0	С
			• • • • • • • • • • • • • • • • • • • •	Traiaiger St	Т	151	51.0	D	208	52.3	D
			Total			2632	36.5	С	2822	37.4	С
					L	47	61.4	E	62	86.1	F
			N	Crystal St	Т	497	62.3	Е	513	95.1	F
					R	431	96.9	F	423	91.5	F
					L	60	91.1	F	132	83.1	F
	New Canterbury Pood / Stoomore Pood /		Е	Stanmore Rd	Т	801	81.7	F	895	75.9	F
58	New Canterbury Road / Stanmore Road / Crystal Street / Shaw Street	S			R	323	141.6	F	354	116.8	F
			s	Shaw St	L	28	49.4	D	36	62.2	E
					Т	445	53.2	D	444	60.2	Е
			w	New Canterbury Rd	L	242	53.7	D	288	59.5	Е
			_		Т	778	51.1	D	822	50.9	D
			Total			3652	74.0	F	3969	75.8	F

						7:15AM - 8:15AM			8:15AM - 9:15AM		
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Gordon St	Т	856	21.2	В	884	26.0	В
			Е	Trafalger St	L	51	33.5	С	69	82.6	F
50	Gordon Street / Trafalgar Street	S		Traiaiger St	R	356	89.4	F	330	120.5	F
33	Gordon Street / Transigal Street		s	Gordon St	Т	447	36.4	С	418	23.7	В
				Cordon of	R	716	93.8	F	767	51.5	D
				Total		2426	55.7	D	2468	47.8	D
			N	Gordon St	L	316	58.2	Е	337	67.4	E
					Т	579	63.7	E	608	75.4	F
					L	59	25.0	В	55	17.6	В
			E	New Canterbury Rd	Т	903	20.3	В	986	20.2	В
60	New Canterbury Road / Gordon Street /	s			R	426	53.8	D	424	41.5	С
	Livingstone Road		s	Livingstone Rd	L	133	33.0	С	112	34.0	С
				J	Т	673	47.0	D	680	34.4	С
			w	New Canterbury Rd	L	85	32.8	С	63	34.5	С
					Т	729	33.7	С	753	31.3	С
			Total			3903	41.3	С	4018	39.8	С
					L	73	29.0	С	65	25.6	В
			N	Dalhousie St	Т	219	25.7	В	207	26.0	В
					R	60	23.2	В	77	29.5	С
					L	109	22.4	В	82	31.3	С
			E	Ramsay St	T	392	23.8	В	438	30.1	С
					R	78	23.9	В	83	33.2	С
62	Ramsay Road / Dalhousie Street	S			L	111	41.0	С	144	38.5	С
			S	Dalhousie St	Т	142	31.6	С	137	37.9	С
					R	113	31.3	С	76	28.9	С
					L	56	22.0	В	50	19.7	В
			W	Ramsay St	T	330	16.6	В	355	13.6	A
					R	80	22.7	В	50	16.7	В
			Total			1763	24.9	В	1764	26.9	В
			N	Liberty St	L	400	26.9	В	369	25.2	
					R	379	23.5	В	488	25.7	В
	B. 1/1/1		E		T	910	35.5	C	978	40.1	C
65	Stanmore Road / Liberty Street	s		Stanmore Rd	R	396	93.5	F	355	137.3	F
			w		L	169	14.2	Α	182	6.5	Α
					Т	646	31.9	С	692	21.9	В
			Total			2900	38.6	С	3064	41.2	С

						7:15	AM - 8:15	AM	8:15	AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	104	29.5	С	102	18.8	В
			N	Ross St	Т	301	29.9	С	251	25.0	В
					R	1	10.2	Α	2	19.8	В
					L	73	39.4	С	77	33.7	С
			Е	St Johns Rd	Т	8	39.7	С	9	50.4	D
					R	241	45.0	D	258	42.2	С
66	Ross Street / St Johns Road	S			L	0			0		
			S	Ross St	Т	338	16.5	В	364	27.2	В
					R	74	25.2	В	88	32.8	С
					L	76	56.8	E	115	71.5	F
			W	St Johns Rd	Т	33	57.2	E	28	49.4	D
					R	26	48.2	D	32	64.6	E
			Total			1275	32.2	С	1326	35.2	С
					L	6	82.9	F	13	74.9	F
			N	Young St	Т	148	60.7	Е	151	64.8	Е
					R	0			0		
			E	Parramatta Rd	L	56	8.6	Α	48	47.1	D
	Parramatta Road / Young Street /				Т	1624	4.0	Α	1578	52.1	D
67	Percival Road	S			L	11	40.8	С	13	46.4	D
			S	Percival Rd	Т	89	43.6	D	78	45.9	D
					R	48	61.5	E	29	36.5	С
			W	Parramatta Rd	L	35	16.7	В	23	17.3	В
					Т	1172	16.8	В	1150	18.3	В
			Total			3189	13.8	Α	3083	39.5	С
					L	265	46.4	D	234	58.3	E
			N	Johnston St	Т	294	77.6	F	517	87.0	F
					R	70	135.0	F	103	174.4	F
			_		L	63	19.4	В	97	46.3	D
			Е	Parramatta Rd	T	1587	19.9	В	1518	49.2	D
68	Parramatta Road /Northumberland Avenue / Johnston Street	s			R	134	52.9	D	139	82.8	F
	A TOTALO / DOTINGTON OUTGOT			Nambanaha 12 15	L	43	55.0	D	31	57.2	E
			S	Northumberland Dr	T	390	45.6	D -	446	43.9	D
					R	20	81.1	F	30	196.3	F
			W	Parramatta Rd	L	122	27.3	В	87	44.7	D
			T-1-1		Т	1047	35.8	С	1023	61.5	E
			Total			4035	36.4	С	4225	61.8	E
			E	Parramatta Rd	L	338	38.2	С	241	41.4	С
					Т .	1650	37.0	C	1699	46.9	D
00	Dorromotto Dood / Drider - Deed		s	Bridge Rd	L	16	142.8	F	14	62.1	E
69	Parramatta Road / Bridge Road	S			R	282	122.0	F	313	81.3	F
			W	Parramatta Rd	Т	1071	23.2	В	1083	36.1	С
			Total		R	324	120.7	F	225	206.0	F
			Total			3681	47.4	D	3575	56.3	D

						7:15	5AM - 8:15	AM	8:15	6AM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	5	118.6	F	5	97.3	F
			N	Pyrmont Bridge Rd	Т	25	80.7	F	44	212.0	F
					R	316	113.4	F	307	161.7	F
70	Parramatta Road /Pyrmont Bridge Road /	s	Е		L	41	58.5	E	45	84.8	F
10	Denison Street	3	_	Parramatta Rd	Т	1653	44.1	D	1622	78.1	F
			w	ranamana Nu	L	415	8.5	Α	385	4.2	Α
					Т	1132	14.1	Α	1227	13.9	Α
			Total			3587	37.1	С	3635	57.4	E
					L	43	89.1	F	74	80.9	F
			N	Mallett St	Т	388	97.0	F	328	74.6	F
					R	17	276.0	F	17	198.9	F
			E	Parramatta Rd	L	211	7.7	Α	226	8.0	Α
					Т	1643	6.9	Α	1605	11.7	Α
71	Parramatta Road / Mallett Street	S			L	42	177.4	F	41	186.1	F
			S	Mallett St	Т	256	190.1	F	196	186.2	F
					R	25	234.2	F	27	171.5	F
			w	Parramatta Rd	L	49	17.5	В	79	5.5	Α
			VV	T diffallation (Co.	Т	1100	9.2	Α	1161	4.3	Α
			Total			3774	35.0	С	3754	28.9	С
					L	183	37.7	С	183	62.0	E
			N	Ross St	Т	87	45.9	D	89	67.1	E
					R	129	68.2	E	84	133.9	F
					L	6	69.1	E	14	55.5	D
			E	Parramatta Rd	Т	1640	84.1	F	1624	72.5	F
72	Parramatta Road / Ross Street / Western	S			R	262	243.2	F	308	163.9	F
	Avenue				L	71	54.9	D	55	154.7	F
			S	Western Ave	Т	75	54.2	D	63	132.7	F
					R	27	57.7	Е	34	161.7	F
			w	Parramatta Rd	L	74	53.7	D	94	32.4	С
					Т	976	50.1	D	1079	29.6	С
			Total			3530	80.5	F	3627	70.3	E
			N	Glebe Point Rd	L	333	30.4	С	339	102.6	F
					R	166	54.9	D	146	105.8	F
	Great Western Highway / Glebe Point		E		T	1753	23.6	В	1757	21.1	В
73	Road	S W		Great Western Hwy	R	263	48.9	D	268	41.9	С
			w	L	29	22.7	В	44	11.1	A	
					Т	1209	30.4	С	1319	38.9	С
			Total			3753	29.5	С	3873	38.8	С

		Type App. Approach name 1				7:15AM - 8:15AM			8:15AM - 9:15AM		AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
			N	Bay St	L	26	10.9	Α	44	9.9	Α
			Е	Broadway	L	589	8.7	Α	576	8.3	Α
			_	Dioadway	Т	1200	39.6	С	1183	32.9	С
					L	832	42.9	D	833	47.8	D
74	Broadway / City Road (Princes Highway) /	s	S	City Rd	Т	153	55.4	D	195	66.0	E
' -	Bay Street				R	602	51.0	D	606	58.1	E
					L	100	19.1	В	87	23.6	В
			W	Great Western Hwy	Т	727	18.1	В	775	26.5	В
					R	727	77.1	F	787	147.8	F
			Total			4956	40.1	С	5086	53.3	D
			E	Parramatta Rd	L	72	6.4	A	76	5.3	Α
				r arramana r a	Т	1861	3.2	Α	1854	4.3	Α
75	University Avenue / Parramatta Road /	S	s	University Ave	L	65	74.3	F	69	83.4	F
'	Derwent Street / Arundel Street			Children y 110	R	47	81.4	F	47	104.9	F
			W	Parramatta Rd	Т	1210	8.2	A	1294	35.2	С
			Total			3255	7.6	Α	3340	19.3	В
			N	Percival Rd	L	52	22.6	В	63	21.4	В
			.,	T Growal Na	R	375	23.6	В	438	30.3	С
			Е		Т	72	33.7	С	88	31.8	С
79	Douglas Street / Percival Road	S		Douglas St	R	121	43.0	D	117	45.3	D
			w	2 dagiao ot	L	414	13.3	Α	405	13.1	Α
					Т	75	38.6	С	72	29.8	С
			Total			1109	23.5	В	1183	25.5	В
			E	Railway Terrace	L	117	1.9	Α	98	1.8	Α
				, , , , , , , , , , , , , , , , , , , ,	Т	783	2.1	Α	733	1.6	Α
80	Railway Terrace / Victoria Street	Р	s	Victoria St	L	22	3.7	Α	17	3.3	Α
		•			R	34	10.3	Α	27	9.9	Α
			W	Railway Terrace	Т	718	13.3	Α	662	35.5	С
			Total			1674	13.3	Α	1537	35.5	С
			N	Dalhousie St	L	192	338.1	F	205	411.1	F
					R	159	395.0	F	187	413.8	F
			E		Т	1512	15.3	В	1473	14.3	Α
81	Parramatta Road / Dalhousie Street	S	_	Parramatta Rd	R	211	65.9	E	239	66.9	E
			W		L	143	55.2	D	105	38.2	С
					Т	1577	54.5	D	1660	34.6	С
			Total			3794	68.2	E	3869	67.2	E

						7:15	5AM - 8:15	AM	8:15	SAM - 9:15	AM
#	Intersection	Туре	App.	Approach name	Turn	Volume (veh)	Delay (s)	LOS	Volume (veh)	Delay (s)	LOS
					L	110	19.9	В	121	21.4	В
			N	Missenden Rd	Т	215	30.1	С	206	30.3	С
					R	83	37.0	С	78	42.6	D
					L	32	48.6	D	45	47.8	D
			Е	Carillon Ave	Т	410	53.8	D	318	67.3	E
					R	108	50.7	D	133	57.3	E
82	Carillon Avenue / Missenden Road	S			L	183	20.7	В	165	27.0	В
			S	Missenden Rd	Т	207	35.6	С	268	38.0	С
					R	4	21.2	В	1	64.4	E
				W Carillon Ave	L	107	103.2	F	94	136.5	F
			W		Т	352	92.2	F	399	124.2	F
					R	64	91.6	F	61	153.9	F
			Total			1875	54.1	D	1889	68.7	E
					L	21	125.6	F	45	109.9	F
			N	Lyons Rd	Т	171	102.3	F	185	139.4	F
					R	71	158.4	F	36	323.7	F
			Е	Parramatta Rd	L	114	45.2	D	109	169.6	F
				Farramatta Nu	Т	1679	66.3	E	1610	168.5	F
83	Parramatta Road / Missenden Avenue /	s			L	116	64.2	Е	142	335.7	F
03	Lyons Road		S	Missenden Rd	Т	191	78.5	F	209	334.8	F
					R	50	83.1	F	32	395.6	F
					L	77	8.1	Α	74	14.7	В
			W	Parramatta Rd	Т	985	7.2	Α	1058	12.4	Α
					R	120	66.1	Е	142	62.1	E
			Total			3595	52.9	D	3642	133.3	F

Parking policy and rate review: Camperdown, Leichhardt and Taverners Hill

Parramatta Road Corridor Urban Transformation Strategy

80018116

Prepared for

Department of Planning, Industry & Environment and Inner West Council

10 March 2022

5

Contact Information Document Information

Cardno (NSW/ACT) Pty Ltd Prepared for Department of Planning, ABN 95 001 145 035 Industry & Environment and Inner West Council Level 9 - The Forum **Project Name** Parramatta Road Corridor 203 Pacific Highway **Urban Transformation** St Leonards NSW 2065 Strategy PO Box 19 File Reference 210914 FINAL PRCUTS www.cardno.com parking note.docx Phone +61 2 9496 7700 Job Reference 80018116 Date 10 March 2022

Version Number

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	03/03/2021	Draft	Jacob Martin	Chris Slenders
			Chris Slenders	Elizabeth Muscat
2	31/03/2021	Draft 02	Jacob Martin	Chris Slenders
			Chris Slenders	
3	14/09/2021	Final	Jacob Martin	Chris Slenders
			Chris Slenders	
4	18/02/2022	Final 02	Jacob Martin	Ivo Pais
5	10/03/2022	Final 03	Elizabeth Muscat	Ivo Pais

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

Table of Contents

Introduction	n		1
1	.1	PRCUTS parking principles	1
1	.2	Study objectives	1
1	.3	PRCUTS parking rate recommendations	2
Summary of	of reco	ommendations	3
Existing lar	nd use	3	5
Population	foreca	ast	6
Built enviro	nmen	t considerations	7
5	.1	Urban form	7
5	.2	Crossovers (driveways)	7
5	.3	Geometric design – Australian Standards	7
5	.4	Multi-level structures	8
5	.5	On-site parking	11
5	.6	Off-site parking	13
Technology	y		14
6	.1	Parking space adaptability	15
6	.2	Car share	15
6	.3	Electric vehicles	15
Traffic impa	acts		17
The parking	g ecos	system	18
Setting par	king ra	ates	19
Parking rat	e con	cessions	21
1	0.1	Availability and accessibility of public parking	21
1	0.2	Accessibility of alternative transport	21
1	0.3	Shared parking supply	22
1	0.4	Cash-in-lieu of parking	23
Bicycle, mo	otorcy	cle and site servicing recommendations	25
1	1.1	Bicycles	25
1	1.2	Motorbike/ scooter	26
1	1.3	Servicing, delivery and loading	26
Residential	l land	use car parking recommendations	27
1:	2.1	Residential vehicle ownership and parking demand	27
1:	2.2	Student housing/ Boarding house	30
1:	2.3	Dual occupancy residences	30
1.	2.4	Resident parking permits – model scheme	30
Non-reside	ntial la	and use car parking recommendations	32
1:	3.1	Journey to Work travel behaviour	32
1.	3.2	Office	32

	13.3	Retail	33
	13.4	Restaurant	33
	13.5	Health / Medical Centres	33
	13.6	Serviced apartment/ hotel	36
	13.7	Out of centre uses along the Paramatta Road corridor	36
	13.8	Summary of non-residential land use recommendations	36
Tables	i		
Table 1-1	PRCUTS	proposed maximum parking rates	2
Table 5-1	Impacts of	f crossovers	7
Table 5-2	Popular ve	ehicles dimensions - millimetres	8
Table 9-1	Off-street	parking requirement types	19
Table 10-1	Adjustmer	nt factors for probable transport mode of users	22
Table 10-2	Example s	shared parking peak demand table	23
Table 11-1	Mode sha	re space relationship of one on-site employee per 25sq.m of floor area	25
Table 11-2	Recomme	endations for provision of EOTF	25
Table 12-1	Leichhard	t suburb household characteristics – dwelling type vs vehicle ownership	27
Table 12-2	Camperdo	own suburb household characteristics – dwelling type vs vehicle ownership	28
Table 12-3	Bedrooms	s, DCP parking rate, cars owned and recommendations	30
Table 13-1	Journey to	Work mode share by precinct	32
Table 13-2	DCP office	e/ business land use parking rates vs. mode share accommodation	32
Table 13-3	Existing a	nd recommended office premise parking rate	33
Table 13-4	Journey to	Work car-as-driver mode share (all employment vs medical/hospital)	34
Table 13-5	Key non-re	esidential land uses	36
Figures	6		
Figure 4-1	Residentia	al and employment forecast	6
Figure 5-1	Typical eff	ficient car parking layout.	8
Figure 5-2	Indicative	spiral ramp multi-level car park layout	9
Figure 5-3	Half level	floors and ramps	10
Figure 5-4	Full level f	loor and ramps	10
Figure 5-5	Indicative	scissor ramp car park layout	10
Figure 5-6	Car stacke	er schematic	12
Figure 7-1	Vehicle Tr	ip Generation Per Household	17
Figure 12-1	Leichhard	t suburb household characteristics – bedrooms vs vehicle ownership	27
Figure 12-2	Camperdo	own suburb household characteristics – bedrooms vs vehicle ownership	28

Introduction

This Report details a Parking Strategy for Parramatta Road, as part of the PRCUTS project. The study area considered in this Strategy includes the core precincts of Taverners Hill, Leichhardt and Camperdown, as well as land uses immediately adjacent to the Parramatta Road corridor.

1.1 PRCUTS parking principles

PRCUTS proposed the following hierarchy of parking strategies:

- Minimise parking
- 2. Minimise underground parking
- 3. Unbundle parking from dwelling and building ownership
- Share parking
- Decouple parking

The Department of Planning, Industry and Environment (DPIE) and Inner-West Council (IWC) have expanded on the Parking Principles which form the basis of this Parking Recommendations Report to include:

- > Parking provision should be minimised to encourage the use of sustainable transport, except for where it is required to achieve equity of mobility.
- > Parking is provided off-street as much as possible to dedicate more space for walking. Parking provision should be consolidated, and driveways minimised, to reduce the impact on the streetscape.
- > Freight and land use servicing must be provided to support the growth of the corridor.
- > Co-ordinate the management of all forms of parking in the public and private domains.

1.2 Study objectives

The scope of this study is to:

- Recommend parking policies and rate requirements which align with the overall vision and objectives outlined in the IWC Precincts Transport Study and validate how these support the PRCUTS vision and principles.
- > Describe the link between recommendations and their reliance on other transport initiatives including active and public transport modes.
- > Compare the advantages and disadvantages of existing and recommended parking controls.
- > Outline sustainability and urban benefits of restricted parking.
- > Provide specific recommendations for:
 - Physical/ geometric and economic considerations of car parking;
 - Dual occupancies and townhouses;
 - Residential flat buildings and shop top housing; and
 - Out of centre commercial uses.

1.3 PRCUTS parking rate recommendations

PRCUTS defines the location of Camperdown, Leichhardt and Taverners Hill as "Category 1" parking locations. These rates are reproduced from the strategy in **Table 1-1**. These rates are lower than existing DCP rates in each respective location.

The PRCUTS proposed residential and business rates are maximums. The strategy indicates the provision of car share spaces, unbundled parking and decoupled + unbundled parking will result in a reduction in maximum parking provision.

Table 1-1 PRCUTS proposed maximum parking rates

Proposed pa	rking provisio	ons and policies					
Residential (max spaces per dwelling):					Business land uses max (1 space per G.F.A):		
Studio	1-bed 2	-bed 3-bed	Visitor	Commercial	Retail	Industrial	
0	0.3 0	.7 1	0	150	100	150	
Car share sp	aces:						
Residential Ca	ar Share Rate/	dwellings	Ca	ar share rate to reduce of	car parking prov	ision	
1 per 20 dwellings 1 in lieu of 5 parking spaces.							
Unbundled p	arking:						
Maximum par	king rate reduc	ction of 20%					
Decoupled, u	ınbundled paı	rking:					
Maximum par	king rate reduc	ction of 40%					
Minimum bic	ycle parking i	rates:					
Resident		Commercial		Retail		Industrial	
Resident	Visitor	Employee	Visitor	Employee	Visitor	_	
1 per dwelling	1 per 10 dwellings	1 per 150sq.m	1 per 400sq.m	1 per 250sq.m	2 spaces + 1 per 100sq.m	1 per 10 staff.	
End of trip fa	cilities:						
Personal lockers		Showers and Change cubicles					
		Up to 10 bicycle spaces 11 – 2		- 20 bicycle spaces	Each 20 additional bicycl spaces over 20.		
1 per space		1* (assumed rate)		2* (assumed rate)	2		

This report considers the PRCUTS planning principles and proposed rates and considers this with a strategic understanding of existing travel patterns and the practical application of policies and parking rates.

Summary of recommendations

The recommendations provided within this report are summarised as follows:

Driveway recommendation:

A maximum of one driveway per site or two one-way pairs in special circumstances.

Parking space adaptability recommendations:

- > Prepare design guidelines that include development requirements for car parking which supports adaptive reuse of parking areas for future development.
- Consider changes to parking policies that allow for off-site communal parking (unbundled from development).

Car share recommendations:

Assist and support the location of car share spaces adjacent to dense residential development. Encourage on-site car share for residential and business developments, particularly where parking construction costs would impose high costs on tenants and reduce affordability.

Electric vehicle recommendations:

- As the EV fleet grows, market forces will govern the installation of EV charging units. Policy measures including community title for parking facilities, unbundled and decoupled supplies can be used to provide flexibility for developers and residents, and thereby reduce the opportunity cost of installation.
- > Electric vehicle charging points should be provided in off-street locations in the same way petrol stations are off-street for a range of safety and amenity reasons.
- Introduce development requirements to ensure all high-density residential development has access to EV charging bays for new applications. This should include provision of conduit to allow residents to reticulate power to individual bays, and to ensure electrical infrastructure is sized to support a charging demand.
- > Introduce development requirements to ensure slow-charge EV charging points are provided for a percentage of long-stay employee parking (~10%, increasing as demand rises).
- > Introduce development requirements to ensure future ability to supply EV charging points at a minimum of 50% of total bays.
- > Policy support for conversion of public off-street parking spaces to EV fast-charging, through an expedited approval process.

Bicycle recommendation:

Given the current journey-to-work cycling mode share of less than one per cent, and with the assumption that increasing bicycle mode is consistent with Council objectives, a minimum bicycle parking rate to satisfy 2.5 per cent of employee mode share, plus additional spaces for visitors/ customers. This creates capacity for additional bicycle mode share.

Bicycle parking demand should be monitored in the locality and Council should host find or request a new bike parking space on their website.

Motorcycle recommendation:

Motorcycle parking should be provided for at a minimum of 1 space per 1,500sq.m of employment land use, with a minimum of one space where on-site parking is provided.

Servicing, delivery and loading recommendation:

Site loading and servicing facilities are provided on site, appropriate to the size and scale of the development.

Residential parking recommendations:

The PRCUTS residential parking rates represent a significant reduction in on-site parking, compared with existing ownership behaviour. It is recommended that these rates be employed only where effective parking management mechanisms are in place for surrounding public parking provision.

The alternative maximum parking rates are considered feasible for implementation without substantial interventions, while still representing a substantial downward pressure on private parking supply.

Land use	Bedrooms	Alternative maximum parking rates (consistent with existing transport environment)	PRCUTS maximum rate recommendations
House/ Townhouse	1	1.0 per townhouse	0.3
	2	1.0 per townhouse	0.7
	3+	1.0 per townhouse	1
Apartment	0	0.15	0
	1	0.5	0.3
	2	1.0	0.7
	3+	1.2	1
	Visitor	0.1 space per dwelling, unless this can be provided on- street.	0

Residential parking permits recommendation:

Expand the residential permit scheme and price permits at a rate consistent with the opportunity cost of parking infrastructure, with a transition period to support behaviour change by residents.

(Key) Non-residential land use parking recommendation:

The PRCUTS recommended parking rates are considered to be appropriate under the future public transport provisions identified in the PRCUTS Plan. A series of alternative parking rates has been identified which would be sustainable even without significant capital works upgrades of public transport.

Land use	Alternative maximum parking rates (consistent with existing transport environment)	PRCUTS maximum parking rate recommendations
Student housing/ Boarding house	0.15 space per dwelling	No recommendation
Health/ Medical centre	2 spaces per consulting room	No recommendation
Hospital	3 spaces per bed	No recommendation
Commercial/ office	1 space per 100 sq.m. (1.00 spaces/ 100sq.m) of floor area	1 per 150sq.m (0.67 space/ 100sq.m)
Retail/ shop	1 space per 50sq.m (2 spaces/ 100sq.m) of floor area.	1 per 100sq.m.
Restaurant	1 space per 50sq.m (2 spaces/ 100sq.m) of floor area	1 per 100sq.m.
Bulky goods	1 per 100sq. Must include an off-street loading zone for customers.	No recommendation
Industrial	1 per 150sq.m (0.67 space/ 100sq.m)	1 per 150sq.m (0.67 space/ 100sq.m)
Out of centre uses along the Parramatta Road corridor	General rate (Not a maximum): 1 space per 40 square metres (2.5 per 100 square metres)	Differentiated by suburb only.

Existing land use

PRCUTS Camperdown, Leichhardt and Taverners Hill each are unique in terms of land use, demographics and transport opportunities. These differences will need to be examined to identify any need for differences in the parking policies, rates and mechanisms imposed on development to ensure that Council's Objectives can be realised across these locations.

To provide context for the parking requirements across each precinct, the existing land uses and parking facilities have been characterised as follows.

3.1.1 Parramatta Road corridor

Between the designated Precincts, Parramatta Road operates as a frontage for a wide variety of highway retail, specialty and restaurant businesses. Very little parking is associated with these land uses, which rely heavily on nearby on-street parking and some small rear-loaded private car parks.

3.1.2 Camperdown

The Camperdown Precinct is divided by the major road corridor of Parramatta Road, and extends a significant distance east-west from the outskirts of the University of Sydney (UoS).

There is a mixture of office, restaurant, retail and residential uses within the Precinct, somewhat localised within individual sub-precincts. Against this background is the impact of the UoS campus, with its own parking demand that extends across the study area.

3.1.3 Leichhardt

Leichhardt is the retail and civic centre for the Inner-West Council. While it has few office developments beyond the Council itself, it acts as a key destination for a large catchment of residents in the surrounding suburbs.

3.1.4 Taverners Hill

The Taverners Hill Precinct currently comprises a commercial precinct with a high density of showrooms and bulky goods stores, surrounded by medium-density housing. It is therefore a key origin and destination for commuter trips, but likely has little self-containment apart from retail trips to Marketplace Leichhardt at the northern edge of the study area.

Population forecast

Within the Inner West PRCUTS areas, there is a forecast of an additional 10,000 residents and 10,000 workers in the period 2016 - 2036. The breakdown is shown in **Figure 4-1**.



Figure 4-1 Residential and employment forecast

Data source: PRCUTS land use review, SGS, 31/05/2021

Built environment considerations

5.1 Urban form

Car parking impacts urban landscapes through the space they take up, which otherwise could be used for productive purposes, local amenity (street trees, public open space, landscaping etc.). The impervious form of parking effects stormwater runoff, increases the volume pollutants entering waterways and exacerbates urban heat island effects.

The impact of parking is greatest where it is constructed in at-grade facilities, which artificially increase the distance between activities; reducing the viability of walking and reinforcing the need for access by private car. This in turn can reduce the demand for public transport, preventing service improvements in the future.

The substantial cost of parking also influences urban form, by making some mid-scale development unviable, the result can be either an under-development of key lots or an incentive to maximise density to recoup the financial cost of parking provision.

5.2 Crossovers (driveways)

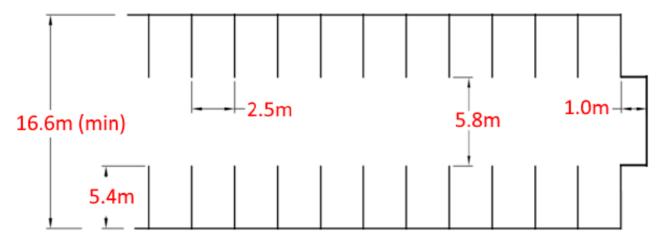
Where parking is provided on-site, it requires access via one or more crossovers. The density of these crossovers has an overall impact on the function and safety of the road network, as well as on the amenity of residents and visitors. Key impacts of crossovers are outlined in **Table 5-1**.

Table 5-1 Impacts of crossovers

Category	Driveway considerations	Benefit of reduced driveways		
Pedestrian	Driveways operate across pedestrian priority zones and in all cases, pedestrians retain priority over vehicles crossing a path. Conflicts between pedestrians and cars are common, and these are exacerbated by sightline obstructions such as walls and trees.	Improve pedestrian safety through reduced path conflict points.		
	Cars parking in driveways often encroach on pedestrian paths, reducing amenity and impeding accessible travel.			
Vegetation	Reduction in nature areas for plantings.	Increased opportunity for vegetation and trees, including urban cooling, improvement to pedestrian amenity and		
On-street parking	Sterilises other kerbside uses.	Opportunity to use kerbside for parking and other uses.		
Road safety	Each location is a conflict point with a variance in geometry and sightlines.	Improved predictability of road environment and rationalise driveways to safer areas.		

Recommendation:

Sites should have a maximum of one crossover where on-site parking is provided, or a maximum of two if each driveway is one-way. I.e. a hotel porte cochere.


5.3 Geometric design – Australian Standards

The ideal car park geometry (minimum dimensions) is wholly determined by the requirements of Australian Standards. Efficient parking design has perpendicular parking on both sides of the access aisle.

The minimum dimensions for an efficient office or residential car park, where every space is allocated to an individual vehicle, shown in **Figure 5-1** (adapted from AS2890.1 Figure 2.4). This is sufficient only where parking is provided in a single parking level, as there is no space for ramping.

Figure 5-1 Typical efficient car parking layout.

This design gives a minimum floorplate dimension of 16.6m, below which parking cannot be supplied in an efficient manner. For example, a single-sided aisle requires approximately 40% more area per bay, with an equivalent cost increase.

This effect is largely governed by the requirement for an access aisle. Arrangements which use the frontage road to provide access to public on-street parking require significantly less space, which makes this an attractive option where only a few parking spaces are required.

The spaces are enough to fit a range of common vehicles outlined in **Table 5-2**, noting larger vehicle may require more than one-movement to enter and exit a space.

Table 5-2 Popular vehicles dimensions - millimetres

Vehicle class	Example make and model 2021	Length	Width	Height
Australian Standard car space for office and residential	User class 2	5400	2500	2200 minimum
Light Car	MG 3	4055	1729	1504
Small Car	Toyota Corolla Hatch	4375	1790	1435
Mid-SUV	Toyota RAV4	4615	1865	1690
Large SUV	Toyota Kluger	4966	1930	1755
Large passenger van	Kia Carnival	5155	1995	1775
Utility	Toyota HiLux Double Cab Pick-up	5350	1935	1700

Source: www.toyota.com.au, www.kia.com.au and www.mgmotor.com.au

Table 5-2 shows a 5.4 metre long x 2.5 metre wide x 2.2 metre high car parking space is large enough to accommodate a range of popular large vehicles noting that an incentive remains for smaller vehicles which will be easier to park due to their smaller dimensions.

5.4 Multi-level structures

5.4.1 **Columns**

Structure is often built over the top of the parking, the layout of any development located over parking is driven to a large extent by the requirements of AS2890.1. The aisle widths and parking modules dictate column spacing, while the above-ground structure determines the size of those columns.

Good design places the columns outside of the parking modules, increasing the floorplate requirements.

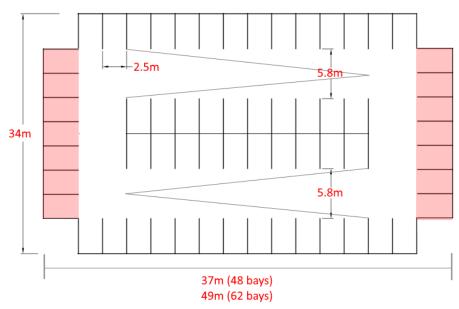
5.4.2 Ramping

Spiral and scissor ramps are the most common configurations, and provide a good benchmark for standard geometric requirements. These are discussed as follows:

Split-level internal spiral (ramped floor)

This has the following key requirements:

- > The isle to back onto itself to construct the spiral; and
- > Enough length and therefore space to achieve the required level difference.


The ramp grade is set by the maximum slope of the parking spaces, and therefore limited to a grade of 1:16. If floor-to-floor height is set at 3 metres, then a total ramp length of 48 metres (using both aisles) is necessary. Adding in the end aisle creates the following minimal envelopes:

The access ramping, fire stairs, lifts etc. reduce the efficiency of this arrangement, but on average, an internal spiral geometry can provide parking at a *theoretical limit of about 30 square metres per bay*.

The lack of a flat floor precludes future adaptation to other land uses. This form of parking is therefore more appropriate for basement parking, where conversion opportunities are limited.

An indicative layout plan is shown in Figure 5-2.

Figure 5-2 Indicative spiral ramp multi-level car park layout

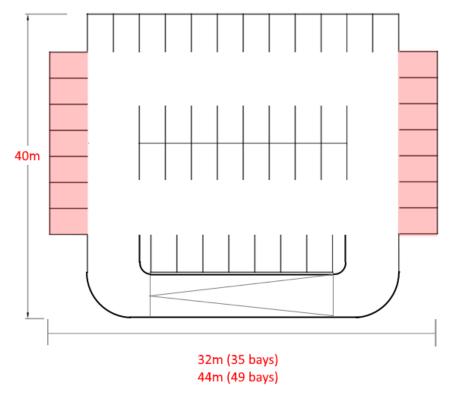
5.4.3 **Scissor ramp**

Scissor ramps can be used either in a split-floor arrangement or a full-floorplate flat deck, with examples show in **Figure 5-3** and **Figure 5-4**. The floor-to-floor heights define the geometry of the floor plates, since the minimum ramp length is set by Australian Standards at 9 metres (1.5 metre half-floor level change) or 16.5 metres (3 metre full-floor level change).

Figure 5-3 Half level floors and ramps

Figure 5-4 Full level floor and ramps

Figure 5-4 Full level floor and ramps


Source: https://www.steelconstruction.info/Car_parks#Circulation_design, viewed 03/03/2021

A theoretical construction of a minimum efficient envelope for a flat floorplate uses a ramp parallel to the circulating aisles and creates the following options:

- > 35m x 32m for 23 bays;
- > 40m x 32m for 35 bays;
- > 35m x 44m for 37 bays; and
- > 40m x 44m for 49 bays.

The requirements for up and down circulation ramps further reduce the efficiency of these car parks, but provide opportunities for flat floors and better constructability. An indicative layout is shown in **Figure 5-5**.

Figure 5-5 Indicative scissor ramp car park layout

If geometric and financial effects are considered to be a key determinant of parking provision, then the following can be recommended:

Recommendation:

- A lot that is less than 16.6m wide in its narrowest dimension cannot provide efficient single-level car parking
- > A lot that is less than 29m in its narrowest dimension cannot provide efficient multi-deck car parking
- > Where on-site parking is provided, it should be as efficient as possible and limited to 1 or 2 levels only.

5.5 On-site parking

The available space for parking is governed by a number of planning restrictions that define its form:

- > At grade parking consumes land area that would otherwise be available for development.
- > **Podium (or undercroft) parking** is limited by setback and landscaping requirements, which reduces the extent of the site that can be used for parking.
- Sleeved parking (behind habitable land uses) further reduces the available parking space due to the need for active frontages.
- > **Basement parking** may be constructed up to the boundary on all sides, but this limits the opportunity for deep soil planting. In the NSW context the envelope is generally restricted to the building footprint.

These limitations should be considered along with the density of development proposed, to determine whether on-site parking can be supplied in a cost-effective manner.

There is an important relationship between the intensity of development and the form of parking constructed. These parameters may differ according to the design guidelines for an individual location or Precinct. The variability in requirements around development site coverage, setbacks, landscaping and deep soil planting, etc. as well as the different forms that parking can take suggest that a fixed maximum rate for parking is difficult to determine.

The following discussion illustrates some of the geometric issues associated with parking construction, and provides recommendations for parking limits based on these geometric constraints.

5.5.1 **Basement parking**

Basement parking is often selected due to the minimal impact that it has on land use and urban structure. By placing parking underneath productive land uses, the at-grade 'footprint' is almost eliminated.

Basement parking is ideally accessed from a minor road to mitigate the impacts of queuing on corridor function and to reduce the potential for conflict with pedestrians along the active frontage.

Due to the desire for basement parking to be located below grade, the building design must be compromised to create a portal for the access ramp. AS2890.1 requires that the first six metres of the car park access be a maximum grade of 1:20, increasing the total ramp length to at least 21 metres before the first basement level. This limits the applicability of basement parking to locations where a long approach ramp can be constructed.

An estimate of construction costs for basement parking was undertaken by ptc¹. in 2017 across Australia. They found a construction cost range of \$1,150 - \$1,900 per square metre. This equates to \$35,000 - \$55,000 construction cost for every basement car space built.

5.5.2 Above ground/ podium level parking

Stand-alone parking structures operate as single-use spaces, though there is potential for ground-floor activation, with car parking levels above. This form of parking supply is highly flexible, and has the most utility for public parking, catering for a wide array of businesses within walking distance.

The management of dedicated above-ground parking can also be highly reactive.

Parking duration and fee structure can be used to support specific trip purposes, and modified to maintain very efficient operation. The ability for these car parks to accept a wide variety of users means that they can

.

¹ https://www.ptcconsultants.co/construction-costs-car-parks-2017/

adapt to the surrounding changes in activity and, if they are no longer viable, be demolished or readapted for more productive uses.

Podium parking places the parking structure behind frontage uses, retaining pedestrian-scale activity at ground-floor level, and elevating the primary development uses (residential, office etc). In these installations, ground floor uses may be as sparse as a lift lobby, or might include retail/ restaurant spaces.

The additional levels of podium parking increase reduces the development potential due to height restrictions.

Podium parking has the most potential for adaptation to productive land uses, and so policy measures that support this conversion can assist in improving the resilience of a Precinct.

Above-ground parking construction costs are generally lower than basement parking, The ptc. review of above-ground multi-deck car park costs showed a range of \$800 - \$1,200 per square metre. This calculates to about \$25,000 - \$35,000 per parking space.

5.5.3 Car stackers

Car stackers use mechanical systems to reduce the space required to store cars. An indicative schematic is shown in **Figure 5-6**.

Depending on the technology used, this method can be much more efficient than standard multi-level parking structures. This efficiency is achieved by eliminating parking aisles and reducing floor-to-ceiling heights.

Car stackers tend to operate as follows: a driver enters the portal and stops on a platform, then leaves the vehicle while the car stacker 'parks' the car in a vacant space.

Due to the reduced space requirements, car stackers can be used on sites that cannot provide efficient parking, particularly where the lots are narrow or otherwise geometrically constrained.

There are a number of factors that require consideration before selecting car stackers, including:

- > **Maintenance**: There is an ongoing maintenance requirement for the stacker machinery. Because every installation is proprietary, this adds risk to the development.
- > **Breakdown**: In the event that the stacker system fails, vehicles will be effectively 'trapped' either inside or outside of the car park.
- Vehicle Size: The majority of car stackers are designed to suit a given vehicle size, they can be configured to allow a certain quantum of tall vehicles (SUVs and 4x4s), but may not accept long vehicles.

The restrictions are not markedly different from standard car parks, which have restrictions on vehicle height and length, but the parameters are generally more restrictive.

Queuing: The cycle time for a stacker system is slow, in the order of 45-90 seconds for a typical car storing/ retrieval, and this increases with the size of the system. This translates into long wait times during peak periods, and queues of vehicles particularly during inbound peaks.

Figure 5-6 Car stacker schematic

Source: worhr.com.au, viewed 27/02/2021

Car stackers are therefore used primarily for low-intensity functions (residential use).

- > **Familiarity**: The operation of these systems may not be intuitive for new users. Unfamiliarity increases cycle times and exacerbates queuing issues.
- > **Space adaptability**: Due to the unusual geometry of the stacker envelope, the space is virtually useless for anything else. Car stackers therefore create a legacy issue when the system comes to the end of its useful life, or if parking demand declines.

Despite some issues, car stackers may present the best option for on-site car parking where lot geometry does not support efficient car parking. Car stackers installations should be accompanied by supportive documentation that details any limitations on vehicle use, how spaces will be allocated, the operational framework, queuing projections and mitigation measures.

5.6 Off-site parking

5.6.1 Public parking

The most common alternative to on-site parking is parking in the public realm, either in large-scale off-street car parks or on-street parking.

This allows the supply and demand to be managed (mostly by Council) through a combination of duration restrictions and pricing.

It is important that where parking concessions apply, transparent and equitable governance is applied to manage supply and community critique.

5.6.2 Reciprocal parking

A reciprocal parking Agreement is a formal legal document to permit parking on third-party private land. This **usage agreement** may be used to reduce the burden of providing parking by a proposed development. These agreements are maintained on Titles, with administration from Council.

The degree of reciprocal parking occurring depends on the type of land use in the vicinity and the time of day. The most important component to determine the rates of reciprocal parking is the proximity of the land use pairs. Reciprocal parking generally results in lower total parking supply required to satisfy demand.

The feasibility and function of a reciprocal parking proposal should be assessed on the same basis as for mixed-use development under a shared parking system. Shared parking supply is discussed in **Section 10.3**.

5.6.3 Unbundled parking

Unbundled parking differs from reciprocal parking in that it represents a change in **ownership** instead of **use**. It is a process by which tenants can choose whether or not to rent/ purchase parking with their unit. The unbundling of parking can be introduced in several different ways:

- > Site managers can unbundle parking when renting building space (i.e. rent or sell parking facilities separately);
- > Developers can make some or all parking optional when selling buildings;
- > Renters can be offered a discount on their rent for not using some or all of their allocated parking spaces; and
- > Parking costs can be listed as a separate line item in the lease agreement to show tenants the cost and enable them to negotiate reductions.

Providing tenants or owners with the opportunity for unbundled parking is also likely to create a market for available parking spaces. The market is limited to spaces within a reasonable walking distance between car parking space and destination (residence or employment).

If an unbundled parking policy is introduced, it is important to consider the cost of alternative parking in the nearby area. Where there is a supply of free or low-cost parking nearby, this creates an incentive for tenants or owners to preference these spaces, resulting in spill-over effects and diluting the market.

The elements required for unbundled parking to be feasible include:

- > A consistent and longer term market demand and willingness to pay for car parking that cannot be supplied nearby in another location;
- A comprehensive management scheme of all other nearby publicly accessible parking facilities within a convenient walking distance. This should consider the trade-offs between walking distance and price to rent a parking space;
- > Investors willing to adopt the risk and dedicate effort into such a facility and/ or a property willing to supply and manage a supply.

Anecdotal evidence suggests this already happens to some degree in dense Sydney zones, where residents will lease car parking spaces through online classifieds or third party managers.

5.6.4 **Decoupled Parking**

In addition to unbundling parking from land uses parking can also be located off-site, either in public facilities funded through developer contributions or cash-in-lieu, or in private facilities with ownership decoupled from the associated development.

This form of parking has the advantage that it can accommodate ongoing future growth as demand declines, or be demolished to make way for new development. One of the key advantages of decoupled parking is that it reduces the risk of under-supply, since excess parking can be leased or sold to a wider catchment as required. This also establishes a local market rate for parking that reflects the relative scarcity of supply.

One particular location where this would be beneficial is Camperdown, which has a unique mix of student accommodation, as well as dense residential, education and commercial uses. Decoupled parking mechanisms can be used in this environment to support residential developments with zero on-site bays, as well as fluctuating demand.

Supportive zoning regulations and policy frameworks are necessary to provide comfort to developers that consolidated private parking schemes will not form an impediment to Precinct planning. Permitting decoupled parking within dense residential and commercial zones reduces the need for Council provision of parking infrastructure.

Recommendation:

- Consider development of a parking policy that supports off-site communal parking (decoupled and unbundled from development) under the Community Titles Act.
- Investigate the opportunities and appropriate planning mechanisms for implementation within Camperdown.

Technology

Technology change is already impacting a wide variety of different modes, including private vehicles, public transport, and cycling. Future changes in transport technology are likely to have an ever-increasing impact on travel behaviour. Specific emerging technologies in transport include autonomous and connected vehicles, electrified transport, car and bike sharing, ride sourcing, and mobility-as-a-service.

These technologies will have a range of different effects on transport networks and development planning, and ability to achieve desired mode share targets, as well as Council's ability to achieve other related environmental, social and economic goals. Depending on the manner in which the technology enters the market, uptake of new technologies in the transportation space may impact congestion in either positive or negative ways.

Upcoming and recent transport technology is anticipated to lower private vehicle trips and parking demand in cities. Some key considerations are outlined as follows:

- > **Mobility as a Service (MaaS)** provides the means to integrate all potential transport options to travel. i.e. this may compare the time and cost between a bike share, ride share, public transport, car share or a combination.
- > **Bike sharing** allows people to located and use a bike for shorter trips. This service can help to reduce vehicle trips.
- Ride hailing services like taxis, do not use traditional destination parking, and so this change in travel behaviour may reduce the need for a range of private parking supplies. However, there is a corresponding cost in the requirement for public and private waiting bays, as well as high turn-over pickup/drop-off parking.
- > **Car sharing** allows multiple people to share vehicles and can reduce the overall demand of car parking, particularly in managed parking environments. This is discussed more in **Section 6.2**.
- > **Connected and autonomous technology** (still being developed). This has the potential to reduce parking demand and allow efficient use and sharing of the vehicle fleet. The full effects are yet to be

determined and is dependent on pricing and policy measures that will impact travel choice. There is a risk that people may choose to use an autonomous vehicle instead of mass public transport resulting in road network congestion.

6.1 Parking space adaptability

Due to the expected downward demands for car parking through technology and declining car ownership rates, it is recommended to plan and construct car parking space that can be adapted in the future for other uses.

Recommendations:

- > Prepare design guidelines that include development requirements for car parking which supports adaptive reuse of parking areas for future development.
- Consider changes to parking policies that allow for off-site communal parking (decoupled and unbundled from development).

6.2 Car share

Car sharing includes traditional daily rental, by-the-hour services (such as GoGet) and one-way car sharing (carpool). Changing consumer preferences provides for an increased focus on travel objectives rather than vehicle ownership.

In Australia, research has indicated that between 11 and 65 per cent of car share members reduce their car ownership. While this is a wide variance and has been determined from a range of circumstances, a typical industry benchmark is that for every 20 members, 10 cars can be replaced with a single share-car. This represents a reduction in parking supply of approximately 40 to 45 per cent.

Evidence from commercial car-share systems in Australia and overseas suggest that where car-share services are embedded within a development (i.e. for the benefit of residents, employees or institutions), this can result in a significant reduction in parking requirements.

Recommendation:

(Infrastructure) Assist and support the location of car share spaces adjacent to dense residential development. Encourage on-site car share for residential and business developments, particularly where parking construction costs would impose high costs on tenants and reduce affordability.

6.3 Electric vehicles

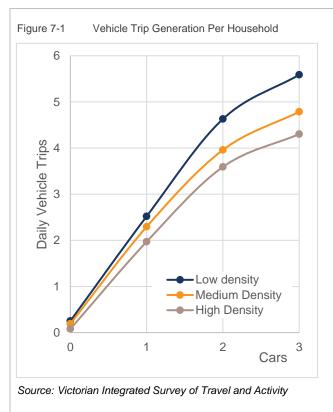
Electric vehicles provide the opportunity to reduce the environment impacts of vehicle trips. They still present all other private vehicle car trip issues (traffic generation, occupy space) have on the transport network. In coming years, parking demand is expected to be dominated by electric vehicles, and this should be supported in appreciation that some trips are most appropriately served in private vehicles than other modes. The following is recommended to support electric vehicle adoption:

Electric vehicle recommendations:

- > As the EV fleet grows, market forces will govern the installation of EV charging units. Policy measures including community title for parking facilities, unbundled and decoupled supplies can be used to provide flexibility for developers and residents, and thereby reduce the opportunity cost of installation.
- Electric vehicle charging points should be provided in off-street locations in the same way petrol stations are off-street for a range of safety and amenity reasons.
- Introduce development requirements to ensure all high-density residential development has access to EV charging bays for new applications. This should include provision of conduit to allow residents to reticulate power to individual bays, and to ensure electrical infrastructure is sized to support a charging demand.
- Introduce development requirements to ensure slow-charge EV charging points are provided for a percentage of long-stay employee parking (~10%, increasing as demand rises).

- > Introduce development requirements to ensure future ability to supply EV charging points for every parking bay. This ensures maximum flexibility to accommodate the future EV fleet.
- > Policy support for conversion of public off-street parking spaces to EV fast-charging, through an expedited approval process.

Traffic impacts


While parking itself does not generate vehicle traffic, a constrained parking environment (where supply is less than demand) will result in a change in travel behaviour. This is caused by the increased costs (both financial and time) imposed on the parking component of the trip.

Various trip types interact with the road network and parking supply in different ways. For the purpose of this discussion, consider the following peak periods along Paramatta Road:

- > AM Peak: Precinct traffic is predominantly related to outbound residential and inbound employees
- > **PM Peak**: Precinct traffic is predominantly related to inbound residential, outbound employees, plus retail and entertainment visitors
- > **Saturday Midday**: Precinct traffic is predominantly related to inbound and outbound residential movements (non-commuting) and retail/entertainment visitors.

Across all of these periods, there is another key demographic of demand: Regional traffic, which is unrelated to any of the land uses within the Study Area but will be affected by decisions made in the surrounds.

Each of the components of the parking system (residential, employee and visitor parking) can be adjusted as necessary to mitigate the impacts of congestion caused by development. This can be translated into policy and management measures within each Precinct and surrounds.

Residential traffic (Origin in the

Precinct): traffic impact decreases significantly when vehicle ownership is constrained by maximum parking limits. A household with 2 cars generates approximately 80% more vehicle trips than a 1-car household (and zero car households generate few, if any vehicle trips). This is shown indicatively in **Figure 7-1**.

> Employee traffic (Destination in the Precinct): traffic is generated proportional to the supply of long-stay parking.

Employees tend to have the best opportunities to access high-frequency public transport. In addition, employee parking is one of the least productive land uses, as these vehicles essentially lie idle through the entire activity peak. Restricting employee parking is a direct way of reducing caras-driver mode share for this trip purpose. This includes both statutory supply maximums applied to key development areas and active management of public parking to limit long-stay use.

> **Visitor traffic**: traffic is generated proportional to the availability of short-stay parking during peak period.

Retail, restaurant and entertainment activity is important for the function of the Precinct. Visitors tend to park for a short period of time and hence these parking bays are usually the most valuable for the Precinct. Public parking remains the most effective way of fulfilling visitor parking demands, due to the efficiency increases that are unlocked through shared use of a common resource.

> **Regional traffic**: unaffected by parking supply, but may be redirected to alternative routes or shifted to public transport modes if congestion is high

The parking ecosystem

Parking should be considered as an ecosystem consisting of public and private, on-street and off-street, and considering all of the many needs of those people who use those bays. The optimal parking system would be one where all parking is used efficiently, with the minimum amount of space devoted to parking activities. After all, parking itself only facilitates activity; it does not create any of its own.

An effective parking system must therefore consider the impacts of parking policies on behaviour, and whether there is sufficient capacity across all parking facilities and alternative transport to fulfil the mobility needs of a location's employees, residents and visitors.

- > **Private parking supply**: when parking is provided primarily on individual lots, the financial burden of constructing and maintaining that facility is borne by the owners, tenants and customers. This is not necessarily equitable, as that cost may be passed onto users who don't drive.
 - Private parking is also inherently inefficient, in that it can only be used by a select group of people (usually, the employees, residents or customers of that development).
- > **Public parking** has the intrinsic advantage that it can be accessed by the greatest number of users, and is therefore a more efficient method of delivery. In addition, public parking can be priced to reflect the demand and to induce behaviour change in high-demand areas to alternative locations, or alternative transport modes.

When Council sets high *minimum* parking rates, this can impose a financial burden on private development, raising the cost of construction – which must be then passed onto tenants and customers in the form of higher prices.

If Council sets very low *maximum* parking rates, this shifts the burden of delivering parking to Council. This can be beneficial, where the public supply is effectively managed and priced in a manner that is responsive to demand. But where parking is provided free of charge or significantly below 'fair value', the use of public parking represents a significant subsidy to car owners, and to the detriment of people using other transport modes.

Setting parking rates

The 2016 Ashfield, 2011 Marrickville and 2013 Leichhardt DCPs provide developers with an indication of the required parking bays to be included in all types of development across the LGA. These rates are given as a flat rate (Ashfield DCP), as target rates (Marrickville DCP) and as banded rates (Leichhardt DCP).

The Marrickville DCP provides guidance on how variations can be accepted. The use of target rates in this area, rather than minimum or maximum rates, establishes a 'deemed to comply' value for development. For this type of rate, strategic intent of the target is explained within the DCP. The Leichhardt DCP rates are more flexible, allowing developers to choose the appropriate supply of parking within a band acceptable to Council.

Council's updated DCP parking rates should be designed so that all types of development meet strategic planning objectives. It is challenging to determine rates that will suit all land uses and changing needs, and other forms of parking requirements may be better suited to support Council's strategic planning needs. The different types of parking rate types are discussed in **Table 9-1**.

Table 9-1 Off-street parking requirement types

Table 9-1 Off-stre	et parking requirement types
Parking requirement type	Detail
	Minimum rates are used to ensure that developments provide more than zero parking spaces. The lack of an upper limit ensures that developers may increase supply but cannot reduce without a concession from Council.
Minimum parking	Minimum rates can be used to prevent overspill of parking into on-street spaces, and tend to be used in suburban areas where public parking is limited.
Minimum parking rates	Reduced minimums accept that a given overspill will be accommodated in public parking. This creates opportunities for improved efficiency and management control (pricing and duration restrictions), as well as reducing the economic burden on development, all of which can be beneficial to the local community.
	Historically, most minimum parking rates are set above the natural demand – i.e. more parking bays than developers want to build.
	Maximum rates are used to ensure that parking is not oversupplied, and are usually enforced in centres where traffic congestion is an issue and alternative public and active transport modes are highly accessible.
Maximum parking rates	This form of rates control leaves the decisions regarding on-site supply to developers and businesses. It acknowledges that developers may not provide parking spaces on-site, and so is usually accompanied by a fixed contributions scheme related to intensity of development.
	Most maximum parking rates are set below the natural demand – i.e. fewer bays may be constructed than developers want on-site.
Banded parking rates	Banded parking rates, set a lower and upper limit, provide developers with a range of acceptable parking ratios. They are generally used when developers are encouraged to make their own decisions on parking supply, no provision of parking. This type of rate is generally used when there is a lack of sufficient on-street public parking controls.
	By setting both maximum and minimum rates, banded rates allow developers an opportunity to interrogate their needs and select the parking supply that suits market demands.
Target parking	The 2011 Marrickville DCP utilises target parking rates, which provide no explicit flexibility to developers in determining parking supply. The application of discretionary policies effectively enables modifications to these rates based on a number of factors.
rates	In application, target parking rates function like banded rates, but with an opaque range for appropriate supply. This reduces certainty for developers and represents a potential barrier to sustainable development.
Parking caps	Parking caps are used when traffic congestion or other constraints in CBD areas require restrictions on a local area basis. This form of parking restriction is usually applied to a dense city centre precinct, and applied as an area rate (i.e. parking spaces per hectare).
	Hybrid caps are used when a combination of these restrictions are necessary to support Council's strategic objectives.
Hybrid caps	For example: The City of Stirling in Western Australia requires commercial parking (independent of category) within the Mirrabooka City precinct to between 2 and 4 spaces per 100m², up to plot ratio 1.0. Beyond this density, parking is limited to 200-400 spaces per hectare.

Parking requirement type	Detail
	This gives developers the ability to choose a rate that suits their business, but maintains a long-term cap on parking supply (and trip generation) through to the development horizon.

Parking rate concessions

DCP controls in the Marrickville DCP (2011) list a range of potential factors that may be considered for the purpose of evaluating a proposal for reduced parking supply. These include:

- 1. **Shared Parking**: "Peak parking and traffic activity occurs during periods where surrounding parking demand is lowest".
- Geometric Constraints: "Existing site and building constraints make provision of car parking impractical".
- Transit Accessibility: "Located adjacent to high-frequency public transport services and/or urban services".
- 4. Demand Reduction: "Includes management regimes to minimise car use, such as workplace travel plans or on-site carshare schemes", "Development targeted to demographic sector with low car use/ ownership".
- 5. **Public Benefit:** "Provides a business or social service that benefits the local community and contributes to the vitality of the area", "Parking for the development is consistent with the aims and objectives of this section of MDCP 2011."
- 6. Safety: "Safety of motorists, pedestrians and cyclists is unduly compromised by provision of parking.
- 7. **Heritage:** "Development contributes to heritage conservation of the building and setting".

Some key considerations are identified and discussed, including:

- > **Demographics**: Age and household characteristics (students, older people, families etc.);
- Accessibility: Proximity to public transport nodes, frequency of public transport, quality and connectivity of pedestrian/ cycling infrastructure;
- > Land use: Residential and employment density, mixed use activity; and
- > Parking availability: Off-site public supply, unbundling options, car share etc.

10.1 Availability and accessibility of public parking

Developers should demonstrate the expected parking demand generated by a site. This can be used to determine the level of parking to be provided on-site or if the local parking supply can accommodate the demand. The developer should provide a contribution to the difference of its on-site provision and maximum demand.

10.2 Accessibility of alternative transport

Probable mode of site demand is driven by employees and visitors.

- > Parking demand at **employee**-driven land uses is influenced by proximity to public transport and provision of quality end-of-trip facilities. Examples of employee-generated car parking land uses are offices and hospitals, and visitor-generated car parking are medical centres, restaurants, shops and places of assembly.
- > Parking demand at **visitor**-driven land uses is influenced by location within a dense urban community and opportunities for on-site mixed-use synergy.

Adjustment factors that can be considered for probable transport mode of users are described in Table 10-1.

Where these factors account for the proximity of public transport, an accessibility map indicating the location of high-frequency and high-capacity public transport nodes can assist Council to determine appropriate locations where rate concessions could apply. This would require expansion and review of the Marrickville Parking Areas map to include all of Inner West and PRCUTS.

Table 10-1 Adjustment factors for probable transport mode of users

Cotomony	Criteria for reduction factors								
Category	Employee-generated parking demand	Visitor-generated parking demand							
	The development is located within 800 metres of rail station.	No reduction for this component of land use							
Public Transport	The development is located within 400 metres of a high-frequency bus route (i.e. average headway less than 15 minutes)	No reduction for this component of land use							
	The development is located within 200 metres of a collector bus route (i.e. any bus route regardless of frequency)	No reduction for this component of land use							
Bicycle Parking	Bicycle parking provided in excess of 2x statutory requirements AND high-quality end-of-trip infrastructure provided including showers, lockers and secure parking.	No reduction for this component of land use							
Location	No reduction for this component of land use.	The development is located within a Town Centre							
	The development proposes a mix of residential and commercial uses, provided at least 50% of the total plot ratio is residential.								
Composition	The development proposes a mix of land uses which would be able to share on-site parking. extent of parking reduction to be determined through a Parking Demand Assessment and in agreement with Council.								

10.3 Shared parking supply

Shared parking is parking that is used by two or more uses.

If a development consists of multiple land uses where peak demands occur at different times of day, on-site parking can be shared between land uses. This type of parking arrangement is appropriate only for situations where peak demand differs between the constituent land uses. Representative land pairs which can leverage this effect include:

- > Residential Visitor Parking and Commercial/ Office; and
- > Office/ Entertainment or Office/ Restaurant.

The ability to share parking is related to the types of land uses proposed and how their peak hours of operation differ.

Where this parking is at one location, internal parking management methods can be used to ensure maximum efficiency, while reducing the number of parking spaces.

Where parking spaces are delegated to specific users the supply is less effective. Shared parking takes advantage of the fact that most parking bays are only used part-time by a particular group, and many parking facilities have a significant proportion of unused bays, with utilisation patterns that follow predictable daily, weekly and annual cycles.

Efficient sharing of bays can allow parking requirements to be reduced significantly. Partial sharing occurs when arrangements are made by one facility to use another's parking facilities at certain times.

A method for evaluating the opportunity for shared parking uses a Peak Parking Demand table submitted by the Applicant, as part of a Parking Management Plan (exampled shown in **Table 10-2**), which provides enough evidence to Council to show that demand will not unreasonably coincide.

Table 10-2 Example shared parking peak demand table

Development type	Development	Shared	parking c	lemand asse	Unshared assessment	
	users	Morning	Midday	Afternoon	Evening	(peak demand per land use)
	Office Staff	150	150	150	0	160
_	Office Visitors	10	10	10	0	100
E.g Office/ Restaurant in	Restaurant Staff	5	10	10	20	
Town centre	Restaurant Customers	25	50	20	100	120
	Total	190	220	190	120	280

Note: This assessment supports a peak parking demand of 220 spaces, instead of the 280 spaces that would be required if evaluated separately.

Any application for parking supply reduction based on internal shared parking arrangements should be justified through a Parking Assessment.

10.4 Cash-in-lieu of parking

Cash-in-lieu of parking is a policy mechanism by which developers give Council cash instead of providing car parking This is accompanied by a fee sufficient to offset the impact of this parking, either through the provision of public car parking, or improvements to alternative transport.

Cash-in-lieu payments can be an attractive alternative for developers when construction of parking on-site is very challenging and they specifically wish to have a provision associated with their development. It can also benefit the wider community through the supply of publicly and equitably managed parking for the use of high-value or highest-need parkers.

Current DCP documentation does not have any capacity to allow developers to voluntarily increase their contribution to offset higher impacts. The current provisions allow Council to either require a given private parking supply, or to waive that requirement, creating equity issues.

The success of cash-in-lieu parking arrangements is compromised if Council approves parking concessions in order to relieve developers from any obligation to provide car parking. Concessions should only be approved where the applicant can clearly demonstrate that the parking requirement is excessive.

If Council approves a concession because it is technically justifiable, the applicant should still have the ability to use the cash-in-lieu program to further reduce the amount of parking required on-site.

The cash-in-lieu amount should be set at a discount to the actual cost of providing the parking to:

- > Provide a financial incentive for developers to contribute to the creation of strategically located public parking facilities;
- > Recognise that Council will be able to recover some of the costs through user fees;
- Recognise that parking spaces are not allocated to specific users on a reserved basis, although the general supply will be available to meet demand;
- > Recognise that the contributor will not have an ownership interest in the public parking facilities;
- > Recognise that the parking may not be as conveniently located to a specific development compared to on site or other nearby parking facilities;
- > Recognise that all or a portion of the parking may not be constructed at the same time as the development, and
- > Recognise that the developer/ owner will not have any control over parking fees and use regulations.

The decision to accept cash-in-lieu should remain at the discretion of Council and not become an automatic right. This will allow Council to ensure that if it accepts cash-in-lieu payments, there is a reasonable expectation that:

- > Municipal parking is already available to serve the development;
- > Council will be able to provide a supply increase in the short term; or
- > That alternative transport options can be used instead.

It is also necessary to ensure that planning for the provision of future parking structures is transparent and that contributors to the cash-in-lieu fund are given clear indication as to what their payments are funding. This will ensure that developers continue to see benefits in contributing towards public parking. This usually involves the establishment of a site-specific car parking infrastructure fund, into which cash-in-lieu payments are directed, and out of which the planning, upgrading and management of car parking facilities is funded.

A broader delivery model allows cash-in-lieu funds to be used to support sustainable public infrastructure, including upgrades to pedestrian, cycling and public transport facilities, can support a more flexible use of cash-in-lieu.

Regardless of the mechanism for funding - either through developer contributions, parking fees and fines or other public monies - it is important that the revenues and costs from parking-related activities be accounted for centrally. This allows for reasonable modifications to the management structure, pricing regimes, infrastructure and maintenance, enforcement and compliance activities to be resolved in a transparent system with full accounting of the costs and benefits provided. This will form the foundation for assessment of the requirements for cash-in-lieu payments by developers as well as determining and varying parking restrictions and pricing schemes based upon location, time of day and seasonal factors.

Accounting for all financial aspects of parking will enable a much greater appreciation for the real costs of providing this service.

10.4.1 Off-site parking

Cash-in-lieu is primarily used as a mechanism for funding off-site public parking, where construction of parking supply within a development is partly or wholly infeasible. This requires Council to deliver parking within relatively close proximity and inside a given timeframe. For these reasons, it may not be possible or appropriate for Council to accept cash-in-lieu funds, where planning is not sufficiently progressed to identify a suitable location for public parking.

Nevertheless, there can be significant benefit to both the developer and Precinct function where parking is provided in consolidated public facilities. A mechanism that allows developers to contribute towards a communal off-site parking structure in-lieu of on-site provision is therefore recommended.

Currently, zoning limitations can affect the opportunities for consolidated off-site car parking, particularly in areas abutting residential zones. Changes to zoning restrictions would be necessary to allow developers to construct nearby off-site parking structures, in lieu of on-site facilities. Ideally, these structures form part of large-scale Precinct redevelopment planning, with coordination between several developers. Because this requires co-ordination between multiple developers, potentially over an extended timeframe, off-site car parking is often only feasible where a large site area is being redeveloped.

An alternative market-led structure is possible if parking requirements are set at a low maximum rate, or abolished altogether. In this case, where parking demand significantly exceeds private supply, there is the potential for a standalone car park to be developed by a commercial third-party.

To progress the construction of off-site communal parking, Council intervention may be required (see further discussion in Section 5.6.4). This method of delivery uses essentially the same structure as cash-in-lieu, but on a completely voluntary basis. That is, developers contribute towards off-site parking infrastructure to be delivered by Council based on an understanding of their own individual needs, and (preferably) at a reduced cost compared to on-site delivery.

Any and all parking rate concessions should be assessed and justified on a case by case basis.

Bicycle, motorcycle and site servicing recommendations

11.1 Bicycles

The presence of cycling routes alone is not enough to secure modal shift from private vehicles. In order for cycling to be a viable mode of transport to an increased number of people, routes must be safe, separated from vehicles and pedestrians and be accessible for everyone. High quality end-of-trip facilities and wayfinding must also be provided.

A minimum of one bicycle parking space should be provided for each new land use dwelling/ business. Best practice bicycle parking supplies enough spaces to cater for the target cycling mode share across all development sites.

Current bicycle mode share indicates this represents a low percentage approximately 1 -2 per cent of all trips and 1 per cent of journey to work trips.

Bicycle parking for businesses should be linked to mode share targets. As an example, based on a general land use assumption of 20sq.m of floor space per employee (e.g. office commercial) and a maximum attendance of approximately 80 per cent of employees are on-site at any time, there would be approximately 1 employee per 25sq.m of employment land use.

The bicycle parking space requirement would be calculated by the greater of 100/(Mode share target percent/ assumed sq.m area per on-site employee) or one.

Based on the relationship between mode share target and spaces per unit of floor area indicative percentages and floor areas per one space is shown in **Table 11-1**:

Table 11-1 Mode share space relationship of one on-site employee per 25sq.m of floor area

Bicycle mode share target percent	1	2	2.5	5	10	15	20	25
Square metres of floor area per 1 bicycle space	2,500	1,250	1,000	500	250	167	125	100

Similar to public vehicle parking provisions, publicly accessible and conspicuous facilities provides an opportunity to use and share visitor parking more effectively. Bicycle parking opportunities should be provided in the public domain as part of public space improvement projects and can also be provided by adapting car spaces to bicycle parking spaces in locations where there is sufficient demand or evidence of ad hoc bicycle parking.

The City of Sydney provides a web portal to find or request new bicycle parking. https://www.cityofsydney.nsw.gov.au/transport-parking/request-new-bike-parking-space-or-find-existing

Recommendation:

- Siven the current journey-to-work cycling mode share of less than one per cent, and with the assumption that increasing bicycle mode is consistent with Council objectives, a minimum bicycle parking rate to satisfy 2.5 per cent of employee mode share, plus additional spaces for visitors/ customers. This creates capacity for additional bicycle mode share.
- Bicycle parking demand should be monitored in the locality and Council should host request a new bike parking space on their website.

11.1.2 End of trip facilities

End of trip facilities (EOTF) will typically be required to accommodate long-stay trips for land uses such as offices. EOTF should include change rooms, showers and lockers to store clothing and towels. These facilities can be integrated with toilets and for use of all employees on-site. Recommendations for the provision of EOTF are outlined in **Table 11-2**.

Table 11-2 Recommendations for provision of EOTF

No. showers	No. change rooms	No. lockers
One shower per 5 employee bicycle parking spaces	One change room per shower	Two lockers per employee bicycle parking space

Note: where more than one shower or change room is required, separate male and female facilities must be provided

11.2 Motorbike/ scooter

Census data indicates motorcycles represent approximately five per cent of the vehicle fleet in Australia, however within the PRCUTS IWC, motorcycle JTW represents around 1 – 1.5 per cent of mode share.

Recommendation:

Motorcycle parking be provided at 1 space per 1,500sq.m of floor area, with a minimum of one space where on-site parking is provided.

11.3 Servicing, delivery and loading

The provision of on-site service/ delivery and loading is generally related to the scale of development, the intensity of use and the availability of public on-street facilities. The likely requirement for deliveries in new commercial developments should be considered and enabled where appropriate through an increase in onstreet **loading zone** areas, particularly in 'main street' precincts where demand for parking is high, and where smaller office/ retail development is located. **Loading bays/ zones** should be flexible/ shared where possible between businesses, and have timed restrictions (usually 15 minutes), and designed to accommodate larger and heavier vehicles as appropriate.

Car parks designed to accommodate these vehicles must have shallower ramps, higher ceilings and wider circulation aisles.

Due to these additional geometric requirements, it is recommended servicing and waste collection occurs at ground level, unless the lot dimensions can support the needs of the design vehicle of site topography optimises another arrangement.

Recommendation:

Site loading and servicing facilities should be provided on site, appropriate to the size and scale of the development.

Residential land use car parking recommendations

12.1 Residential vehicle ownership and parking demand

ABS 2016 Census data for Inner West Council found there were:

- > 1.21 vehicles per household (on average);
- > 11,931 households which own zero vehicles;
- > 33,604 households which own one vehicle; and
- > 1,165 households which own more than four vehicles.

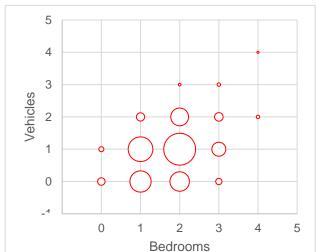
Household vehicle ownership varies substantially. In particular, the proximity of the University of Sydney (UoS) influences the demographics of households in the area, with a higher proportion of students living in apartment dwellings without cars.

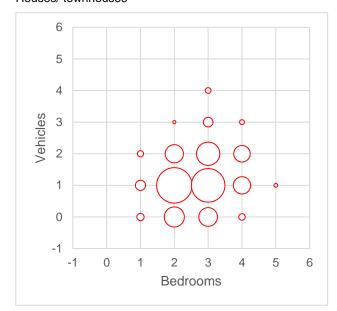
Data from ABS Census 2016 has been used to show the relationship between dwelling size and vehicle ownership, for two housing types: single unit dwellings/ townhouse and apartment dwellings, and for the suburbs of Leichhardt (**Figure 12-1** and **Table 12-1**) and Camperdown (**Figure 12-2** and **Table 12-2**).

Apartments

Figure 12-1 Leichhardt suburb household characteristics – bedrooms vs vehicle ownership

Houses/ Townhouses




Table 12-1 Leichhardt suburb household characteristics – dwelling type vs vehicle ownership

	Separate House	Terrace/Townh	Terrace/Townhouse Apartment			
Cars	-	1 Storey	2+ Storeys	2 Storeys	3 Storeys	4+ Storeys
0	179	142	103	119	84	124
1	883	619	491	217	190	207
2	644	370	318	72	50	52
3	100	52	58	10	5	0
4	28	8	23	3	0	0
5	3	0	0	0	0	0
Total Cars	2,598	1,547	1,393	403	305	311
Dwellings	1,837	1,191	993	421	329	383
Avg. Cars	1.41	1.30	1.40	0.96	0.93	0.81
	1.41 1.35 0.90					

Figure 12-2 Camperdown suburb household characteristics – bedrooms vs vehicle ownership

Houses/ townhouses

Apartments

Table 12-2 Camperdown suburb household characteristics – dwelling type vs vehicle ownership

	Separate House	Terrace/Townh	nouse		Apartment	
Cars	-	1 Storey	2+ Storeys	2 Storeys	3 Storeys	4+ Storeys
0	7	72	89	71	147	1370
1	48	252	241	26	276	1122
2	20	98	124	9	68	229
3	0	12	22	0	3	19
4	0	0	4	0	0	6
5	0	0	0	0	0	0
Total Cars	88	484	571	44	421	1661
Dwellings	75	434	480	106	494	2,746
Avg. Cars	1.17	1.12	1.19	0.42	0.85	0.60
	1.17	1.17 1.15 0.64				

As this Census data figure shows, vehicle ownership differs significantly between house/ townhouse and apartment dwellings. This is reflected in the difference in recommended parking maximums shown below (**Table 12-3**).

Townhouse developments tend to be subdivided into strata lots which include on-site parking – this means that parking requirements must generally be in whole numbers, rather than fractions, to match the physical form of delivery.

The recommended PRCUTS parking rates (**Table 12-3**) for residential land uses have been assessed against current behaviour and future transport opportunities. This comparison shows that the PRCUTS *maximum* parking rates tend to be 30-50% less than the current *average* for the area. Nevertheless, they can be considered achievable provided substantial improvements to the public transport environment eventuate (as envisaged by the PRCUTS plan).

A series of recommended parking rates have been provided which considers existing and future transport opportunities, as well as existing parking requirements. To this end, where current Council requirements are below identified parking generation, the *lower* of the Marrickville and Leichhardt DCP rates has been applied. The intent of this is to ensure that the process of parking restraint continues into the future.

However, the significant reduction of on-site parking supply implied by the PRCUTS rates needs to be supported through consistent parking management processes in the adjacent public network. In particular,

managed on-street parking with a robust permit system that disincentivises the use of on-street parking in residential zones. Without this additional form of management, it is considered likely that residents will continue to own cars well in excess of private supply, shifting the burden of storage onto Council (see below, **Section 12.4**).

An alternative set of rates has also been provided, which reflect a set of sustainable rates consistent with existing transport opportunities. These rates could be employed irrespective of the capital works detailed in the PRCUTS plan and are designed to incentivise developers to use more efficient methods of parking allocation within development, while simultaneously providing downward pressure on vehicle ownership in dense residential areas.

Table 12-3 Bedrooms, DCP parking rate, cars owned and recommendations

Bedrooms	DCP rate	Average cars owned	PRCUTS maximum recommended rate	Alternative maximum parking rates (consistent with 2021 transport environment)
Leichhardt/ Ta	verners Hill			
House/ Townho	ouse			
1		0.83	0.3	1.0 per townhouse
2	0 – 2.0	1.20	0.7	1.0 per townhouse
3+		1.45	1	1.0 per townhouse
Apartment/ Sho	pp top Housing			
0	0 - 0.5	0.33	0	0.15
1	0.33 – 0.5	0.67	0.3	0.5
2	0.5 – 1.0	0.98	0.7	1.0
3+	1.0 – 1.2	1.31	1	1.2
Visitor		-	0	0.1 space per dwelling, unless this can be provided on-street.
Camperdown				
House/ Townho	ouse			
1		0.93	0.3	1.0 per townhouse
2	1.0	0.98	0.7	1.0 per townhouse
3+		1.24	1	1.0 per townhouse
Apartment/ Sho	pp top Housing			
0	0.2 - 0.6	0.12	0	0.15
1	0.4 - 0.8	0.55	0.3	0.5
2	0.8 – 1.2	0.93	0.7	1.0
3+	1.1 - 1.2	1.32	1	1.2
Visitor		-	0	0.1 space per dwelling, unless this can be provided on-street.

12.2 Student housing/ Boarding house

Student and boarding houses are generally managed residences with occupants typically having low rates of car ownership. It is recommended a maximum car parking rate of **0.15 per dwelling be provided**, subject to on-site management of parking.

It is noted that due to the delivery model for student accommodation, developers are likely to provide parking in line with their expectations of demand – in contrast to many other forms of multi-unit residential development.

12.3 Dual occupancy residences

The form of dual occupancy dwellings is consistent with that of single unit development and should therefore be subject to the same parking rate applied to house/townhouse above.

12.4 Resident parking permits – model scheme

Inner West Council operates a number of residential parking permit schemes to allow limited on-street vehicle storage by residents. The cost of these permits is set at a rate sufficient only to recoup the cost of administration, with a small factor applied where multiple permits are sought. This cost is nominal (free for the first permit and \$50 -\$100 for the second permit); which is significantly less than the value of those spaces.

These permit schemes signal an acceptability for eligible households to own two cars, irrespective of the number of parking spaces available.

This creates inequity in the system – functionally identical households, with the same needs and characteristics may be disadvantaged due to the age of their building.

In general, the uptake of a residential permit system is primarily dependent on the fee charged, and the supply of on-site parking available.

This results in the following behaviour:

- Residents parking their vehicles on-street do so either because the number of vehicles owned is greater than on-site car parking, access to their on-site parking is less convenient or that parking has been appropriated for other uses (a home gym, extra bedroom/ workroom, additional storage etc.).
- > A permit user receives a financial benefit proportional to the value of the land or construction cost of the parking space (a secure garage may cost \$30,000 \$40,000 to construct, and provides an equivalent value). As such, an on-street parking bay represents a benefit to the vehicle owner of approx. \$1,500-\$2,000 p.a. Recent investigations into the cost of on-site parking confirm that this figure is consistent across all the areas where studies have been completed, which includes cities across the Netherlands, San Francisco in California, and Darebin in Victoria.

An annual parking permit fee functions as a price signal to residents. It allows vehicle owners to adequately account for the cost of parking infrastructure and consider storage as part of the real cost of ownership.

Where residents have insufficient parking, this permit scheme provides an opportunity to shift the burden of storage onto Council, but provides funds for the maintenance of that infrastructure at an equivalent market rate. Users may choose to retain their vehicles wholly on-site and reconsider the need for vehicles that do not fit on-site.

This form of management has the following advantages:

- > It allows the parking restrictions to support the desirable use of on-street parking;
- > The pricing regime can be ramped up to market rates over time;
- > The price can signal that it would be cheaper to use other forms of transport such as car share; and
- > It retains equity for all residents, existing and future.

It is expected that any form of on-street parking permit model would involve a relatively low introductory price, with gradual increases over time to manage uptake and on-street demand.

Recommendation:

(Policy) (In order to implement PRCUTS recommended parking rates) Expand the residential permit scheme and price permits at a rate consistent with the opportunity cost of parking infrastructure, with a transition period to support behaviour change by residents.

There is an opportunity to incentivise low-emissions vehicles through the residential parking permit scheme. This type of concession is used some European jurisdictions (for example, the cost of a residential parking permit in Copenhagen ranges between AUD45 p.a. for an electric vehicle, up to AUD850 p.a., based on its fuel-efficiency).

Recommendation:

Provide concessions for the cost of a residential parking permit based on emissions.

Non-residential land use car parking recommendations

13.1 Journey to Work travel behaviour

Census 2016 data from the Australian Bureau of Statistics is used to estimate employee mode choice to places of work in the study precincts and shown as percentages in **Table 13-1**.

Table 13-1 Journey to Work mode share by precinct

Suburb	Public transport	Car (passenger)	Walk	Bike	Motorbike/ Scooter	Other, not stated, truck
Taverners Hill	18%	71% (4%)	5%	1%	1%	1%
Leichhardt	23%	62% (4%)	9%	1%	1%	1%
Camperdown	20%	63% (4%)	9%	3%	2%	2%
Average	20%	66% (4%)	7%	2%	1%	2%

Source: Census, Australian Bureau of Statistics, 2016

Note: 13.5% of employees either did not work, or worked from home on the day of the Census – and therefore generated no journey-to-work trips.

13.2 Office

The current office parking rates applied through the Marrickville DCP (MDCP) and Leichhardt DCP (LDCP) are shown in **Table 13-2** to provide context for parking sufficiency in each Precinct and to establish an indicative parking rate.

Table 13-2 DCP office/ business land use parking rates vs. mode share accommodation

Office/ Business Land Uses	MDCP (Area 1) LDCP (Office min)	MDCP (Area 2) LDCP (Office max)	MDCP (Area 3) LDCP (Business Premises max)	Suburban demand
Parking rate (1 per X square metre)	100	80	60	40
Parking rate (spaces per 100 square metres GFA)	1	1.25	1.67	2.5
Assumed Employee occupancy rate (workers per 100square metres)	4	4	4	4
Parking spaces per employee	0.25	0.31	0.42	0.63
Office attendance	80%	80%	80%	80%
Supported driver mode share percentage	31%	39%	52%	78%

Comparing these results to the mode share percentages in each of the precincts, shows the following requirements if on-site parking supply were to match existing journey to work behaviour.

- > Taverners Hill: one space per 44 square metres (2.27 spaces/ 100 square metres); and
- > Leichhardt/ Camperdown: one space per 50 square metres (two spaces/ 100 square metres).

Where on-site parking is supplied at less than this rate, there would be existing overspill into the surrounding public and shared parking. The benefit for undersupplying parking is to influence the travel behaviour of staff, and to reduce the cost of new development.

Interrogation of existing journey-to-work by public transport has been used as an indication of the effect of public transport accessibility in the Study Area. In this case, public transport mode share ranges from 18% (Taverners Hill) to 23% (Leichhardt). Given that the primary public transport within the Study area is bus transit along Paramatta Road, the observed variations in travel behaviour appear to be aligned more with work type (office/commercial showroom/retail etc.) and employee catchment than accessibility measures.

Future developments in high-quality public transport are likely to increase the propensity for employees to travel by such modes, and this would be reflected in a reduction in the maximum parking rate in the locations affected. The significant improvement in public transport services envisioned by PRCUTS could support the recommendation of 1 space per 150sq.m, when realised.

This parking rate can work as a maximum, without a minimum, where the surrounding catchment of publicly accessible parking is appropriately managed and enforced through parking duration restrictions and paid parking. An alternative rate has also been derived, which is considered achievable in the short term, prior to the significant corridor improvements identified in the PRCUTS plan. This maximum rate is set at approximately 50 per cent of existing demand. This comparison is outlined in **Table 13-3**.

Table 13-3 Existing and recommended office premise parking rate

Office	Marrickvil	Marrickville DCP			t DCP	PRCUTS	Alternative	
premises	Area 1	Area 2	Area 3	Min	Max	recommendation	maximum parking rates	
							(consistent with existing transport environment)	
Parking rate	1 per 100sq.m	1 per 80sq.m	1 per 60sq.m	1 per 100sq.m	1 per 80sq.m	1 per 150sq.m	1 per 100sq.m (max)	
Spaces per 100sq.m	1	1.25	1.67	1	1.25	0.67	1.00 (max)	

13.3 Retail

PRCUTS recommends 1 space per 100sq.m. Analysis of parking demand generation rates for retail precincts has consistently shown a parking rate of approximately one space per 40 - 50 square metres, declining further where adjacent residential and employment densities are high.

Recommendation:

Retail parking be permitted at a **maximum rate** of **1 space per 50 square metres** which is consistent with the Leichhardt DCP.

This enables retail businesses the opportunity to capture demand on-site, where development intensity is high and the provision of public parking would be insufficient to accommodate demand. It is likely that small-scale developments will provide less parking, relying instead on adjacent on-street supplies.

13.4 Restaurant

In the absence of a specified rate for restaurant land uses in PRCUTS, it is assumed the retail rate of 1 space per 100 square metres applies.

The parking rate for restaurants as defined in the Marrickville DCP and Leichhardt DCP varies between 1 per 50 square metres and 1 per 100 square metres, depending upon location. While the demand for parking by restaurant customers is generally much higher than this, peak demand tends to occur in the evening and can generally be supported by parking opportunities in surrounding streets.

As such, it is appropriate that the maximum requirement be set at less than the anticipated demand. However, a maximum rate of 1 space per 100 square metres may leave some locations unable to provide sufficient service for customers, particularly where adjacent on-street parking is restricted.

Recommendation:

A recommended parking **maximum rate** of **1 space per 50 square metres** is recommended across all locations.

13.5 Health / Medical Centres

The Marrickville DCP considers medical centres as part of the 'Office' category, with a corresponding rate that range from 1 space per 60 square metres to 1 space per 100 square metres by location. The Leichhardt DCP applies a parking requirement of between 0.66 and 2 spaces per consulting room.

The parking needs for medical uses are highly dependent on the nature of the service provided:

- > Medical Clinics (e.g. a walk-in GP clinic) generate a greater number of patients and require a higher visitor parking rate;
- > Specialist Centres have a greater proportion of non-practitioner staff, but fewer patients; and
- > Hospitals with overnight stay generate additional demand by visitors, and a higher proportion of staff members per 'bed'.

These services may be provided in stand-alone facilities or combined on a single site (for more detailed discussion of reciprocal and decoupled parking, see Sections 5.6.2 and 5.6.4). Parking generation is also poorly correlated to floor area, with a wide variation in different configurations and intensities by purpose. Instead, a relationship between 'beds' or 'consulting rooms' and parking is more indicative of baseline demand. Some DCPs specify a parking rate per 'practitioner' but this can be difficult to quantify at the Development Application stage, and may change without any internal modifications.

Proximity of the development to high-density employment or residential nodes can reduce the parking requirement for visitors, but there is only a weak relationship between public transport accessibility and mode share – this reflects the demographic of patients and the fact that patients are often infirm or ill.

13.5.1 Medical Clinics and Specialist Centres

Research into parking demand rates suggests a baseline metric for parking demand at GP clinics is in the order of 5 spaces per consulting room. This rate would be applicable for a site with only a low-density residential walking catchment, poor access to public transport, and limited to no adjacent public parking. As such, it is likely that any destination within the Study Area would be able to achieve a substantially lower trip generation rate than this baseline.

Interrogating current journey-to-work mode shares for medical centres and hospitals in the Inner West shows only a minor variation from baseline rates, see below:

Table 13-4 Journey to Work car-as-driver mode share (all employment vs medical/hospital)

Suburb	Car-as-Driver
Taverners Hill	71%
Leichhardt	62%
Camperdown	63%
Hospitals (Inner West)	76%
Medical and Other Health (Inner West)	69%

This would suggest that the *employee* component of trip generation could operate at the roughly equivalent of the recommended office rate, at least for medical centres (see Section 13.5.2 below for discussion of hospital generation). While the requirements for staffing do vary, a ratio of simultaneous occupancy of around 1 to 1.5 staff per consulting room appears to be representative.

Additional parking provision is necessary to accommodate patients, which accounts for approximately 2/3 of the unconstrained parking demand. This comprises up to 2-3 patients for each consulting room during the highest peak periods (medical centres), but only 1-2 patients per consulting room for specialist clinics, due to the lack of walk-ins and more rigid scheduling requirements.

Based on the above, a representative parking rate for medical centres would be 0.5 spaces per consulting room (staff), plus 1.5 spaces per consulting room (patients).

Patient parking supply could be reduced for specialist clinics to 1 space per consulting room (patients), considering the following:

> Specialists are often on-call or attending a primary hospital where they have admitting rights – this increases their need to have access to a private vehicle (staff parking needs increase), but reduces the numbers of patients on-site at any one time.

Recommendation:

On balance, this would likely result in a similar recommended parking rate for medical centres and specialist clinics, with a maximum rate of **2 spaces per consulting room**.

13.5.2 Hospitals

Hospital sites are complex workplaces with a large number of different activities operating on 24/7 basis. Standard industry metrics put hospital parking requirements at between 3 and 5 spaces per 'bed'. This variation reflects the wide range of services that can be incorporated into the hospital structure, not all of which are aligned directly with patient care (research, diagnostics, administration etc.).

One key constraint for hospital developments is the impacts of shift start and finish times on the availability of public transport alternatives to driving. Review of hospital rostering data suggests that 30-40% of tertiary hospital staff either arrive or depart outside of core hours (i.e. arriving before 7am, or departing after 7pm). This, combined with the requirements for shift overlap, puts pressure on the on-site parking during the critical noon-3pm period.

One illustrative example for the impacts of parking restraint on behaviour is the QEII Medical Centre campus in Perth, WA. This site substantially reduced parking for staff in 2009, and over the period of 3 years, transitioned from a 75% staff car-as-driver mode share to 43% car-as-driver mode share. This mode shift requires a combination of high-quality, high-frequency direct public transport which operates from 6:30am, and a detailed parking management and allocation model for staff.

Patient/visitor parking demand across multiple hospital sites is approximately 1 space per 1.5-2 beds; which appears to be consistent across multiple locations. Parking demand is higher for some specialities (e.g. children's hospitals, day surgery) where visitors are more likely to stay throughout the day.

Given the above, and assuming a maximum parking requirement is to be used for hospital sites, based on the number of 'beds' within the campus, it is not recommended for the rate to be reduced below 3 spaces per bed. In addition, it is recommended that there be some mechanism, likely through a Parking Assessment, for a hospital redevelopment to capture the additional need for parking associated with on-site research, clinics and ancillary facilities.

Recommendation:

Hospital must prepare include a parking assessment as part of a develop application. This can be included in a transport assessment report.

The unique requirements for hospital uses suggest a maximum parking rate of 3 spaces per bed.

13.6 Serviced apartment/ hotel

The parking demand for hotels is related to staff and guest requirements, which vary significantly depending upon the location and type of facility. Current parking requirements recognise that the majority of guests do not require access to a car, and therefore the majority of parking is used by staff.

However, staffing levels can fluctuate greatly, and may not be fully determined at the development application stage. Using the average worker proportions indicated in ITE documentation as a benchmark would suggest approximately 1 worker per 4-6 rooms. However, most of those employees would have access to alternative transport. Only early morning, evening and night-staff would require parking for safety and security reasons. Application of standard employee occupancy profiles would suggest that the total parking requirement for employees would be in the order of 1 space per 10 rooms, plus approximately 1 space per 4 rooms for guests.

Recommendation:

Consideration of the needs of guests and employees to service rooms that would require parking for shift work results in a recommendation of **1 space per three rooms**.

13.7 Out of centre uses along the Paramatta Road corridor

Parking maximums are not recommended due to the reduced opportunity of sharing off-street facilities and a general preference by users for on-street parking due to convenience and legibility where available.

The nature of corridor development is that land uses can be expected to change frequently over the lifetime of the building structure. Establishing a single target parking provision allows for simplified change-of-use as appropriate for the needs of the community.

The chosen target rate is consistent with an average mixed-use provision consisting of multiple different land use types.

Recommendation:

A general rate of **1 space per 40 square metres** (2.5 per 100 square metres) is recommended for all out of centre non-residential land uses.

13.8 Summary of non-residential land use recommendations

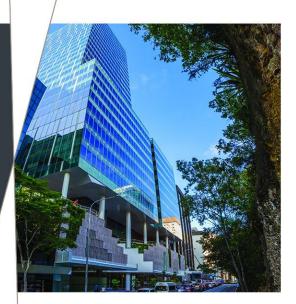
Table 13-5 outlines the PRCUTS recommendations which are only recommended with an appropriate public parking management scheme and recommendation for immediate implementation.

Table 13-5 Key non-residential land uses

Rate application	DCP rate (per 100sq.m)	PRCUTS recommendation maximum rates (per 100sq.m)*	Alternative maximum parking rates (consistent with existing transport environment) (per 100sq.m)	
ers Hill, Leichhar	dt and some parts of Cam	perdown)		
Minimum	1 per 100sq.m (1)	1 per 150sq.m		
Maximum	1 per 80sq.m (1.25)	(0.67)	1 per 100 sq.m (1.)	
Maximum	1 per 60sq.m (1.67)	-	-	
Minimum	2 spaces per 3 consulting rooms	-	2 spaces per consulting	
Maximum	2 spaces per consulting room	-	room	
General	1 per 50sq.m (2)	1 per 100sq.m (1)	1 per 50sq.m (2)	
Minimum	1 per 80sq.m (1.25)	-	- 1 per 50sq.m (2)	
Maximum	1 per 50sq.m (2)	-		
	application ers Hill, Leichhard Minimum Maximum Maximum Minimum Maximum Maximum Minimum Maximum Minimum	application (per 100sq.m) Pers Hill, Leichhardt and some parts of Came Minimum 1 per 100sq.m (1) Maximum 1 per 80sq.m (1.25) Maximum 1 per 60sq.m (1.67) Minimum 2 spaces per 3 consulting rooms Maximum 2 spaces per consulting room General 1 per 50sq.m (2) Minimum 1 per 80sq.m (1.25)	application (per 100sq.m) recommendation maximum rates (per 100sq.m)* Pers Hill, Leichhardt and some parts of Camperdown) 1 per 100sq.m (1) 1 per 150sq.m (0.67) Maximum 1 per 80sq.m (1.25) 1 per 150sq.m (0.67) Maximum 1 per 60sq.m (1.67) - Minimum 2 spaces per 3 consulting rooms - Maximum 2 spaces per consulting rooms - General 1 per 50sq.m (2) 1 per 100sq.m (1) Minimum 1 per 80sq.m (1.25) -	

Land use	Rate application	DCP rate (per 100sq.m)	PRCUTS recommendation maximum rates (per 100sq.m)*	Alternative maximum parking rates (consistent with existing transport environment) (per 100sq.m)	
Bulky goods premises	Minimum	1 per 125sq.m (0.8)	-	- 1 per 100sg.m (1)	
Bulky goods premises	Maximum	1 per 100sq.m (1)	-	r per roosq.m (1)	
Industry	Minimum	1 per 250sq.m (0.4)	1 per 150sq.m	1 per 150sq.m (0.67)	
Industry	Maximum	1 per 150sq.m (0.67)	(0.67)	1 per 150sq.iii (0.07)	
Marrickville DCP (Parts of	of Camperdown	south of Parramatta Road)		
Office (Area 1)	Minimum	1 per 100sq.m (1)			
Office (Area 2)	Middle	1 per 80sq.m (1.25)	1 per 150sq.m _ (0.67)	1 per 80sq.m (1.25)	
Office (Area 3)	Maximum	1 per 60sq.m (1.67)	- (0.0.)		
Health consulting rooms/ medical centre	As per office	As per Office/ business without banded rates based on floor area.		2 spaces per consulting room	
Retail/ Shop	As per office	As per Office rates applicable up to 500sq.m	1 per 100sq.m (1)	1 per 50sq.m (2)	
Restaurant (Area 1)	Minimum	1 per 100sq.m (1)			
Restaurant (Area 2)	Middle	1 per 80sq.m (1.25)	-	1 per 50sq.m (2)	
Restaurant (Area 3)	Maximum	1 per 50sq.m (2)	_		
Bulky goods premises (Area 1)	Minimum	1 per 150sq.m (0.67)			
Bulky goods premises (Area 2)	Middle	1 per 125sq.m (0.8)	- -	1 per 100sq.m (1)	
Bulky goods premises (Area 3)	Maximum	1 per 100sq.m (1)	-		
Industry (Area 1)	Minimum	1 per 300sq.m (0.33)			
Industry (Area 2)	Middle	1 per 250sq.m (0.4)	1 per 150sq.m (0.67)	1 per 150sq.m (0.67)	
Industry (Area 3)	Maximum	1 per 200sq.m (0.5)	_ (3.3.)		
Out of centre uses along the Paramatta Road corridor					
All non-residential land uses	General	-	Refer to specific land uses	1 per 40sq.m general rate (2.5)	

Transport Plan - Camperdown, Leichhardt and Taverners Hill


Parramatta Road Corridor Urban Transformation Strategy

80018116

Prepared for

Department of Planning, Industry and Environment and Inner West Council

10 March 2022

Contact Information Document Information

Cardno (NSW/ACT) Pty Ltd Prepared for Department of Planning, ABN 95 001 145 035 Industry and Environment and Inner West Council Level 9 - The Forum **Project Name** Parramatta Road Corridor 203 Pacific Highway **Urban Transformation** St Leonards NSW 2065 Strategy Australia File Reference **PRCUTS Transport** www.cardno.com Plan.docx Phone +61 2 9496 7700 Job Reference 80018116 Date 10 March 2022

Version Number

7

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	03/07/2018	Draft	Dean Rance Jane Parker	Mitchell Lee Chris Slenders
2	28/01/2021	Draft 02	Elizabeth Muscat Shobhan Baranwal May Chew	Chris Slenders
3	08/03/2021	Draft 03	Chris Slenders Shobhan Baranwal	Chris Slenders
4	14/09/2021	Draft 04 (Pre confirmation on road infrastructure upgrades)	Chris Slenders Shobhan Baranwal	Chris Slenders
5	18/02/2022	Final	Ivo Pais Elizabeth Muscat	Ivo Pais
6	01/03/2022	Final Rev 2	Ivo Pais Elizabeth Muscat	Ivo Pais
7	10/03/2022	Final Rev 3	Ivo Pais Elizabeth Muscat	Ivo Pais

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Glossary

Acronym/ Term	Description
AADT	Annual Average Daily Traffic
ABS	Australian Bureau of Statistics
Active transport	Transport modes powered by human movement, generally walking and cycling.
AS	Australia Standard
BRT	Bus Rapid Transit
CSP	Community Strategic Plan
CUCP	Camperdown-Ultimo Collaboration Precinct
DDA	Disability Discrimination Act 1992
DPIE	NSW Department of Planning, Industry and Environment
EV	Electric vehicle
FT56	Future Transport Strategy 2056 (Transport for NSW state-wide strategy - View at https://future.transport.nsw.gov.au/plans/future-transport-strategy)
GANSW	Government Architect NSW
GETS	Guided Electric Transit System
нтѕ	Household Travel Survey (View at https://www.transport.nsw.gov.au/data-and-research/passenger-travel/surveys/household-travel-survey-hts)
IWC	Inner West Council
ITS	Integrated Transport Strategy
LGA	Local Government Area (the administrative geographical area)
LRS	Light rail stop
MaaS	Mobility as a Service (mode agnostic): Users plan trips by destination and options are outlined for selection. Refer to FT56 for more information.
PMD	Personal mobility device
PRC	Parramatta Road Corridor
PRCUTS	Parramatta Road Corridor Urban Transformation Strategy
TfNSW	Transport for New South Wales
TGSI	Tactile ground surface indicators
TPA	Transport Performance and Analytics
UAIP	Urban Amenity Improvement Plan
VMS	Variable Message Signs
WSUD	Water-sensitive urban design

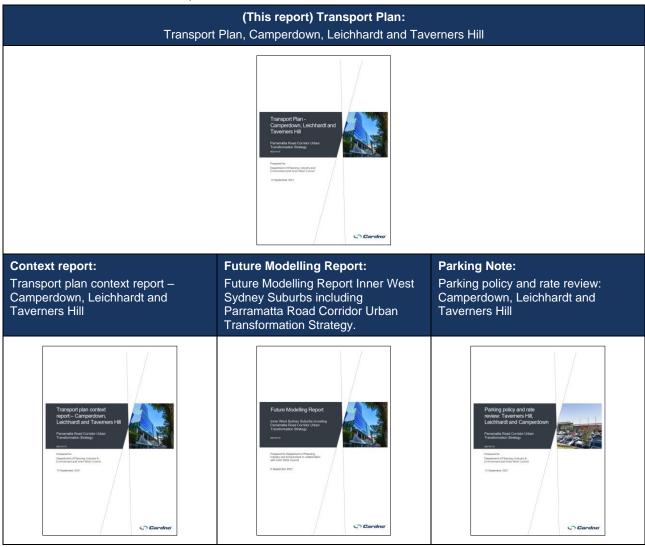
Table of Contents

Gloss	sary iii				
1	Introduction				
	1.1	Transport Plan purpose	1		
	1.2	Background	2		
	1.3	Study precincts	3		
	1.4	Population	5		
	1.5	Planned projects and initiatives	6		
2	Trans	port vision, principles	10		
	2.1	The transport vision	10		
	2.2	Guiding principles	10		
	2.3	Modal hierarchy	13		
	2.4	Performance indicators	14		
3	Strate	gies and actions	15		
	3.1	Behaviour change	15		
	3.2	Movement and Place	15		
	3.3	Parramatta Road configuration	21		
	3.4	Active transport	22		
	3.5	Public transport	37		
	3.6	Road network	53		
	3.7	Freight	56		
	3.8	Parking	57		
4	Impler	mentation plan	61		
	4.1	Timeframes and feasibility	61		
	4.2	Costing and Responsibilities	61		
5	Monito	oring and review	62		
Tables					
Table 1-1	PRCUTS	Inner West report set	2		
Table 1-2	PRCUTS	IWC study area residential and employment population	5		
Table 1-3	Public domain				
Table 1-4	Active tra	insport	7		
Table 1-5	Public tra	insport	8		
Table 1-6	Major roads				
Table 2-1	PRCUTS principles and implications for Transport Plan				
Table 2-2	Relevant	transport indicators for a new Parramatta Road (PRCUTS, 2016)	14		
Table 3-1	Travel de	emand management actions	15		
Table 3-2	Built and natural environment indicators for success				

Table 3-3	Movement and Place considerations from PRCUTS	19
Table 3-4	Land use and place-making actions	21
Table 3-5	Active transport actions	23
Table 3-6	Active transport infrastructure standards	28
Table 3-7	Unit rates	30
Table 3-8	Active transport infrastructure recommendations	31
Table 3-9	Public transport network actions	39
Table 3-10	Bus stop conditions and opportunities for further investigation	42
Table 3-11	Transit considerations	49
Table 3-12	Road network actions	54
Table 3-13	Freight network actions	57
Table 3-14	Parking actions	59
Table 4-1	Implementation plan	61
Figures	5	
Figure 1-1	PRCUTS IWC study precincts	4
Figure 1-2	Population – residential and employment forecasts	5
Figure 2-1	Modal hierarchy (IWC ITS)*	13
Figure 3-1	Built and natural environment indicators: criteria for evaluating movement and place	16
Figure 3-2	Strategic pedestrian network within and near PRCUTS	25
Figure 3-3	Strategic cycling network	27
Figure 3-4	Future pedestrian infrastructure actions – Taverners Hill precinct	33
Figure 3-5	Future pedestrian infrastructure actions – Leichhardt precinct	34
Figure 3-6	Future pedestrian infrastructure actions – Camperdown precinct	35
Figure 3-7	Future cycling infrastructure actions	36
Figure 3-8	Parramatta Road concept layouts	37
Figure 3-9	Bus stops opportunities for further investigation	41
Figure 3-10	Strategic north-south feeder bus network map	48
Figure 3-11	PTPM AM Peak Total Demand in the Study Area	55
Figure 3-12	PTPM Mode Share Outputs	55
Figure 3-13	Actions	60

1 Introduction

1.1 Transport Plan purpose


This transport plan shows details to support the Parramatta Road Corridor Urban Transformation Strategy (PRCUTS) for Camperdown, Leichardt and Taverners Hill. Overall, it is sought that PRCUTS precincts are desirable places to live, work and visit. In order to support development uplift and improve place value, major change to the function and the way Parramatta Road is used must occur. PRCUTS must:

- > Be safer for everyone;
- Support social inclusion and equity;
- > Have a diverse and interesting range of land uses;
- > Be easy and a convenient place to do business;
- > Support higher locally originated and destine movement demands of people;
- > Be more environmentally sustainable.

The recommendations of this report are informed by studies documented several reports, shown in **Table 1-1**.

Table 1-1 PRCUTS Inner West report set

The recommendations of this plan apply to the PRCUTS areas generally within Inner West Council (IWC) Local Government Area (LGA).

1.2 Background

Opened in 1811, Parramatta Road is one of the oldest roads in New South Wales. Parramatta Road Corridor is a key east-west link between the Sydney CBD and Parramatta, spanning 20 kilometres from Granville to Camperdown.

Parramatta Road was formally a destination in itself, with people visiting for its adjacent businesses and shopping offerings.

Parramatta Road's function as a vehicle movement corridor has gradually taken priority over its place function from previous decades. This has had a reductive effect on its place value and attraction and it can no longer be described as a vibrant high street.

Parramatta Road serves an important function within regional Sydney for public transport and freight vehicles as well as general traffic.

The NSW government has recognised that Parramatta Road and surrounding land uses are not achieving their full potential, and a multitude of studies over the years have proposed various options and solutions to improve conditions.

The Parramatta Road Urban Transformation Strategy (PRCUTS) proposes approximately 27,000 new dwellings along the Parramatta Road corridor between Granville and Camperdown. There are also 50,000 new jobs planned along the corridor.

For IWC PRCUTS precincts, there is forecast to be an additional 10,000 residents and employees in the period 2016 - 2036.

The opening of WestConnex in 2023 will provide the option for some through-traffic to redistribute off Parramatta Road. This will open up opportunities to reimagine how people move along the corridor and the land uses it can support.


The Parramatta Road Urban Corridor Transformation Strategy (PRCUTS) brings together the elements of successful place making to provide a strategy to support population and employment growth, land use and place making and transport to improve the attractiveness and liveability of the corridor and surrounding areas.

1.3 Study precincts

This study has a primary focus on IWC precincts of Camperdown, Leichhardt and Taverners Hill shown in **Figure 1-1**.

Figure 1-1 PRCUTS IWC study precincts

1.4 Population

The key determinate of transport needs is the population it serves. The following section outlines the 2016 population and the forecast to 2036.

1.4.1 Residents and employment

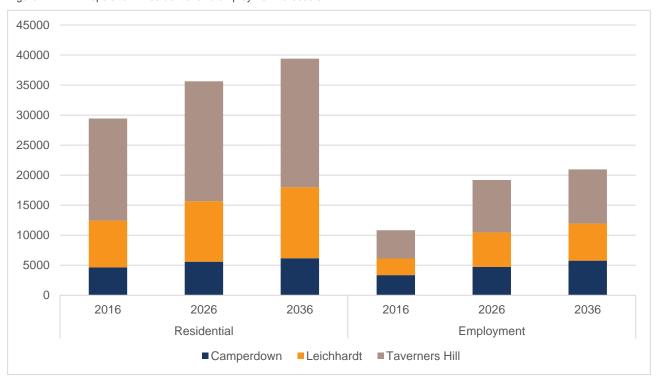

DPIE commissioned a PRCUTS land-use projections review in 2021 to assess the land use in IWC PRCUTS precincts more broadly for traffic modelling analysis. While this review assumed precinct boundaries slightly different to those shown in **Figure 1-1**, it provides a good indication of projected changes to residential and employment numbers. The population and employment forecast is as outlined in **Table 1-2** and graphed in **Figure 1-2**.

Table 1-2 PRCUTS IWC study area residential and employment population

	•						
Precinct		Population			Employment		
FIECITICE	2016	2026	2036	2016	2026	2036	
Taverners Hill	17,018	19,964	21,409	4,705	8,732	9,025	
Leichhardt	7,786	10,075	11,834	2,766	5,748	6,172	
Camperdown	4,637	5,589	6,159	3,354	4,716	5,767	
Total	29,441	35,628	39,402	10,825	19,196	20,964	

Data source: PRCUTS land use review, SGS, 31/05/2021

Figure 1-2 Population – residential and employment forecasts

Data source: PRCUTS land use review, SGS, 31/05/2021

The data in **Table 1-2** Error! Reference source not found and **Figure 1-2** shows that Taverners Hill will continue to house the most residents and employment.

By 2036, it is anticipated the PRCUTS IWC areas will accommodate approximately 39,400 residents and 22,300 workers. Between 2016 and 2036, the transport network must facilitate the movements for an additional:

- > 10,000 residents; and
- > 10,000 employees (some of which will be residents).

1.5 Planned projects and initiatives

Major investment in improvements to the transport system is underway across Sydney, with new city-shaping rail projects, motorway links and on-road public transport priority projects all planned to move Sydney's people and goods more efficiently. The following tables summarise regional projects that interact with or are likely to have an influence on the PRCUTS IWC precincts. Projects are categorised as:

- > Public domain **Table 1-3**;
- > Active transport **Table 1-4**;
- > Public transport **Table 1-5**; and
- > Major roads **Table 1-6**.

Table 1-3 Public domain

Project	Source/ status & timing	Location	Key details	Transport outcomes for PRCUTS IWC precincts
Parramatta Road Urban Amenity Improvement Plan (PRCUTS UAIP)	Sub-plan from the Parramatta Road Corridor Urban Transformation Strategy produced by UGNSW (now Landcom) (Construction underway – to be completed by 2023)	Parramatta Road Corridor (PRC); Works involves Taverners Hill, Leichhardt and Camperdown Precincts. Affects traffic flows and active transport between IWC, City of Sydney and Canada Bay Councils.	 New GreenWay connection under Parramatta Road. New GreenWay connection under Longport Street, Lewisham West. New public domain improvements to key north-south streets that run perpendicular to Parramatta Road in Leichhardt. New cycle connection along Dot Lane between Norton Street and Hay Street, Leichhardt. Conversion of Petersham Street to pocket park between Parramatta Road and Queen Street. New north-south pedestrian and cycle link along Johnstons Creek, Camperdown Precinct. Public domain improvements and new cycle connections along Pyrmont Bridge Road. An east-west regional cycleway from Iron Cove's Bay Run to the M4 cycleway. 	Will help reduce conflict between active transit and traffic near the GreenWay and will improve the appeal of active transit through Kings Bay, Taverners Hill, Leichhardt and Camperdown. Improved safety for active transit all round. Regional cycleway provides a continuous east-west link for cyclists between Iron Cove's Bay Run and the M4 cycleway.
WestConnex Local Area Improvement Strategy	WestConnex Local Area Improvement Strategy (2018), IWC. (To be completed by 2024)	The strategy covers five areas affected by WestConnex: Ashfield, Haberfield, Leichhardt West, Johnston Street and St Peters	Traffic calming measures in each PRC precinct that WestConnex bypasses	Improved road safety, streetscape amenity plus enhanced pedestrian and cyclist connectivity

Table 1-4 Active transport

Project	Source/ status & timing	Location	Key details	Transport outcomes for PRCUTS IWC precincts
Camperdown– Ultimo Place Strategy	Camperdown – Ultimo Place Strategy, Greater Sydney Commission. Priorities and actions for delivery and review between 2018 and 2036	Stretches from Camperdown to Ultimo, and covers Darlington and Eveleigh; most of Haymarket, Ultimo and Camperdown; and parts of Glebe, Forest Lodge, Newtown, Redfern and Surry Hills.	The Camperdown–Ultimo Collaboration Area Place Strategy will inform public and private policy and investment decisions by identifying and recognising the complex, place-specific issues inhibiting growth and change, bringing together multiple and diverse stakeholders and identifying priorities for growth. The Place Strategy was collectively designed by the stakeholders involved in planning for the Collaboration Area's future. Specifically, it: • establishes a vision and narrative for the Camperdown–Ultimo Collaboration Area • identifies impediments and opportunities • sets priorities for the Collaboration Area • identifies actions to deliver the vision.	Contains actions such as: - Advocate for a mass transit system that strengthens connections between the Collaboration Area and Greater Sydney's economic corridors (imperative action); or - Improve public transport, pedestrian and cycling connectivity between the three activity nodes: • Haymarket to Camperdown along the Ultimo axis • Camperdown to Eveleigh along the Darlington axis (particularly Redfern Station to University of Sydney) • Haymarket to Eveleigh along the Surry Hills axis.
NSW Government Strategic Cycling Network	City of Sydney and Future Transport 2056 Initiatives for Investigation (0-10 years). Listed as a priority initiative by Infrastructure Australia (0- 5 years).	Inner Sydney LGAs.	A plan to build 284 kilometres of inner Sydney radial and cross regional separated bike corridors or shared paths. FT56 focuses on a ten-kilometre radius around the Eastern Harbour CBD.	Has strategic and regional significance for cycling. Allows safer access to the CBD from the neighbouring LGAs and supports the concept of the 30- minute city using active transport.
Cycling connections to strategic centres	Future Transport 2056, Eastern City District Plan. For investigation (0-10 years).	Sydney wide, despite no strategic centres within IWC, there are some outside the periphery of IWC which still fall within 5 kilometres of specific IWC areas.	Would see investment in cycling connections within five-kilometre radials of all strategic centres. These connections should be delivered in partnership with local government and integrate with the GSC's Green Grid concept.	Would connect Leichhardt to other strategic centres in Sydney.
GreenWay	IWC: GreenWay Master Plan – Cooks River to Iron Cove (2018), Sydenham to Bankstown Corridor Urban Renewal Strategy, Eastern City District Plan.	Runs parallel to the Inner West light rail line. Offers a north-south link from Iron Cove (at Lilyfield) to the Cooks River Reserve (at Earlwood). Affects IWC, Canterbury Bankstown and Bayside, LGAs. Benefits regional neighbours as well.	Community initiative, now properly funded. Completes major 'missing links' in the committed 5.8-kilometre active shared path and nature corridor. Funding also commits to improving green space and local east- west linkages along the route.	Links through Taverners Hill and forms an opportunity to be a key link in the active transport network.

Project	Source/ status & timing	Location	Key details	Transport outcomes for PRCUTS IWC precincts
GreenWay SouthWest	Part of Sydenham to Bankstown Corridor Urban Renewal Strategy. (Strategy deferred at present). Interest still remains from local governments which might benefit.	Runs within and along the T3 rail corridor's reservation (Metro South West). This is the part between Dulwich Hill and Bankstown Affects IWC and Canterbury-Bankstown Council LGAs.	Surplus lands within the existing rail corridor would be converted into a second off-road GreenWay, running east-west alongside the operational tracks. This would also be an active link between all future precincts and with all open spaces along the route.	Links through Taverners Hill and forms an opportunity to be a key link in the active transport network.

Table 1-5 Public transport

Project	Source/ status & timing	Location	Key details	Transport outcomes for PRCUTS IWC precincts
Sydney Metro West	Sydney Metro, NSW Government, Future Transport 2056. Infrastructure Australia supported (5-10 years) Committed (0-10 years)	Parramatta to Sydney CBD	A new metro line between Parramatta and the Sydney CBD, with stations likely at Westmead, Parramatta, Sydney Olympic Park, The Bays and the Sydney CBD. Hourly capacity is expected to be up to 40,000 people in each direction.	Provide a public transport bypass route of the PRCUTS IWC precinct, reserving public transport capacity in the precincts for people with origins and destinations along the corridor. Stations such as Five Dock and Burwood North provide an opportunity to reshape the bus network.
Public transport improvements for Parramatta Road and Victoria Road	Recommendation 47 and 61, SIS 2018 Eastern City District Plan (ECDP), Future Transport 2056, GSC Parramatta Road Urban Transformation Strategy, Committed (0-10 years)	Parramatta Road and Victoria Road	On-road rapid transit and priority infrastructure that caters for buses and high efficiency vehicles. For investigation by Transport for NSW.	More priority for buses and highefficiency vehicles on these major arterial routes.
Eastern Suburbs to Inner West Rapid Bus Links	Future Transport 2056, Eastern City District Plan, For investigation (0-10 years).	Key Inner West arterials (Victoria Road, Parramatta Road, etc.) linked by rapid bus (or similar) with the Eastern Suburbs.	Rapid bus routes would provide high- frequency direct connections, linking Randwick and Sydney University to the Bays Precinct, and from Maroubra Junction to Sydney Airport and Marrickville.	Would help provide better bus access to jobs between the precinct and other parts of the city, in a way that compliments existing public transport with higher frequency options.

Table 1-6 Major roads

Project	Source/ status & timing	Location	Key details	Transport outcomes for PRCUTS IWC precincts
WestConnex	Future Transport 2056, Sydney Motorways Corporation (SMC)/ NSW Government. Currently under construction; expected completion by 2024.	Links western Sydney (M4) with the Anzac Bridge and south-western Sydney (M5) via new tunnels that run beneath the Inner West	 This is an approved 33-kilometre motorway that is being produced in various stages: Stage 1 – Widening the M4; Stage 2 – M5 tunnel Duplication + St Peters Interchange and M4 East tunnel; Stage 3A – M4-M5 Link; a tunnel that runs beneath the IWC. Stage 3B - The Rozelle Interchange; linking M4-M5 Link with Drummoyne, the Anzac Bridge, Balmain and the City West Link. Three main interchanges are associated with Stages 3A and 3B. Condition B34 of the WestConnex approval states, "Consistent with the modelling contained in the documents referred to in condition A2(b), the Sydney CBD to Parramatta Strategic Transport Plan (Transport for NSW, 2015, or as updated) and in consultation with Transport for NSW, at least two lanes of Parramatta Road, from Burwood Road to Haberfield, are to be solely dedicated for the use of public transport unless an alternative dedicated public transport route that provides an improved public transport outcome for the area, when compared to two dedicated public transport lanes on Parramatta Road, is approved by the Secretary¹." 	Through traffic bypass route providing an opportunity to reallocate road space.
Western Harbour Tunnel and Beaches Link	Future Transport 2056, Roads and Maritime Services. Committed (0-10 years subject to final business case and funding), planning stage, SEARs issued.	Starts in Rozelle travels under Balmain and Birchgrove, the Harbour, Waverton and surfaces near Cammeray before diving again and resurfacing in Balgowlah. Project directly affects IWC, North Sydney Council, Willoughby Council and Northern Beaches Council.	Connects WestConnex by a new harbour tunnel to the north shore by extending the Rozelle Interchange stub tunnels under the Balmain Peninsula to an interchange at the M2 in Cammeray. This will provide further access to Balgowlah bypassing the Spit Bridge. Widespread road expansions will be required around every surface portal.	Links to WestConnex and provides a City West Link bypass route to the north shore. City West Link is an existing alternative route to Parramatta Road.

¹ https://majorprojects.accelo.com/public/ef54d46f64c468f0fbb5f20043057790/M4%20East%20MOD%205%20Consolidated%20Instrument%20of%20Approval.pdf, pg. 18-19, accessed 6 March 2019

2 Transport vision, principles

2.1 The transport vision

The PRCUTS vision is:

"Incremental renewal of the Corridor will occur over the long term to deliver a high quality, multi-use corridor with improved transport choices, better amenity, and balanced growth of housing and jobs."

The implications of the vision for the corridor and desirable outcomes for the transport network are:

- > Pedestrians and cyclists are supported by separated facilities.
- > Public or active transport is the first choice for Parramatta Road Corridor users, because it is safe, reliable and efficient for all travellers.
- > Parramatta Road is a mass public transit spine linking to major transport hubs of Central Station and Metro West Burwood. This will serve point to point, interchange local and regional public transport services for a diverse range of purposes.
- > The corridor must be supported by local public transport services (cross corridor) connecting communities, employees and visitors to where they need to go.
- > Private vehicles are deprioritised but still supported by high movement capacity down the centre of the road carriageway.

2.2 Guiding principles

The PRCUTS principles and implications on the Precinct Transport Plan are outlined in **Table 2-1** (and subsequent Principle tables).

Table 2-1 PRCUTS principles and implications for Transport Plan

Principle 1: Housing choice and affordability		
PRCUTS principle statement	Transport implication	
An additional 56,000 people live in the Corridor in 27,000 new homes.	Transport networks and infrastructure will need to support population growth.	
The community is diverse, with key workers, students, seniors and families.	Transport networks and infrastructure will need to be accessible for all community members.	
The community's housing needs are met with a mix of dwelling types, sizes and prices.	Transport networks and infrastructure will need to support a variety of household types.	
A minimum of five per cent of new housing is Affordable Housing (or in line with Government policy of the day), new housing also caters for single households, older people or different household structures.	Transport services will need to be affordable.	

Principle 2: Diverse and Resilient economy		
PRCUTS principle statement	Transport implication	
\$31 billion of development value is realised.	Transport will need to support realisation of development value.	
Parramatta Road Corridor is Sydney's 'economic spine' - 50,000 workers across a diverse range of sectors and roles come into the Corridor each day to work.	PRC development should offer reliable, accessible and frequent public transit services to support peak hour travel.	
Auburn is recognised as Sydney's large format retail hub and Camperdown is a specialist precinct that supports the world class research, educational and health uses associated with the University of Sydney and the Royal Prince Alfred Hospital.	PRC development should support connectivity for precinct wide collaboration.	

Principle 2: Diverse and Resilient economy		
Town centres at Granville and Kings Bay support new residents and workers.	Transport supports easy connections along corridor.	
There is new life in the retail areas of Parramatta Road, and the Corridor is home to a variety of businesses, including small and medium enterprises, advanced technologies and creative industries.	IWC precincts support the highest diversity of land uses. Transport supports convenient and quick trips between all land uses for employees and visitors to conduct business and enjoy leisure at various locations along the corridor.	

Principle 3: Accessible and connected		
PRCUTS principle statement	Transport implication	
It is easier to move to, through and within the Corridor in both east-west and north-south directions.	Transport networks should have a high level of north-south and east-west connectivity.	
The urban transformation of the Corridor is supported by transit-oriented development. Existing and new desirable and affordable mixed-use environments are enhanced by high-quality, high frequency public transport and safe active transport connections.	Transport infrastructure supports a variety of frequent and reliable transport modes available to the public including active transport.	
The Corridor's inherent social, economic and environmental resources are optimised, including freight generating uses within and supporting the Corridor.	Transport recommendations to leverage on existing strengths of the study area.	
Available road and rail capacity are utilised and public investments in transport are optimised.	Transport recommendations to leverage on and integrate with existing transport infrastructure in the study area.	
Non-infrastructure initiatives, such as encouraging visitors to use non-car modes of travel to help alleviate congestion, and modifying or altering timing of trips, are well utilised.	Transport recommendations are to be holistic and also consider strategies that are non-infrastructure related.	
People choose to walk and/or cycle for local trips along the Corridor's 34km of new and upgraded links, hop on buses and/or light rail for intermediate trips, and use rail and/or car for regional trips.	Transport networks should have a variety of street types which support various transport modes to facilitate trips of varying lengths.	
The integrated transport network contributes to regional resilience and sustainable communities along the Corridor and beyond	Transport networks to be resilient and well-planned for the future and wider context.	

Principle 4: Vibrant community places		
PRCUTS principle statement	Transport implication	
Residents can walk easily to public transport, local shops, schools, parks and open space areas, jobs and a range of community services and facilities that are all close by.	Transport plans to reflect the vision of a 15-minute city.	
Neighbourhoods include a mix of old and new buildings sitting well together creating attractive places for people to enjoy.	Transport network does not negatively impact place values.	
New development respects and protects existing lower-scale development and heritage.	New transport projects to protect and enhance heritage.	
New landmarks and high-quality buildings and spaces are recognised and valued by the community.	New developments to be supported by high quality transport.	
Residents and workers can easily access new and upgraded community facilities and services including libraries, community centres, childcare centres, cultural facilities, schools and community health facilities	New developments to be supported by highly accessible transport.	

Principle 5: Green spaces and links		
PRCUTS principle statement	Transport implications	
There is 66ha of new open space areas, linear parks and links along watercourses and infrastructure corridors, linked to pedestrian and cycle connections.	Existing and future communities have good access to the natural environment, particularly through active transport.	
Parramatta Road and the surrounding road network is greener and lined with trees.	Road projects to improve public amenity through planting of trees and placemaking.	

Principle 6: Sustainability and resilience				
PRCUTS principle statement	Transport Implications			
Smart parking strategies have reduced people's car dependence and fuel use leading to reduced greenhouse gas emissions. Development is more feasible, meaning savings could be passed on to homebuyers, making housing more affordable and reducing the overall cost of living.	Smart parking strategies to reduce the impact of parking and traffic on liveability. PRCUTS Sustainability Implementation Plan: • Target 30% reduction in car uses. • 17% car share take-up rate in IWC precincts.			
Because thinking about parking has changed, the design of buildings transition between different uses ensuring community uses and facilities, or perhaps even open space to occur over time.	Any new car parking space should consider and plan for future repurposing/ adaptation.			
A lush tree canopy and vegetation on buildings makes places cooler and greener, and residents and workers can enjoy the outdoors.	Pedestrians and cyclists are supported by shade and cooler temperatures in summer.			
Households enjoy improved living costs made possible by significant reductions in water and energy consumption in the Corridor.	Transportation options to be sustainable and energy efficient.			

Principle 7: Delivery				
PRCUTS principle statement	Transport Implications			
There is an effective governance structure in place.	Transport projects are delivered with integrity and in a timely manner. Funding streams include developer contributions and state and local government infrastructure contributions.			
Decisions are made in a timely, transparent and coordinated way.	Transport decisions to be aligned with strategy, plans, and the wider community vision in place.			
Well understood benchmarks and indicators inform the planning and decision-making processes	Transport planning is evidence based.			
There is a clear monitoring, reporting and review process	Transport planning to account for monitoring and improvement measures and pre-defined performance matrices.			

2.3 Modal hierarchy

The IWC ITS promotes a modal hierarchy for the IWC LGA with a people-first approach. This aligns with the intent of PRCUTS. At the top of the hierarchy is active transport, along with facilities for people living with a disability and specialist transport services that will support vulnerable people such as older people. Beneath active transport is public transport, followed by deliveries and freight, and at the bottom is private vehicles including motorbikes, taxis and ride share. This approach is shown in **Figure 2-1**. A similar approach is envisioned for the revitalisation of the Parramatta Road Corridor.

Figure 2-1 Modal hierarchy (IWC ITS)*

Priority (Think about first to final)	Modes	
1	Walking, facilities for people living with a disability, specialist transport services.	
2	Cycling, E-bikes, personal mobility devices, bicycle deliveries.	
3	Public transport	
4	Delivery services and freight	
5	Taxis, ride share, car pool	
6	Car share	
7	Motorcycles/ scooters	
8	Private electric vehicles	
9	Private vehicles that generate pollutant emissions.	

^{*} Note: Private vehicles/ Private electric vehicles a motor vehicle as described in Road Rules 2014, NSW legislation.

Parramatta Road currently operates as a major east-west movement corridor for private vehicles, with relatively low foot traffic, cyclists and place function. Revitalisation of the corridor could facilitate road space reallocation that better supports the modal hierarchy, including space for:

- > 24-hour public transport/ mass transit lanes with stations at stops for customers;
- > Plantings and car parking at mid-block locations; and
- > Separated walk and cycle facilities.

Road space reallocation should aim to:

- > Provide a barrier effect and spacing for high vehicle volume lanes along the corridor;
- Consider providing a dedicated cycleway on the side of the road that would likely have less interface with waiting public transport customers. It is assumed that most waiting by people numbers would occur on the Sydney CBD bound side; and
- > Provide public transport stops adjacent to or within kerbside areas. There is more overflow area and amenity than stops located in the middle of the carriageway.

2.4 Performance indicators

The performance indicators for the Parramatta Road corridor and associated principles from the PRCUTS are shown in **Table 2-2**. Recommended targets adapted for these indicators are also shown.

Table 2-2 Relevant transport indicators for a new Parramatta Road (PRCUTS, 2016)

Category	Indicator	Principle addresses	Target
Parking	Per cent of car spaces less than the current maximum (%)	Accessible and connected.Resilient and sustainable.	Implementation of the PRCUTS recommended parking rates Setting maximum car parking rates / eliminate minimum requirements
Traffic	Estimated per cent reduction in vehicle kilometres travelled per capita (%)	Diverse housing and jobs.Accessible and connected.Resilient and sustainable.	Evidence of this metric trending down
Traffic	Estimated per cent reduction in vehicle hours travelled per capita (%)	Diverse housing and jobs.Accessible and connected.Resilient and sustainable.	30% reduction in car use across the PRC
Traffic	Estimated car ownership rates (vehicles per household)	Accessible and connected.Resilient and sustainable.	Evidence of this metric trending down
Car share	Number of car share spaces provided within the precinct (number)	Accessible and connected.Resilient and sustainable.	Increased (10-15% car share take-up rate)
Accessibility	Average walk and wait time to frequent public transport (minutes)	Accessible and connected.Resilient and sustainable.	Evidence of this metric trending down
Active transport	Kilometres of safe, connected cycleways within each precinct (km)	Community and places.Accessible and connected.Resilient and sustainable.	PRCUTS Sustainability Plan corridor wide: 31 kilometres of new safe bicycle connections along the Parramatta Road Corridor.
Active transport	Kilometres of safe, connected pedestrian paths within each precinct (km)	Community and places.Accessible and connected.	Continuous footpath treatments at local access roads
Green	Kilometres of green streets with high tree planting and canopy cover (km)	Community and places.Resilient and sustainable.	60% canopy cover on streets in PRCUTS precincts.
Green	Amount of open space (ha)	Community and places.Resilient and sustainable.	Evidence of this metric increasing
Emissions	Estimated greenhouse gas emissions (tonnes CO2 equivalent/ person/ year)	 Resilient and sustainable. 	20+% reduction

3 Strategies and actions

3.1 Behaviour change

Significant change in public perception of the corridor will lead to a behaviour change by drivers, pedestrians and all road users. Streetscape improvements and prioritisation of active and public transport modes should be used to create a road environment that is comfortable, safe and efficient. Implementation of innovative transport technology would act as a catalyst for revitalisation of the PRC and would encourage a mode shift from private vehicle use.

Initiatives and programs that encourage mode shift and foster better overall travel behaviour should be supported, such as:

- > Share the Road;
- > Share the Path;
- > Walking and Cycling Program;
- > Towards Zero:
- > Ride to Live;
- > Plan B;
- > Road Rules Awareness Week;
- > Look out before you step out;
- > Be Bus Aware; and
- > Be Truck Aware.

The actions that will support the behaviour change strategy are presented in Table 3-1.

Table 3-1 Travel demand management actions

Travel demand management actions

A-TDM1

Develop a Travel Behaviour Change Plan including:

- Encouraging public transport use through behavioural change and awareness campaigns;
- Developing an educational program that promoted the health, environmental and economic benefit of using sustainable transport;
- Requirements for new developments to prepare a Sustainable Transport Plan;
- Walking and cycling confidence courses for senior residents;
- Support an Active Travel to Schools program;
- Communicating footpath and cycleway etiquette; and
- Incentivise and encourage cycling for shore, local trips.

3.2 Movement and Place

The Movement and Place framework joins considerations and elements for land use and place and movement and the transport network. It is primarily focused around roads and the places they pass through.

The road network must accommodate the safe and efficient movement of people and goods (Movement), as well as support the adjacent uses and communities that it serves (Place). The key movement functions and place intensities must be carefully considered and balanced to respond to a growing population and increased land use development. The *Practitioner's Guide to Movement and Place* (GANSW & TfNSW, 2020) presents a framework for Movement and Place, and states that an assessment aims to achieve roads and streets that:

- > Contribute to the network of public space within a location, where people can live healthy, productive lives, meet each other, interact, and go about their daily activities; and
- > Are enhanced by transport and have the appropriate space allocation to move people and goods safely and efficiently, and connect places together.

Balancing Movement and Place recognises that trade-offs may be required to achieve a best fit for the objectives.

3.2.1 Built and natural environment themes and performance indicators

Built and natural environment themes, as shown in Figure 3-1, provide a framework to evaluate Movement and Place performance and achievement of objectives. Under these five themes, ten outcomes are provided that reflect what a person in the assessed environment may reasonably expect as an outcome of good performance related to that theme. Not all outcomes apply to all places. The framework is designed to be flexible to the context of the location. Built and natural environment indicators can then be used to assess outcomes.

Mode share Permeability (walk, cycle) Cycling attractiveness (access to cycleways) Building height Walking attractiveness (directness) Street enclosure PT attractiveness (journey time comparability) Dwellable street space Journey time reliability (freight, PT) Culture and heritage Public transport frequency Land division Legibility Equitable access **Building density** transport choice

Access and Connsport Steepness distinct Comfort all local opportunities Green and Blue link to nature Safe System assessment Tree canopy **Public space** Casualty crash rate Biodiversity Local living Pedestrian crowding Vegetation cover Primary schools Safe speed for environment Waterways End-of-trip facilities Community safety On-site water (by mode) and security management Places to stop and rest Environmental quality MIx of uses Population density Urban heat Housing diversity Solar access Heavy vehicle separation Local jobs

Figure 3-1 Built and natural environment indicators: criteria for evaluating movement and place

Source: Practitioner's Guide to Movement and Place, GANSW & TfNSW, 2020

Potential built and natural environment indicators have been listed to guide the studies at a high level and to measure achievement of the desirable outcomes. These indicators encompass all five themes and have been developed based on their relevance to the study area and desirable outcomes outlined above. Indicators that are relevant for the PRCUTS Transport Plan precincts are shown in **Table 3-2**.

Economic development and regeneration

Table 3-2 Built and natural environment indicators for success

Theme	Outcome	Indicators	Performance measure target
		Permeability (walk, cycle)	Provide multiple through site links in each precinct
	Human scale	Dwellable street space	Provide footpaths of at least 2.5 metres wide on roads with major land uses and destinations and seats / rest space within 200 metres
Character		Culture and heritage	Retain and enhance existing culture and heritage
and form	Distinct	Legibility	Provide wayfinding to all key active transport junctions and public transport stops along the IWC strategic pedestrian and cycling networks
		Building density	Ensure building density does not exceed transport network capacity and is in line with public transport and public domain improvements.
		Mode share	Encourage a mode shift from private vehicle travel to sustainable modes for all short-distance trips
	Transport choice	Cycling attractiveness (access to cycleways)	Provide more separated cycleways
Access		Walking attractiveness (directness)	Provide kerbside buffers and adequate crossing facilities along Parramatta Road
and connection		Public transport attractiveness (journey time comparability)	Retain transit lanes and rationalise bus routes
	Transport reliability	Journey time reliability (freight, public transport)	Ease congestion along Parramatta Road
		Public transport frequency	Provide a rapid transit (turn-up-and-go) service on Parramatta Road
	Equity	Equitable access	Ensure all public infrastructure is DDA compliant
	Convenient facilities	Public space	Provide at least one significant space for people to meet, rest and socialise in each precinct
		Local living	Ensure local facilities are accessible to support the 30-minute city concept
Amenity		End-of-trip facilities (by mode)	Provide end-of-trip facilities for active transport users at all major public transport interchanges
and use		Places to stop and rest	Provide benches along active transport routes no further than 100 metres from a park/plaza
		Mix of uses	Design public spaces for a mix of uses or for adaptive re-use in the future
	Local opportunities	Economic development and regeneration	Activate street frontages on Parramatta Road by providing a safe and comfortable streetscape
		Tree canopy	Provide a tree canopy cover of 60% over all footpaths
Green and blue	Link to nature	Vegetation cover	Enhance streetscapes through tree planting
		Waterways	Provide active transport routes along all major waterways and creeks

Theme	Outcome	Indicators	Performance measure target	
Comfortable		Environmental quality	Utilise zero emissions vehicles for public transport	
	Comfortable	Urban heat	Provide a tree canopy cover of 60% over all footpaths	
Comfort		Heavy vehicle separation	Encourage all heavy vehicles to utilise WestConnex where possible	
Comfort and safety		Safe System assessment	Provide Safe System treatments along Parramatta Road to reduce the casualty crash rate	
	Safety	Casualty crash rate	Annual crash rate of zero	
		Safe speed for environment	Reduce speed limit in High Pedestrian Activity Areas such as main streets and Parramatta Road	

3.2.2 Key Movement and Place considerations

Parramatta Road will continue to have a high movement function following the completion of the WestConnex project and resulting reduction in traffic volumes. The Corridor will however become more suited to a Vibrant Street (now named Main Street) function, as described by PRCUTS, 2016. Key Movement and Place considerations from PRCUTS are summarised in **Table 3-3**.

Table 3-3 Movement and Place considerations from PRCUTS

Consideration outlined in PRCUTS	Factor	Theme/ User outcome	Indicator(s)	Targets
Taverners Hill				
Establish a new high amenity local neighbourhood centre along Tebbutt Street/ Upward Street that benefits from the Kolotex/ Labelcraft site redevelopment.	Place	Amenity and Use/ Local Opportunities	Mix of uses	Neighbourhood centre is created consisting of shops, restaurants and open space
Create an activity node around the Taverners Hill Light Rail Stop.	Place	Amenity and Use/ Local Opportunities	Mix of uses	Activated street-level land uses that provided for people's day-to-day needs (i.e. café, corner store)
Parramatta Road, between the Iron Cove Creek and the light rail crossing, will continue to have a high movement function, particularly given the WestConnex entry/ exit portal located near Ashfield Park.	Movement	Access and Connection/ Transport Reliability	Journey time reliability (freight, PT)	Separation of vehicle lanes and footpaths through landscaping buffers
Opportunity for higher kerb-side activity and activated frontages on Parramatta road.	Place	Amenity and Use/ Local Opportunities	Economic development and regeneration	Activated street-level land uses that attract pedestrians and a kerbside buffer (i.e. cycleway, parking or landscaping)
Parramatta Road, between the light rail crossing and Flood street, provides a good opportunity for a vibrant street given the reduced traffic volumes as a result of WestConnex.	Place	Character and Form/ Human Scale	Dwellable street space	48% reduction in car use*
Leichhardt				
Capitalise on new transport connections to rebadge and create a new Norton Street identity.	Place	Character and Form/ Distinct	Culture and heritage	1km of new safe bicycle connections*
Provide a 'Gateway' anchor to Norton Street at Parramatta Road that is mirrored at Marion Street.	Place	Character and Form/ Distinct	Culture and heritage	Gateway signage in the form of a monument in the verge or archway over the road
Identify short to medium term opportunities for new public domain and spaces.	Place	Amenity and Use/ Convenient Facilities	Public space	New green space on Hay Street and public spaces across the precinct such as around Norton Plaza
Enhance side streets including Hay Street, Charles Street and Railway Street as public spaces.	Place	Amenity and Use/ Convenient Facilities	Public space	Implementation of continuous footpath treatment at gateway and reduced speed limit
Reduction in traffic on Parramatta Road due to WestConnex. Ideal environment for a vibrant street.	Place	Character and Form/ Human Scale	Dwellable street space	43% reduction in car use*
Opportunity for higher kerb-side activity and activated frontages on Parramatta road.	Place	Character and Form/ Human Scale	Dwellable street space	Activated street-level land uses that attract pedestrians and a kerbside buffer (i.e. cycleway, parking or landscaping)

Consideration outlined in PRCUTS	Factor	Theme/ User outcome	Indicator(s)	Targets
Opportunities for creating through block links	Movement and Place	Access and Connection	Walking and cycling attractiveness	New pedestrian connections / separation of vehicle lanes and pedestrian areas
Other movement corridors are Johnston Street and Crystal Street, providing local access to suburbs.	Movement and Place	Access and Connection/ Transport Reliability	Journey time reliability	Existing movement function be managed while developing the corridors' place function.
Norton Street – This is the main north-south street with an activated frontage providing access to the town centre.	Movement and Place	Access and Connection/ Equity	Equitable access	Maintain its importance as an active vibrant street with a reduced speed limit and enhanced place function
Camperdown				
Adapt, retain and celebrate the existing industrial heritage character.	Place	Character and Form/ Distinct	Culture and heritage	Industrial heritage is retained and enhanced
Develop Bignell Lane as a lively, fine-grained mixed use area with entertainment and other day/ night 'social' uses.	Place	Amenity and Use/ Local Opportunities	Mix of uses	Hospitality and entertainment land uses are provided between Parramatta Road and Bignell Lane
Reinforce and provide new opportunities for fine grain through the Hordern Place Industrial Area.	Place	Character and Form/ Human Scale	Walking and cycling permeability	2km of new safe bicycle connections*
Create a greener, friendlier and safer Cardigan Lane as an enhanced north-south walking and cycling spine.	Movement	Access and Connection/ Transport Choice	Walking and cycling attractiveness	2km of new safe bicycle connections*
Opportunities for creating through block links	Movement and Place	Access and Connection	Walking and cycling attractiveness	Provision of connectivity through the creation of through site links in addition to 2km of new safe bicycle connections
Create active streets that connect residents and workers to small, diverse, and highly connected local and regional open spaces.	Movement and Place	Amenity and Use/ Convenient Facilities	Places to stop and rest	additional public open space*
Reduction in traffic on Parramatta Road due to WestConnex. Ideal environment for a vibrant street with enhanced north-south connectivity.	Movement and Place	Character and Form/ Human Scale	Dwellable street space	24% reduction in car use*
Pyrmont Bridge Road (west of Booth Street) – This section has a lower movement function and provides an opportunity for an activated frontage as a Vibrant Street connecting south of Parramatta Road and north into Booth Street.	Movement and Place	Character and Form/ Human Scale	Dwellable street space	24% reduction in car use*

Source: PRCUTS, UrbanGrowth NSW, 2016
*Source: Parramatta Road Urban Transformation Sustainability Implementation Plan, UrbanGrowth NSW, 2016

3.2.3 Land use and place-making

Place-making through landscaping and streetscape improvements encourage a shift towards more sustainable transport modes as they create environments which are more safe, comfortable and attractive within which to walk, ride and wait for public transport services. This should be achieved through planting of greenery such as trees, provision of places to rest and socialise and provision of public art opportunities. Benefits of these initiatives include increased shading through tree canopy cover and a reduction in overall local temperatures, encouraging more walking and longer stays in main streets.

It is important for land use and infrastructure (be that "place making" or predominately supporting movement) to be aligned so that the initiatives identified support land use densification where it can be accommodated. This in line with PRCUTS policy which states the "delivery of new and upgraded transport systems throughout the Corridor in line with growth and development' as an action / responsibility for state and local government agencies.

The actions that will support the vision and principles for PRCUTS are presented in **Table 3-4**.

Table 3-4 Land use and place-making actions

	, ,				
Land use	Land use and place-making actions				
A-LU1	Public domain improvements to key north-south streets perpendicular to Parramatta Road including Rofe Street, Renwick Street, Norton Street, Balmain Road, Catherine Street, Crystal Street, Pyrmont Bridge Road and Mallett Street.				
A-LU2	Enhance streetscapes through greening and tree planting.				
A-LU3	Provide outdoor seating for places to rest and socialise.				
A-LU4	Provide wayfinding.				
A-LU5	Provide gateway treatments at key intersections with Parramatta Road. This could be in the form of murals by local artists, creating a sense of neighbourhood identity at gateways to local centres.				
A-LU6	Enhance streetscapes through WSUD.				
A-LU7	Activate shop frontages along Parramatta Road and open up land uses to rear lanes.				
A-LU-8	Consider temporal changes where regular road closures of low volume streets could be used for activation by outdoor dining, street markets and active travel.				
A-LU9	Consider use of existing off-street car parks as market places or community "nodes".				
A-LU10	Provide EV charging for PMD and e-bikes, built into streetscape elements.				
A-LU11	Provide a planted barrier between the footpath and traffic lane where parking cannot be achieved.				
A-LU12	Consider the environmental impacts of materials used, and the heat island effect.				
A-LU13	Investigate opportunities for innovative transport technology such as GETS that would inspire community confidence and act as a catalyst for revitalisation of the corridor.				

Movement actions are covered in the sections below.

3.3 Parramatta Road configuration

As described by PRCUTS, the vision for Parramatta Road is for it to be more aligned with the function of a Vibrant Street / Main Street, acknowledging that it will continue to have a high movement function following the completion of the WestConnex project. In support of this gradual transition, consideration should be given to interventions such as the lowering speed limits, road space reallocation for movement of people (including introducing cycleways), creating an attractive and safe environment for everyone using the corridor including the more vulnerable or improvements to the local amenity and landscaping.

The improvements to the Parramatta Road configuration should be within the existing road space/carriageway and not relying on any additional setbacks being provided as development occurs in the corridor.

The final configuration of Parramatta Road is subject to the investigation by Transport for NSW on the corridor and a business case for a transport initiative scheduled for completion in early 2022.

3.4 Active transport

Active transport supports education, employment, retail, recreational and other high activity locations in and around the PRC. Active transport covers walking (including by wheelchair or other mobility devices), cycling and other micro-mobility options such as scooters and skateboards. Infrastructure and initiatives should be designed to promote active transport as the first choice for shorter trips, resulting in health, economic and sustainability benefits.

The strategic transport vision for PRCUTS promotes active transport as safe, reliable and efficient for people of all ages and abilities. Active transport routes are direct, following desire lines and connecting to where people can access jobs, services, shopping and social activities. Desire lines are supported by formal pedestrian crossings connecting to key land uses. Infrastructure is appropriate to the street or path function in which it is located, including separation of pedestrians from faster moving cyclists where possible. In recognition of the growing demand for active transport and the desire to achieve a significant mode shift it is essential that kerb ramps wider than the currently specified standard be implemented wherever practical Recommendations for best practice design are outlined in **Section 3.4.3**.

The actions that will support the active transport strategy are presented in Table 3-5.

Table 3-5 Active transport actions

Active transport network actions

- A-AT1 Construct the missing links in the walking and cycling network as per **Figure 3-4**, **Figure 3-5**, **Figure 3-6** and **Figure 3-7**, including:
 - Projects as per the PRCUTS Infrastructure Schedule.
 - New cycle connection running east-west along Nestor Lane connecting Carrington Street to the light rail corridor
 - Delivery of (the former Leichhardt bike route) EW-2, along Albion Street and Dot Lane, specifically
 including the Dot Lane link between Norton Street and Hay Street, As well as the link across Norton
 Street to the Renwick Lane shared zone.
 - New cycle connection running east-west along Albion Street between Norton Street and just east of Balmain Road.
 - New cycle connection running north-south across Parramatta Road connecting Renwick Street in the north to Railway Street in the south.
 - Traffic protected cycle connection running north-south along Johnston Street.
 - Delivery of the Johnstons Creek pedestrian and cycle link from Booth Street to Parramatta Road.
 - Delivery of the Pyrmont Bridge Road pedestrian and cycle link.
 - Provision of new cycle and walking links within the 2016 2021 Release Area, as indicated in the Planning and Design Guidelines.
- A-AT2 Investigate and provide pedestrian crossings at the following intersections with Parramatta Road:
 - Iron Cove Creek;
 - Alt Street;
 - Andreas Street;
 - Rofe Street / Palace Street;
 - Johnstons Creek; and
 - Larkin Street.

Pedestrian crossings be provided on all legs/approaches of any new signalised intersections. Kerb ramps wider than the specification in AS14.28.1 are to be installed catering for existing demand and population.

In recognition of the growing demand for active transport and the desire to achieve a significant mode shift, it is essential that kerb ramps wider than the currently specified standard be implemented wherever practical.

- A-AT3 Complete the GreenWay project and key links to the Greenway, including GreenWay connection under Parramatta Road and under Longport Street.
- A-AT4 Adjust development controls to ensure that developments within the precincts are designed to have through-site active transport links and active laneways for pedestrians and cyclists.
- A-AT5 Improve active transport links to public transport services.
- A-AT6 Provide access to Taverners Hill LRS and Marion LRS from the east.
- A-AT7 Provide wider signalised crossings on Parramatta Road as a shared crossing or separated facility with a bike lane and bike lanterns as per **Figure 3-3**.
- A-AT8
 Provide continuous footpath treatments along Parramatta Road as per Figure 3-4, Figure 3-5 and Figure 3-6. Additionally, continuous footpath treatments should be included for footpaths along all key side streets (e.g. Johnston St, Norton St, Crystal St, Catherine St)
- A-AT9 Provide 30 kilometre per hour speed limits wherever possible to reduce the likelihood and severity of crashes between motor vehicles, pedestrians and cyclists, and in recognition of the existing and likely future high level of pedestrian activity in the corridor.
- A-LU1

 Public domain improvements to key north-south streets perpendicular to Parramatta Road including Rofe Street, Renwick Street, Norton Street, Balmain Road, Catherine Street, Crystal Street, Pyrmont Bridge Road and Mallett Street.
- A-LU2 Enhance streetscapes through greening, tree planting, street lighting, WSUD and public art.
- A-LU4 Provide wayfinding signage.
- A-LU11 Provide a planted barrier between the footpath and traffic lane where parking cannot be achieved.

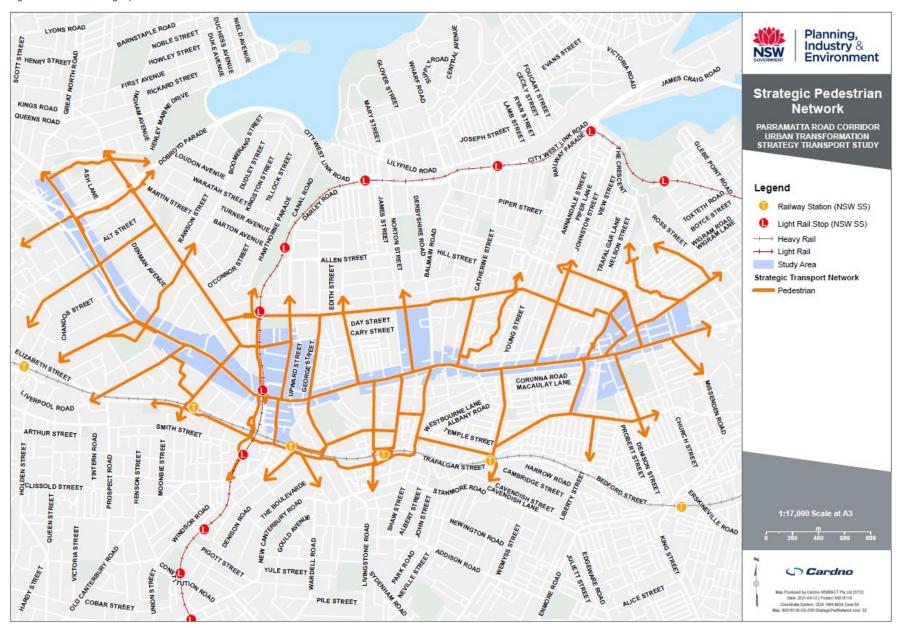
3.4.1 Walking

The PRC's pedestrian network should be highly permeable to encourage healthy lifestyles and make walking an attractive way to travel for local trips. Travelling by foot should be the first mode choice for short trips, available to all people of all ages and levels of mobility.

Walking must be safe, easy, direct, enjoyable and comfortable through a connected and legible network, more priority at intersections, comfortable footpath widths, high quality pavement, attractive streetscapes, safe and accessible crossings, separation from cyclists where needed, and active and passive surveillance from engaging places, mixed land uses and street frontages.

High quality pedestrian infrastructure is needed in all locations that would accommodate notable demands. To provide focus and balance resources, a strategic pedestrian network plan is identified in **Figure 3-2**. Pedestrian routes propose footpaths and associated kerb ramps are provided on both sides of the road

The strategic network rationale is to link all significant pedestrian generating land uses in and around the PRC. Most residents are within 300 metres of the network. Key high demand land uses include:


- > **Centres** where residents access jobs, services, education and shopping opportunities. Centres must have robust active transport links to residential areas to promote walking and cycling.
- > **Public transport nodes** provide access to public transport services including train, light rail and bus. Residents can continue their journey from their walk or cycle to access other areas.
- Schools travel to and from school are essential weekday trips for families. It is important to provide safe, efficient and separated connections to schools so that families can walk or ride together, or older children can independently go to school.
- > Recreational areas open spaces for leisure and exercise, including scenic walks and cycling.

Key features should include:

- > Paths equal to or greater than 1.8 metres (ideally 2.5 metres) wide clear path of travel, free from utilities, bus shelters/ advertising or other barriers;
- Shared zones or pedestrian priority at crossings;
- > A smooth surface that receives regular maintenance, including vegetation trimming;
- > Construction from environmentally friendly materials;
- Step free access including DDA compliant kerb-ramps or tactile ground surface indicators (where there is no level change) at all road crossings;
- > High priority to links that are less steep;
- > A clear and straight (where possible) shoreline (property boundary) for vision impaired people;
- > Wayfinding signage;
- > Crossing opportunities targeted for every 200 metres or less;
- > Signalised or raised crossings at major roads with ample waiting area;
- Use of shared paths should be minimised and where shared paths are the only option they should be introduced with sensitive design measures combined with education and awareness campaigns to slow riders;
- > Energy efficient lighting;
- > Tree canopy cover and additional cover facilitated with sub-surface root separation;
- > Awnings for shopfronts on key streets;
- > Separation from high volume/ speed traffic with vegetation, parking lanes; and
- > Amenity provisions in centres and recreational areas, including drinking fountains, seating, toilets and weather shelter refuges.

Figure 3-2 Strategic pedestrian network within and near PRCUTS

3.4.2 Cycling

Cycling across and around the PRC is a popular choice for shorter trips as it is safe, convenient and quick. Riding a bike is not limited to those who are avid cyclists; people of all ages and abilities should feel safe enough to ride to work, retail or for recreation.

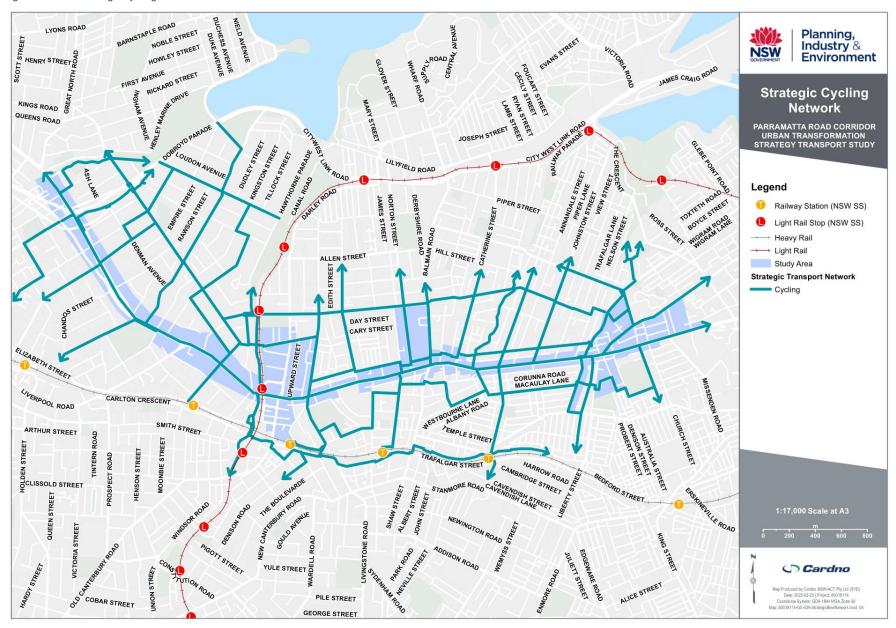
Cycling infrastructure must reflect the road environment on which it is located; mixing with vehicles should only be allowed only on slower speed streets (recommended 30km/h or less limits on mixed cycling/ vehicle traffic roads). On higher speed roads, cycle lanes should be separated from traffic using on-road infrastructure such as kerbs, or provided off-road in dedicated cycle or shared path links that provide off road space for both pedestrians and cyclists. Cycle lanes must be wide enough to avoid conflict, and should not be placed in parked car door-opening zones that could lead to injury.

Cycle routes connect to local parks, open green spaces and waterways that provide amenity, short cuts and scenic views. Similar to the pedestrian network, the cycling network connects key attractors around the Corridor, however via more appropriate streets. The cycling network avoids higher vehicle volumes and speeds of Hume Highway / Liverpool Road, Old Canterbury Road, Crystal Street and other vehicle movement corridors. Quieter streets have been selected as they provide cyclists a safer option and avoid conflict with high numbers of pedestrians. Existing land use and road space allocation on Parramatta Road also presents challenges to providing separated cycleways.

Bicycle parking should be provided at interchanges with public transport services such as train stations, light rail stops and major bus stops to key destinations. Cyclist journeys do not always start and finish on cycleways. Parking and other end of trip facilities should be provided at journey end locations to further support riders and encourage participation.

The strategic cycling networks is shown in and **Figure 3-3** with future actions shown in **Figure 3-7**. The network displays strategic routes only, without setting specific typologies.

Key features should include:


- > Shared paths should be used minimally and be with a width of at least 3.5 metres wide. Narrow points and lengths should be considered on a case by case basis. It is often not feasible to relocate utilities or favourable to cut down trees to achieve desired widths. Shared paths should only be installed where safe on-road facilities, or alternative parallel facilities, can't be provided.
- > 30 kilometres per hour speed limits should be introduced on all streets in the corridor that are currently or likely to in the future experience high levels of pedestrian activity.
- > Delineated on-road cycle lanes must not be located in parked vehicles door opening zone, within one metre of a parked car.
- > On-road bicycle network clearly line-marked, legible and signposted to Austroads standards.
- > Direct and connected routes;
- A smooth surface that receives regular maintenance, including vegetation trimming and removal of storm debris;
- > Remediation of exiting hazards such as bollards, incorrect signage, uneven surfaces or any other identified safety hazard.
- > Equal or high priority at intersections.
- > Separated facilities and lanterns at signalised intersections.
- > Energy efficient lighting.
- > Wayfinding signage at key decision points.

Wayfinding supports visitors to vibrant centres by clearly articulating and communicating the most efficient and safest route. Signage style for wayfinding should be innovative and consistent throughout the Inner West.

Should a cycling route not be forthcoming on Parramatta Road, consideration should be given to the (former Leichhardt Council's) Route EW 2, running East-West and one block to the north of Parramatta Road using Albion Street, Dot Lane, Renwick Lane, Jarrett Street and Albert Street.

Figure 3-3 Strategic cycling network

3.4.3 Infrastructure standards and recommendations

Infrastructure improvements are recommended for the key walking and cycling networks at a high-level approach. The recommendations were based on rapid assessment of road types and existing infrastructure in comparison with the strategic network. Further examination of the road carriageway environment is needed for more detailed costing purposes.

In line with the active transport strategy, infrastructure is recommended under the following considerations:

- > **Shared paths** are recommended adjacent to roads with a higher speed (above 30km/h) and/ or volume environment.
- > **On-road mixed** cycling routes are recommended on lower speed (30km/h) road environments with predominantly residential land uses.
- > **Footpath construction** are to be provided on both sides of roads in the strategic walking network that are missing footpaths unless physically impossible.
- > **Continuous footpath treatment** is recommended as a traffic calming measure where pedestrian priority is desirable but regulatory pedestrian crossing is not warranted.
- > **Segregated/ separated bicycle paths** are desired for safety and reduced conflict and sustainability objectives. The provision of this form of infrastructure on Parramatta Road, would provide a key link through PRCUTS and the region. These require strong community and multiple government agency support and coordination. They generally require reallocation of road space and can have impacts to parking which is often why they are not supported. Providing a facility on Parramatta Road is likely to be highly contentious and opposed.

Given the challenges, this is suggested as a longer-term consideration if community attitudes shift and there is a heightened demand for sustainability.

Infrastructure standards for recommended infrastructure are presented in **Table 3-6**. These are generally advised from Austroads guidelines and informed by the IWC Transport Strategy.

Table 3-6 Active transport infrastructure standards

Item	Standard	Compliance	Consideration
Shared path	Austroads Guide to Road Design Part 6A: Paths for Walking and Cycling (AGRD06A-17); Section 5.1	Minimum 2.5m width, preferred minimum 3.5m for recreational path.	Where space permits and volumes are high, separate pedestrian and cycle paths can be provided in parallel.
On-road bicycle stencils	Australian Standard Manual of uniform traffic control devices Part 9: Bicycle facilities AS 1742.9:2018 Delineation Section 12 - Pavement markings for bicycle facilities, RTA	Faded or missing Position on road min 0.6m from parked cars, typically not closer than 3.0m to kerb.	Cycling in mixed traffic is considered relatively safe where vehicle speeds are 30km/h or less. Implementing a 30km/h limit on streets negates the need for separate bicycle infrastructure (Note: 30km/h limits are yet to be endorsed with legislation by the NSW government).
Cycling infrastructure	Cycleway Design Toolbox: Designing for Cycling and Micromobility (TfNSW, Feb 2021)	An ideal one-way bicycle path should maintain a preferred width of 3.0m, however a suitable width may be 2.0m in locations for up to 150 riders per hour.	The preferred width of 3.0m allows for safe overtaking, caters for future growth in ridership, and accommodates riders of all ages and abilities. A 3.0m width will also allow for higher speeds along the bicycle path to cater for the emergence of innovative forms of micromobility. Where higher bicycle traffic volumes are expected and steeper gradients occur, a wider design should be considered.
Signage	Australian Standard Manual of uniform traffic control devices Part 9: Bicycle	Regulatory signs provided generally in accordance with the standard.	Consider signage clutter, choose carefully based on context and identify opportunities to consolidate signs/ poles/ utility poles.

Item	Standard	Compliance	Consideration
	facilities AS 1742.9:2018		
Bicycle parking facilities	Australian Standard Parking facilities, Part 3: Bicycle Parking AS 2890.3:2015	As per standards or functionally acceptable	Provide in easily accessible, visible locations.
Walking Infrastructure	Walking Space Guide (TfNSW, Aug 2020)	At least 3.1m of Walking Space is needed on every street to comply with Covid-19 walking space requirements	Footpath width recommendations vary depending on street type / environment / classification.
Footpath	Austroads Guide to Road Design Part 6A: Paths for Walking and Cycling (AGRD06A- 17); Section 5.1	1.2m minimum for low volume footpaths 2.4m minimum for high volume footpaths	1.8 metres is recommended to allow two prams/ wheelchairs to pass in the opposite direction. If a low amount of cycling is desired, provide a minimum 2.5-metre path.

Footpath and cycleway upgrades are generally in alignment with the strategic active transport network and prioritised walking and cycling links outlined in the PRCUTS *Implementation Tool Kit Infrastructure Schedule*. These were reviewed and enhanced as part of this study.

3.4.4 Adopted infrastructure standards

A recommended footpath width of 2.5 metres has been adopted in-line with the Inner West Transport Strategy for costing purposes. This is reflective of the higher demands anticipated from more active lifestyles and sustainable mode share targets in the precinct.

The 2.5 metre width is recommended where the verge permits. 3.5-metre wide footpaths have been recommended in alignment with IWC detailed design of streetscape improvements in activity areas. These generally represent a property line to kerb sealed treatment.

Active transport infrastructure recommendations are shown in **Figure 3-4**, **Figure 3-5**, **Figure 3-6** and **Figure 3-7**, including the differentiation of the signature active transport projects. The breakdown of each infrastructure type and the total length of the future network improvements is described in **Table 3-8** with unit rates in **Table 3-7**.

The scale or scope of works can vary widely and involve multiple components whereby only broad cost estimates could be made. The estimated costs herein are intended as base costs for strategic guidance only and exclude any relevant utility relocation costs (water, sewer, power and communications). Identified works identified will undergo further adjustment as detailed design scoping and feasibility studies are undertaken. Detailed cost estimates should be sought from a suitably qualified civil engineer or quantity surveyor prior to commencement. The infrastructure costs should be subject of ongoing review whereby cost variations should be assessed and adjusted as necessary.

Table 3-7 Unit rates

Infrastructure type	Rate per unit	Unit	Details
2.5-metre wide footpath	\$550	Metre	Provision of footpath treatment
3.5-metre wide footpath	\$700	Metre	Provision of footpath treatment
Low priority footpath improvement			Aesthetic resurfacing (streetscape improvement)
Desired through-site link			Private development
Shared zone			Provision of pavements and signage
Continuous footpath treatment	\$100,000	Each	Raised wombat crossingPavement treatment
Continuous footpath treatment with additional treatment	\$125,000	Each	Raised wombat crossingPavement treatmentKerb extension
Continuous footpath treatment with additional treatment and median removal	\$150,000	Each	Raised wombat crossingPavement treatmentKerb extensionRemoval of median
On-road mixed traffic route	\$200	Metre	Bike stencilsArrow road markingsWayfinding signage
On-road bike lane	\$275	Metre	LinemarkingBike stencilsArrow road markingsPavement treatment at intersections
Separated cycleway	\$1,500	Metre	Kerb treatmentBike stencilsPavement treatment
3.5-metre wide shared path	\$700	Metre	LinemarkingBike and pedestrian stencilsSignage

Table 3-8 Active transport infrastructure recommendations

Precinct	Infrastructure type	Total length (m)	Total cost (\$)
Taverners Hill	2.5-metre wide footpath	3496	\$1,922,535.23
	3.5-metre wide footpath	-	-
	Low priority footpath improvement	126	
	Desired through-site link	46	
	Continuous footpath treatment	114	\$1,700,000.00
	Continuous footpath treatment with additional treatment	176	\$1,875,000.00
	Continuous footpath treatment with additional treatment and median removal	69	\$600,000.00
	On-road bike lane	112	\$30,886.57
	On-road mixed traffic route	761	\$152,108.24
	Separated cycleway	2478	\$3,716,482.15
	3-metre wide shared path	516	\$361,277.27
			\$10,358,289.46
	2.5-metre wide footpath	2508	\$1,379,224.32
	3.5-metre wide footpath	374	\$261,788.73
	Low priority footpath improvement	565	
	Desired through-site link	220	
	Continuous footpath treatment	133	\$1,100,000.00
ardt	Continuous footpath treatment with additional treatment	130	\$1,375,000.00
Leichhardt	Continuous footpath treatment with additional treatment and median removal	19	\$150,000.00
_	On-road bike lane	156	\$42,837.27
	On-road mixed traffic route	1731	\$346,224.84
	Separated cycleway	1507	\$2,260,803.36
	3-metre wide shared path	139	\$97,293.16
	\$7,013,171.68		
	2.5-metre wide footpath	1989	\$1,093,734.10
	3.5-metre wide footpath	20	\$14,333.50
	Low priority footpath improvement	1349	
	Desired through-site link	258	
	Continuous footpath treatment	92	\$1,400,000.00
N.	Continuous footpath treatment with additional treatment	151	\$1,850,000.00
Camperdown	Continuous footpath treatment with additional treatment and median removal	-	-
	On-road bike lane	932	\$256,387.83
	On-road mixed traffic route	569	\$113,892.19
	Separated cycleway	2369	\$3,553,532.80
	3-metre wide shared path	679	\$475,325.43
	Shared zone	241	
			\$8,757,205.84
⋖ =	2.5-metre wide footpath	7992	\$4,395,493.65

Precinct	Infrastructure type	Total length (m)	Total cost (\$)
	3.5-metre wide footpath	394	\$276,122.23
	Low priority footpath improvement	2040	
	Desired through-site link	524	
	Continuous footpath treatment	339	\$4,200,000.00
	Continuous footpath treatment with additional treatment	457	\$5,100,000.00
	Continuous footpath treatment with additional treatment and median removal	87	\$750,000.00
	On-road bike lane	1200	\$330,111.67
	On-road mixed traffic route	3061	\$612,225.26
	Separated cycleway	6354	\$9,530,818.31
	3-metre wide shared path	1334	\$933,895.86
	Shared zone	241	
			\$26,128,666.98

Figure 3-4 Future pedestrian infrastructure actions – Taverners Hill precinct

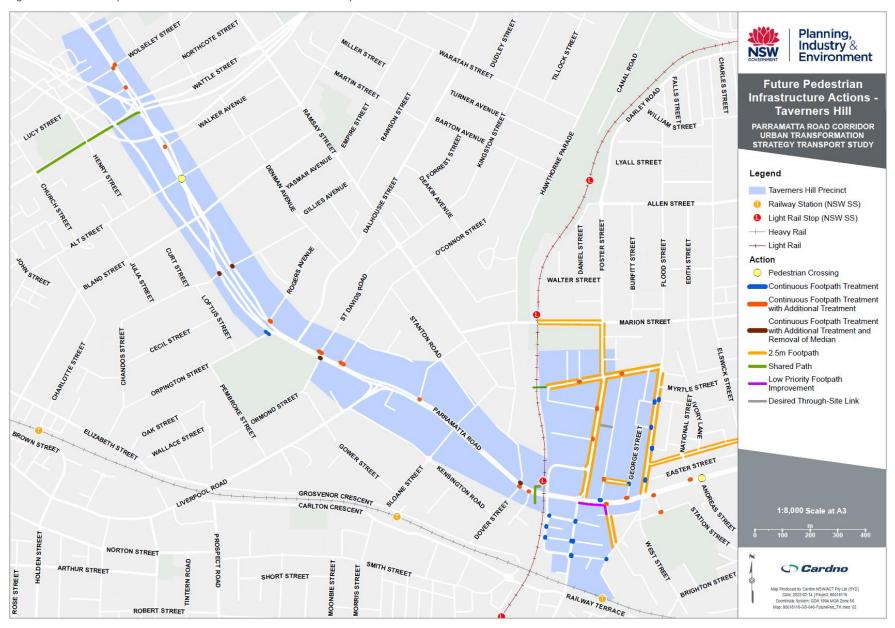


Figure 3-5 Future pedestrian infrastructure actions – Leichhardt precinct

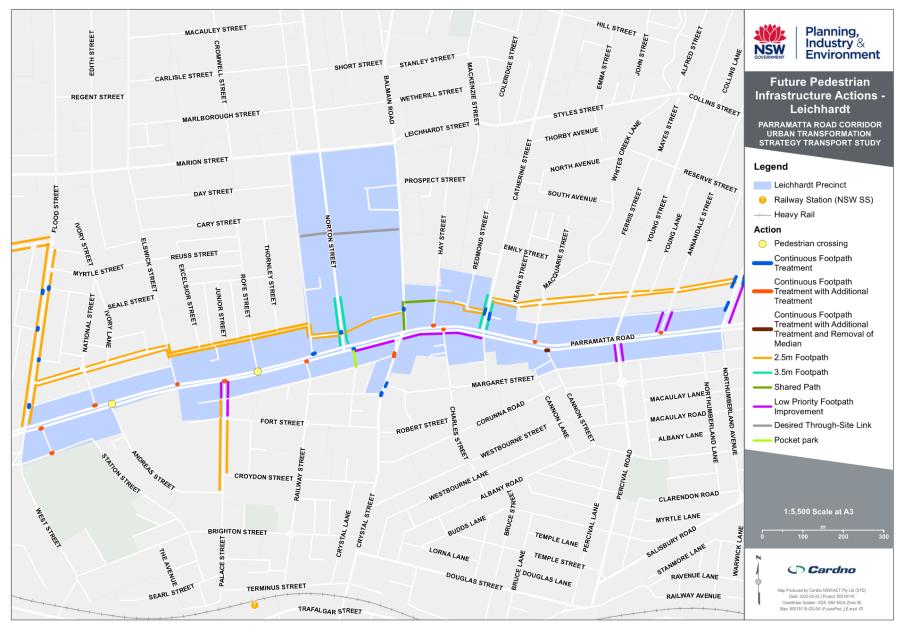


Figure 3-6 Future pedestrian infrastructure actions – Camperdown precinct

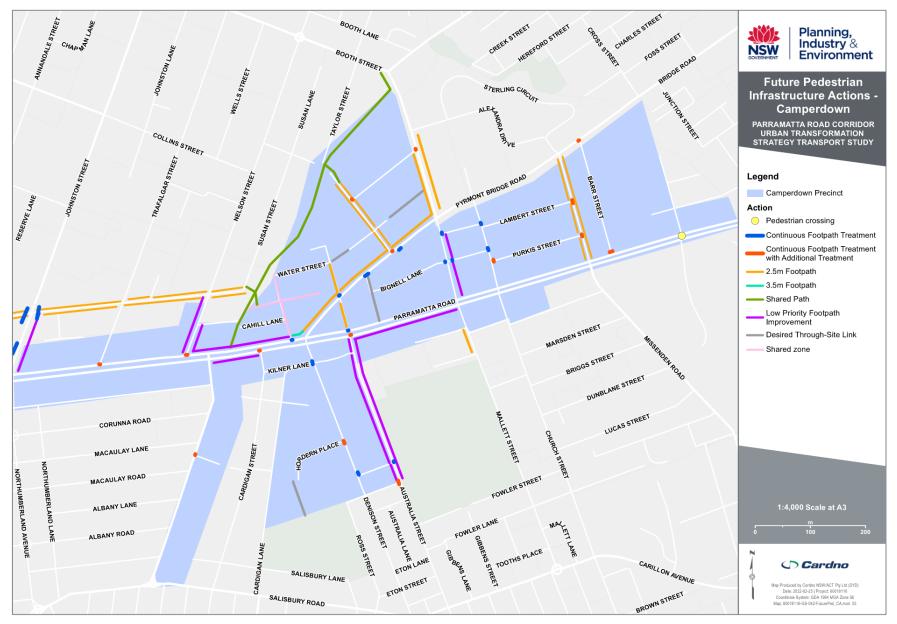
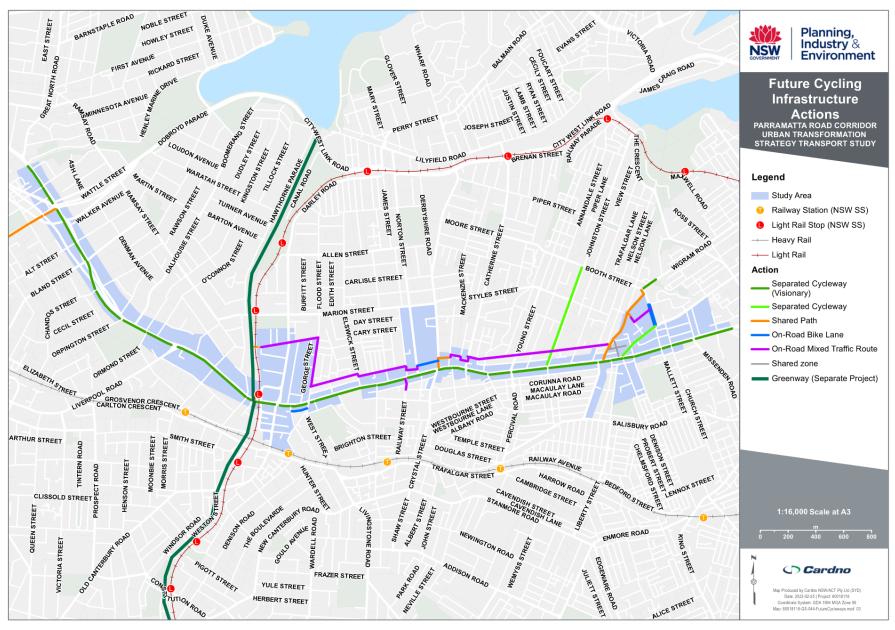
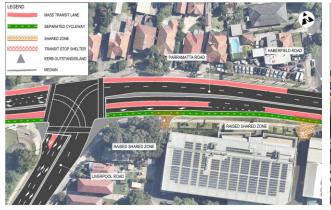



Figure 3-7 Future cycling infrastructure actions

3.5 **Public transport**

A frequent and rapid mass public transit service along the length of the PRC will contribute to the vibrancy, accessibility and attractiveness of the Precincts and local community area. This extends to reimagining the vibrancy of local businesses along the PRC which currently experience low foot traffic. Improvements to public transport and public domain are documented in the PRCUTS as key measures to support the corridor revitalization and address issues such as congestion and air quality.

It is understood Transport for NSW are preparing a business case for mass transit improvements along Parramatta Road. It is assumed that this will be implemented in an interim period and this will support existing and future populations.


Consideration should be given to the layout for the PRC outlined in the IWC ITS Parramatta Road Revitalisation project idea, shown in Figure 3-8. This layout would reduce vehicle traffic capacity on Parramatta Road, while increasing the people movement capacity. It would provide an opportunity to reallocate road space for the following provisions:

- 24 hour public transport/ mass transit lane with additional space at stops for customers;
- Plantings and car parking at mid-bock locations; and
- Separated cycle facilities (Longer term consideration).

Figure 3-8 Parramatta Road concept layouts

Liverpool Road, Ashfield

Taverners Hill Light Rail Stop

Norton Street, Lechhardt

Crystal Street, Petersham

Continued on next page

Pyrmont Bridge Road, Annandale

Section 3.5.2 discusses benefits and impacts associated with the various public transport/ mass transit options, including potential impacts to site access, new infrastructure required, interface with other modes, etc.

Key benefits of this layout are increasing people movement capacity with less vehicles, noise and pollution, discouraging through vehicle traffic movements, traffic calming along the PRC and encouraging the increased use of public and active transport. Increased trees/ plants and car parking provisions will improve place/ amenity and create a more vibrant place for people.

Rationale behind the layout is to:

- > Provide a barrier effect and spacing for higher vehicle volume lanes along the corridor;
- Locate the cycleway on the side of the road that would likely have less interface with waiting public transport customers; and
- > Provide public transport stops adjacent to or within kerbside areas. There is more overflow area and amenity than stops located in the middle of the carriageway.

To support the mass public transit link, a robust and rationalised local bus network connecting to local communities is required. TfNSW is responsible for network and service planning for public transport in NSW, including local bus routes which are responsible for connecting residential areas with high reliability collector public transport routes. These routes should be frequent during peak periods of the day. The IWC ITS proposes a grid bus network of consolidated north-south and east-west routes which Council should continue to advocate for with TfNSW.

Public transport customer experiences must be optimised through efficient interchange where required. An example of this is the potential major interchange at Taverners Hill where light rail and high capacity public transport along Parramatta Road merge. This also extends to interchange between walking and public transport services.

The actions that will help to deliver the public transport strategy are presented in Table 3-9.

Table 3-9 Public transport network actions

Dul II	Table 5.5 Tuble transport network actions			
Public transport network actions				
A-PT1	Provide a 24-hour high-frequency public transport service on Parramatta Road between Parramatta and the Sydney CBD.			
A-PT2	Rationalise and complete gaps in the local bus network to better support Parramatta Road which includes rationalisation of: Key east-west routes on: Parramatta Road; Ramsay Street/ Marion Street/ Booth Street; Liverpool Road; and Stanmore Road/ New Canterbury Road/ Old Canterbury Road. Key north-south routes on: Crystal Street/ Balmain Road; Johnston Street; and Dalhousie Street/ Liverpool Road/ Holden Street. This must take in consideration connectivity to the west (e.g. Parramatta activity centre) and the east (e.g. Sydney CBD), especially in the context of the future Metro route between these destinations. This includes possible link(s) to proposed Metro stations such as Burwood and possible reconfiguration of bus routes in light of the new stations around the precinct (e.g. north-south links to Metro West from Camperdown / north-south links to Five Dock).			
A-PT3	Advocate for improved bus schedule to improve services across all times of the day, including: More daytime off peak connections to local centres, urban hubs and main streets; and More late night bus services servicing Newtown, Enmore, and other entertainment districts.			
A-PT4	Provide public transport priority infrastructure on Parramatta road at intersections and midblock locations.			
A-PT5	Enhance interchanges to ensure reliable and short duration interchange between public transport modes (bus, light rail, heavy rail and Metro).			
A-PT6	Ensure all public transport services use zero emission vehicles and are net zero emissions.			
A-PT7	Improve pedestrian storage, amenity and safety at major bus stops.			
A-PT8	Upgrade bus stops that are missing shelter, seating, signage or TGSI, as per Figure 3-9 and Table 3-10.			
A-PT9	Solve the frequency limitation of the Inner West Light Rail between Dulwich Hill LRS and Dulwich Grove LRS (capacity is currently restricted due to use of a single track for both directions).			
A-PT10	Consider a bus route parallel to Parramatta Road, to the north.			
A-PT11	Continue to work with the state government for major public transport investment and improvements along Parramatta Road.			
A-PT12	Provide north-south feeder bus services to link the T2 Inner West and Leppington Line, Parramatta Road, Inner West Light Rail and future Sydney Metro West as per Figure 3-10 .			
A-PT13	Review surface road public transport network in response to the introduction of Metro West. This includes the links mentioned in the study (between Metro West stations and the T1/T2 Heavy rail lines linking to Petersham and Redfern) but should not be limited to these two new links.			
A-LU4	Provide wayfinding signage.			
A-LU13	Investigate opportunities for innovative transport technology such as GETS that would inspire community confidence and act as a catalyst for revitalisation of the corridor.			
A-AT6	Provide access to Taverners Hill LRS and Marion LRS from the east.			

3.5.1 Bus stop infrastructure upgrades

Bus stop upgrades are subject to review by Transport for NSW and must consider any planned changes to the public transport network to prevent investment in bus stops than may become obsolete in the near future due to transport network changes.

This assessment assumes that all existing bus stops would remain, and be enhanced.

A total of 52 bus stops were analysed (one of which has been permanently closed) as shown in **Figure 3-9**. 20 bus stops provide compliant shelter, seating, signage and tactile ground surface indicators (TGSI). 30 bus stops have been recommended for upgrades.

14 bus stops in the study area lack shelter with most being along the western end of the PRC study area. Eight bus stops do not provide seating. Six bus stops lack both seating and shelter, four of which are located between Chandos Street and St Davids Road. All bus stops provide bus stop signage although only one stop did not provide service information signage. 24 bus stops lack TGSI and one bus stop has damaged TGSI require repair. TGSI should be provided for DDA compliance and with a luminescence contrast of at least 30 per cent as per AS 1428.4.1 (2009). The majority of bus stops in the Leichhardt and Camperdown precincts lack compliant TGSI.

Table 3-10 outlines bus stop upgrade opportunities for further investigation.

Figure 3-9 Bus stops opportunities for further investigation

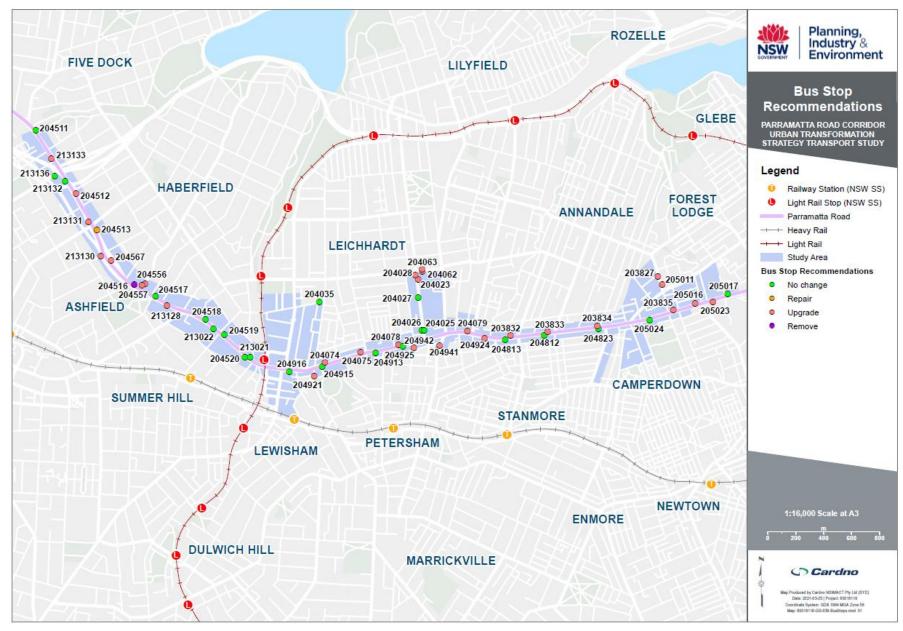


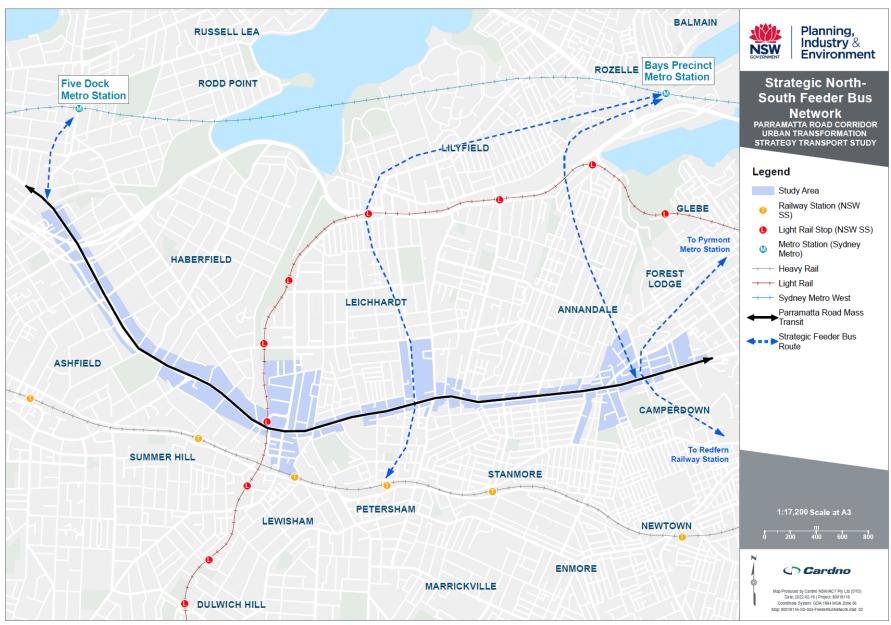
Table 3-10 Bus stop conditions and opportunities for further investigation

Stop ID	Bus Stop	Shelter	Seating	Signs	TGSI	Opportunity for further investigation	Justification	Footpath Width (m)
Taverne	rs Hill precinct							
204511	Parramatta Road at Dobroyd Parade	>	•	•	•			3.8
213133	Parramatta Road at Earle Avenue	ζ.	×	•	•	Install seating.	Sufficient footpath width.	3.5
213136	Frederick Street after Parramatta Road	>	~	•	~			4.0
213132	Parramatta Road before Frederick Street	>	~	~	~			3.8
204512	Parramatta Road after Walker Avenue	×	•	•	×	Install shallow bus shelter in place of bench. Install TGSI.	Footpath width narrow. TGSI required for DDA Compliance	3.2
213131	Parramatta Road at Bland Street (Westbound)	×	•	•	×	Install shallow bus shelter in place of bench. Install TGSI.	Footpath width narrow. TGSI required for DDA Compliance.	3.0
204513	Parramatta Road at Bland Street (Eastbound)	V	v	•	•	Install TGSI.	TGSI is damaged.	4.2
213130	Parramatta Road at Chandos Street	×	×	·	×	Install TGSI.	Footpath width narrow. TGSI required for DDA compliance.	2.5
204567	Parramatta Road after Chandos Street	×	×	•	×	Install shelter, seating and TGSI.	Sufficient footpath width. TGSI required for	4.0

Stop ID	Bus Stop	Shelter	Seating	Signs	TGSI	Opportunity for further investigation	Justification	Footpath Width (m)
							DDA compliance.	
204516	Parramatta Road opposite Ashfield Park	,	,	×	•	Remove bus stop provisions.	Bus stop permanently closed.	3.6
204557	Dalhousie Street at Parramatta Road	×	×	v	•	Install shelter and seating.	Sufficient footpath and verge width.	3.5
204556	Dalhousie Street before Parramatta Road	×	×	•	•	Install seating.	Sufficient footpath width. Installation of shelter may disturb adjacent property.	3.7
204517	Parramatta Road opposite Ashfield Park	~	>	¥	~			3.5
213128	Parramatta Road after Liverpool Road	×	ζ.	¥	•	Install shelter.	Sufficient footpath width.	3.5
204518	Parramatta Road at Haberfield Road	•	>	¥	•			3.5
213022	Parramatta Road after Sloane Street (Westbound)	>	ζ.	V	•			3.7
204519	Parramatta Road after Sloane Street (Eastbound)	>	>	>	•			3.7
213021	Parramatta Road after Dover Street	~	>	>	~			3.5
204520	Parramatta Road at Hawthorne Parade	~	>	~	~			3.5
204916	Lewisham Hotel, Parramatta Road	~	>	>	~			3.8
204035	Lords Road at Flood Street	×	×	V	×		Drop-off only.	3.6
Leichha	rdt Precinct							
204921	West Street opposite Thomas Street	•	•	×	×	Provide service information signage and TGSI.	TGSI required for	3.7

Stop ID	Bus Stop	Shelter	Seating	Signs	TGSI	Opportunity for further investigation	Justification	Footpath Width (m)
							DDA compliance. Signage board provided with shelter but no service information provided.	
204915	Parramatta Road at Park Street	~	>	~	~			4.0
204074	Parramatta Road after Flood Street	•	•	•	×	Install TGSI.	TGSI required for DDA compliance.	3.5
204075	Parramatta Road opposite Fort Street High School	•	•	•	×	Install TGSI.	TGSI required for DDA compliance.	3.5
204913	Fort Street High School, Parramatta Road	•	<	>	•			3.6
204078	Parramatta Road after Rofe Street	•	<	>	×	Install TGSI.	TGSI required for DDA compliance.	3.6
204925	Parramatta Road after Railway Street	•	~	•	•			3.9
204942	Railway Street at Queen Street	×	<	•	x	Install TGSI.	TGSI required for DDA compliance. Installation of shelter may disturb adjacent café and outdoor dining.	3.0
204026	Norton Street after Parramatta Road	~	~	~	~			2.7

Stop ID	Bus Stop	Shelter	Seating	Signs	TGSI	Opportunity for further investigation	Justification	Footpath Width (m)
204025	Norton Street before Parramatta Road	>	~	•	•			3.4
204027	Norton Street opposite Norton Plaza	×	•	•	•		Installation of shelter may disturb adjacent properties and businesses.	3.4
204023	Leichhardt Public School, Norton Street	•	•	•	×	Install TGSI.	TGSI required for DDA compliance.	3.6
204028	Norton Street opposite Leichhardt Public School	<	•	•	×	Install TGSI.	TGSI required for DDA compliance.	3.0
204062	Leichhardt Public School, Marion Street	×	•	•	×	Install shelter and TGSI.	Sufficient footpath width. TGSI required for DDA compliance.	3.4
204063	Leichhardt Town Hall, Marion Street	×	•	•	×	Install shelter and TGSI.	Sufficient footpath width. TGSI required for DDA compliance.	3.6
204941	Crystal Street at Queen Street	×	×	•	×	Install shelter, seating and TGSI.	Sufficient footpath width. TGSI required for DDA compliance.	3.3
204079	Parramatta Road before Catherine Street	•	•	•	×	Install TGSI.	TGSI required for	3.4


Stop ID	Bus Stop	Shelter	Seating	Signs	TGSI	Opportunity for further investigation		Footpath Width (m)
							DDA compliance.	
204924	Parramatta Road before Phillip Street	×	•	•	×	Install shelter and TGSI	Sufficient footpath width. TGSI required for DDA compliance.	3.3
204813	Parramatta Road after Percival Road	\	~	•	•			4.0
203832	Parramatta Road before Young Street	•	•	•	×	Install TGSI.	TGSI required for DDA Compliance.	3.0
204812	Parramatta Road after Northumberland Avenue	>	>	•	•			3.5
203833	Parramatta Road before Johnston Street	•	•	•	×	Install TGSI.	TGSI required for DDA Compliance.	2.5
Camper	down precinct							
203834	Annandale Hotel, Parramatta Road	>	•	•	×	Install TGSI.	TGSI required for DDA Compliance	2.0
204823	Parramatta Road opposite Annandale Hotel	>	>	•	•			4.3
205024	Bridge Road School, Parramatta Road	~	~	~	~			3.7
203827	Booth Street at Guihen Street	•	•	•	×	Install TGSI.	TGSI required for DDA Compliance	3.6
205011	Booth Street before Pyrmont Bridge Road	>	•	•	×	Install TGSI.	TGSI required for DDA Compliance	3.5

Stop ID	Bus Stop	Shelter	Seating	Signs	TGSI	Opportunity for further investigation	Justification	Footpath Width (m)
203835	Parramatta Road after Mallett Street	•	•	,	×	Install TGSI.	TGSI required for DDA Compliance	3.0
205016	Parramatta Road before Lyons Road	•	×	ζ.	•	Install seating.	Sufficient footpath width.	3.3
205023	Parramatta Road at Missenden Road	•	V	>	×	Install TGSI.	TGSI required for DDA Compliance	2.6
205017	Parramatta Road at Larkin Street	V	•	¥	V			2.9

Figure 3-10 Strategic north-south feeder bus network map

3.5.2 Transit considerations

There are numerous options available for the configuration of public transport along the PRC and study precincts. Transit considerations including advantages and disadvantages are outlined in **Table 3-11**.

Table 3-11 Transit considerations

Consideration	Advantages	Disadvantages	Commentary/ application to Parramatta Road		
Service types					
Existing bus services	 Already implemented. Relatively easy to add more services. Is supported by bus lanes along some parts of Parramatta Road. 	 There are finite limits to how many buses can be routed to Sydney CBD. Majority of bus fleet is diesel fuelled emitting pollutants and noise. Some parts of Parramatta Road do not have dedicated transit lanes resulting is bus delays and reduced timeliness reliability. Bus stops do not have dedicated space in the pedestrian realm and path congestion can occur 	Bus passenger capacity of 50 – 60 people (standard bus) and 100 – 120 people (high capacity bus) per vehicle of existing fleet. The high number of routes along Parramatta Road can result in services bunching up, especially during peak times.		
Local services (stops every 400 metres)	 Services a higher catchment. 	Slower journeys.Not attractive for longer trips.	Many of the existing bus services in the corridor operate as local services with the corresponding capacities as noted above. These are generally considered the base service that needs to be provided. Generally provided as lower frequency service and shorter routes. May be suitable for local north-south services linking to rail stations/ stops.		
Rapid services (stops generally around 800 – 1,000 metres or more apart) I.e. Northern Beaches B- Line	 Higher average speed, more competitive than car. Tend to have a higher passenger catchment when provided as a high frequency service. High frequency services improves attractiveness and reduces transfer time penalty. 	 Requires infrastructure to support rapid services such as dedicated road space. 	Rapid services work best with dedicated road space, optimised signal timing, high capacity boarding/ alighting features such as multiple doors and fare payment at stops. Route 461 City to Burwood operates as a Rapid service between Central Station Sydney and Johnson Street Annandale and has local service characteristics between Burwood and Annandale. The capacity is typically in the 100 - 120 people range.		
BRT along Parramatta Road	 Convenient and direct route. Encourages passenger movement along Parramatta Road. Dedicated lanes during peak periods. 	 Requires new infrastructure to support. 	Popular in North America as a means to provide faster service and increase ridership. The capacity can vary depending on the type of fleet adopted but it is generally the same as that of "rapid services".		

Consideration	Advantages	Disadvantages	Commentary/ application to Parramatta Road
GETS along Parramatta Road	 Convenient and direct route. High vehicle capacity compared to typical buses. Supports a higher volume of passenger movement along Parramatta Road. Improved passenger safety and comfort. Able to operate in a narrow lane. Short construction timeframe or impacts due to no tracks or electric wiring. Cost-effective in comparison to traditional trams and reported greater return on investment than BRT. Boarding and alighting from multiple doors reduces dwell time. Increased accessibility due to small gaps with platform and level entry. Quiet and environmentally friendly vehicles. Higher potential for mode shift. 	 Cost to implement compared to currently used buses in Sydney. Has not been implemented in Australia before. 	Brisbane City Council are implemented the "Brisbane Metro" which has common elements with a GETS style public transport offering. Brisbane Metro will have bi-articulated vehicles that can operate along existing bus infrastructure. Each vehicle will be 24.4 metres long, 2.55 metres wide and a comfort capacity of 150 people. The vehicles will have zero tailpipe emissions and be battery electric powered.
Light Rail	 High capacity and frequency. Could connect with existing light rail network. Can contribute to mode shift. Typically more attractive compared to buses. Improved passenger safety and comfort. Boarding and alighting from multiple doors reduces dwell time. 	 High cost to implement. Requires substantial permanent infrastructure changes. Long planning and construction timeframes Removes any option to "share" the road space allocated to the light rail vehicle with other modes. Requires more road width compared with other options (especially for sections of the alignment that are not straight) 	A light rail network has been gradually implemented in Sydney and the PRC could be investigated as a new line to be connected to the existing network. Its implementation would be significantly more complex compared to any solution reliant on a bus fleet and attract a higher cost and longer implementation timeframe.
Routes / lines			
Parramatta Road	 Highly legible, direct route with relatively straight road alignment. Dedicated road space would provide the ability to move more people along the corridor 	 Services currently get caught in general traffic congestion. Likely to require dedicated road space for high service reliability. 	This is part of the PRCUTS principles.
Bus route parallel to	 Utilise road network away from Parramatta Road. 	 Local roads also experience traffic congestion during peak periods. 	Should be considered by TfNSW as part of the overall transport network.

Consideration	Advantages	Disadvantages	Commentary/ application to Parramatta Road
Parramatta Road	 Implements some service resilience for when one part of the network does not work. 	 Catchment would vary from the Parramatta Road corridor. 	
North-south feeder bus services	 Improved public transport accessibility. Connection between heavy rail, light rail and Metro services would improve the catchment and transport integration. Interchange between various public transport modes. 	 Cost to implement and operate. 	Can be implemented through a redesign of existing bus route.
Infrastructure to	reatments		
Transit Streets	 High quality transit helps to bring more people to a street using less space. Transit streets supported activated kerb-side uses for socialising, eating, business and rest. Transit streets fully integrate and provide for safe pedestrian and cycling infrastructure. 	 Requires reallocation of road space from private vehicles. At planning stage, these are initially unpopular. 	Transit Streets provide high transit priority compared to other streets. They are linear public spaces that combine an attractive place with high people movement by transit vehicles. Transit street principles can be read here: https://nacto.org/publication/transit-street-design-guide/transit-streets/transit-street-principles/
Kerb-side transit lanes	 Easy access to services from the footpath. General through traffic has less conflicts and higher average speeds. 	 Can preclude kerb-side car parking or precluded at peak-times when lane is operating. Careful review is required to ensure kerbside infrastructure is sufficiently spaced from active traffic lane. If stops are located on the intersection approach, there are conflicts with left turning traffic. General traffic for locality access must seek parking off main corridor. 	Useful when general vehicle traffic function is for through movements.
Offset transit lane. (Transit lane is generally one lane out from kerb)	 Kerbside can be used for planting, bicycle/micro-mobility or car parking. Supports shared used of local and rapid services. Bus stops can be provided on kerbside to allow rapid/express buses to overtake local services. Left turn lanes can be provided in kerbside lane reducing delays to transit vehicles. 	 High parking turn-over can delay transit vehicles. Right turns need special consideration and treatment, i.e. allowing filtered right turn would cause delays to transit vehicles. 	This could be used to prioritise mass transit while still providing kerbside parking. This would also support both local and rapid mass transit services along the corridor.
Centre-running transit lanes	 Enables the kerb-side traffic lane to be managed for short-term parking outside of 	 Major redesign of Parramatta Road due to reallocation of road space and 	Provides a high priority and higher speed transit link with reduced conflict points.

Consideration	Advantages	Disadvantages	Commentary/ application to Parramatta Road
	 peak periods which buffer pedestrians from traffic. It is easier to provide a longer centre stop. Crossing across street can be broken up into shorter parts between the kerb side and centre stop. Provides better access for turning vehicles. Dedicated lanes can be utilised by light rail later if preferred. Provides greater traffic demand management options. 	 construction of platforms and transit stops. More pedestrian crossing facilities required. Pedestrians wait/ queue in the middle of the carriageway, which can be noisy and exposed. Space required on carriageway at stops for boarding and alighting. 	Useful when general vehicle traffic function is serving local access and needs.
In lane stops	 Transit vehicles do not need to manoeuvre into stops. In mixed traffic lanes, transit vehicle does not need to pull out back into moving traffic. 	 Does not allow other transit vehicles to overtake stopped vehicles i.e. Rapid overtaking Local service. 	These are suitable when there is only one bus line on a dedicated corridor with consistent stopping patterns. If local and rapid transit is mixed, this would not be optimal.
Stops upgraded to stations	 Clearly identifiable in an urban environment providing an anchor in the community and sending a clear signal to land developers. Can be used as a tool to consolidate several stops to improve transit times. Can be used in a package to reduce alighting/ boarding time. 	 Higher cost. Requires customers to walk further for access for Rapid routes. 	Stations have clearly defined elements including shelter, seating, real-time displays and are clearly identifiable. They can also be designed to be integrated with co-located bicycle parking, bicycle and car share. They can be used to balance a trade-off in walking time for a high quality, high frequency service. This would provide a clear signal to developers of government support of high quality transport to support increasing population and employment.
Short intersection signal cycles	 Improves opportunities for cross corridor access, particularly for active transport modes. Can better support public transit with unpredictable dwell times at stops. 	 Trades off through general vehicle movement capacity on main corridor. Can result in more vehicle stops. 	Parramatta Roads role as a key vehicle movement corridor would need to be reassigned to a transit corridor and realigned to a vibrant place and key people movement corridor through less but high capacity vehicles.

While the final configuration and transit solution is subject to the investigation by Transport for NSW, it is expected that the considerations, advantages and disadvantages summarised above will influence the option assessment and selection process. Any option or combination of options from the above table may be suitable for the PRC provided the chosen configuration achieves the following outcomes:

- > Safety;
- > Place-making benefits;
- > High capacity;
- > High frequency;
- > Reliability;
- > Travel time efficiency; and
- > Streetscape improvements.

In order to help achieve the vision for the PRC of a vibrant street with a high movement function, it is expected that an option such as the reconfiguration of local services to rapid services, BRT or GETS will be required to capture the efficiencies documented above, improve attractiveness, reliability and general speeds. Light rail is likely to present challenges difficult to overcome both from an implementation cost and road width perspectives.

A centre-running solution is likely to cause more disruption to other modes (especially at intersections) and would be more suited or justifiable for a GETS or light rail option. Kerb-side options are likely to present greater flexibility for a more conventional bus rapid transit option and also offer alignment with other services already present in Sydney (e.g. Northern Beaches B-Line). Further work is required to understand the "triggers" for a particular transit solution to be adopted over the other (e.g. patronage or other multi modal metrics) and/or to develop an infrastructure staging strategy.

3.6 Road network

The WestConnex project is a catalyst for urban renewal on the PRC, with significant opportunities to enhance local amenity by reducing through-traffic on surface roads and improve connectivity in north and south directions.

The road network supports both movement and place through a range of functions including regional through movements, local access and places for people to meet and conduct business. The future road network should reflect and promote the following functions and trip types:

- > <u>Shorter length trips (less than two kilometres)</u>: Walking or cycling is the first choice because it is quick, safe and comfortable.
- Medium length trips (two to ten kilometres): Mass transit on the Parramatta Road and the Inner West train line are suitable, except for trips that require goods or people storage which is more suited to a private vehicle.
- > <u>Longer length trips (more than ten kilometres)</u>: Driving on WestConnex to access regional places, the Inner West train line and the PRC mass transit is suitable.

These road user functions would be enhanced with the prioritisation of people movement as depicted by the concept PRC layouts from the IWC ITS Parramatta Road Revitalisation project idea. This layout prioritises and improves efficiency and safety for public and active transport, as well as north-south access for vehicles. This is supported with car share provisions.

Crashes within the PRC precincts need to reduce in both number and severity, particularly those resulting in fatality or serious injury. The opening of the WestConnex M4-M5 Link tunnels will provide an attractive alternate route for high moving vehicle traffic and heavy vehicles, reducing the amount of through traffic using the PRC. However a number of crash clusters must be investigated and addressed within the three Precincts, including those described in the Transport context report.

The actions that will help to deliver the road network strategy are presented in **Table 3-12**.

Table 3-12 Road network actions

Road ne	twork actions
A-R1	Undertake public domain improvements, including: Conversion of Petersham Street to a pocket park between Parramatta Road and Queen Street.
A-R2	Reallocate road space on Parramatta Road to prioritise the movement of people.
A-R3	 Investigate crash clusters at the following locations: Parramatta Road between Wolseley Street and Wattle Street; Parramatta Road between Brown Street and Flood Street; Parramatta Road between Norton Street and Macquarie Street, and Crystal Street between Parramatta Road and Elswick Street; Parramatta Road between Australia Street and Bridge Road; The intersection of Parramatta Road and Liverpool Road; and The intersection of Parramatta Road, Northumberland Avenue and Johnston Street.
A-R4	Consider reduced speed limits with priority for mass transit
A-LU-8	Consider temporal changes where regular road closures of low volume streets could be used for activation by outdoor dining, street markets and active travel.
A-LU12	Consider the environmental impacts of materials used, and the heat island effect.
A-LU13	Investigate opportunities for innovative transport technology such as GETS that would inspire community confidence and act as a catalyst for revitalisation of the corridor.
A-AT8	Provide continuous footpath treatments along Parramatta Road as per Figure 3-4 , Figure 3-5 and Figure 3-6 .

3.6.2 Private Vehicle Demand and mode Shift

As the vision for the precinct prioritises people movement, sustainable transport options and the place function throughout the PRC and adjacent areas, it is important to quantify the mode shift expected to take place from private vehicle to other modes but also how the forecast traffic volumes can be accommodated on the road network.

Extensive strategic modelling was undertaken by Transport for NSW using PTPM. This included an iterative process to help quantify the number of private vehicles that can be accommodated by the network and consequently, how many tris must be converted to other modes. This is done via the application of the Precinct Parking Module (PPM) which applies additional travel costs to the private vehicle mode to reduce its utility and reflect capacity constraints not otherwise accounted for. It was determined that PPM15 should be applied to the study area (as opposed to the default PPM0 level).

While PTPM modelling only allows assessing AM peak operation and it excludes walking and cycling trips, it provides an indication on the estimated number of trips by mode for the 2026 and 2036 future year scenarios based on the land use forecasts.

An analysis of PTPM outputs (with PPM15 factor applied) indicates that total AM peak private vehicle demand in the study area is expected to increase from 76,164 vehicles in 2019 to 88,851 vehicles in 2026 and 103,035 vehicles in 2036. This is shown in **Figure 3-11**.

Private Vehicle Demand

103,035

100000

88,851

80000

76,164

60000

40000

20000

2026

Figure 3-11 PTPM AM Peak Total Demand in the Study Area

As shown in **Figure 3-12**, the PTPM model outputs (with PPM15 penalty applied) indicate that the "private vehicle – driver" mode share is required to reduce from circa 61 per cent in 2019 to 55 per cent by 2036. The "private vehicle – passenger" mode share is required to reduce from circa 18 per cent in 2019 to 16 per cent by 2036. These mode share ranges provide guidance on the targets that must be established to ensure that the changes in land use can be accommodated by the road network. These should be supported by interventions that encourage the gradual transition to sustainable modes such as walking, cycling and public transport.

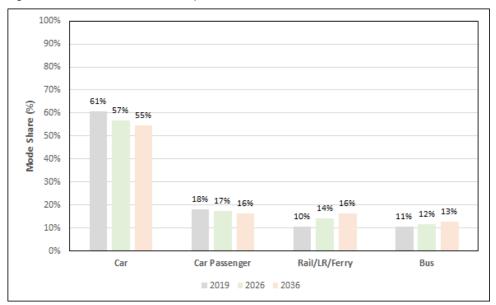


Figure 3-12 PTPM Mode Share Outputs

2019

The model is reflective of committed road and public transport upgrades. Any interventions to enhance public transport servicing are expected to contribute to an increase to the corresponding mode share. That is, the number of public transport trips assumed in the model is expected to increase as improvements to public transport infrastructure are confirmed and delivered.

In summary, this transport plan has been prepared to develop a series of transport-based initiatives necessary to achieve the PRCUTS Vision of:

"Incremental renewal of the Corridor will occur over the long term to deliver a high quality, multi-use corridor with improved transport choices, better amenity, and balanced growth of housing and jobs."

In order to achieve this Vision, it will be essential to implement a comprehensively integrated approach to transport, public domain, land use and urban design. An important first step in this process is the establishment of measures which will encourage a mode shift away from private car use and so creating a more "liveable" environment in the Corridor.

While the modelling carried out in association with this plan is driven predominantly by traffic-based circumstances, it is considered to provide an adequate baseline for the establishment of mode share targets for the three Inner West Precincts. Based on this modelling it will be essential to achieve a minimum mode shift in private car use (driver and passenger combined), from 79 per cent in 2019 to 71 per cent in 2036 (a 10 per cent reduction of existing car use).

However, noting that this mode shift is required purely to achieve acceptable movement along the corridor, to achieve the desired liveability, PRCUTS proposes a 30 per cent mode shift away from private car use, as an average improvement across the three Inner West Precincts. Consequently, this Plan's key mode shift target is to reduce private car use by a minimum of 10 per cent, and up to 30 per cent between 2019 and 2036.

3.6.3 Road network upgrades

A bespoke operational model was developed in Aimsun to help understand future year (2026 and 2036) network operation with the traffic demand forecasted by the strategic models and corresponding mode shift. In general, the model shows that the road network can accommodate modelled growth despite congestion being observed on several parts of the network. Some intersection improvements would help improve the efficiency of the road network and several of these possible treatments were tested in Aimsun with the corresponding improvements in level of service / delay quantified in the supporting *Future Modelling Report*. However, the interventions tested are predominantly based on a traffic operation improvement perspective and may not reflect the shared nature of the different urban environments. Changes to intersections need to be considered not just in terms of the vehicle movements but also active transport, public transport and place outcomes. The funding mechanisms for road upgrades / infrastructure contributions will need to be agreed by Council and DPIE.

3.7 Freight

Freight supports thriving and healthy communities by providing goods and services. Efficiency of freight and servicing is often challenged by built form barriers such as lack of safe and separated routes and loading spaces. Safety of other road users is impacted when there is lack of physical and temporal separation of heavy vehicles.

Factors that influence freight and servicing include:

- > Balance between movement and place for evolving urban settings;
- > Increasing populations resulting in increased freight demand, particularly affecting last mile delivery;
- > Changing consumer demands including higher demand for ad-hoc deliveries (which may offset some private trips);
- > Increased construction activity resulting in increased demand for larger vehicles; and
- > Emergence of alternative vehicles for the delivery of goods and people such as bicycles, scooters, autonomous vehicles and drones.

Key planning principles that aim to maximise performance and benefits for the freight network within the PRC are:

- Design and management of loading facilities should directly reflect the land use and the place making objective of the building or precinct.
- > Loading facilities and freight and service vehicle management should be prioritised in the initial design of a new development to maximise amenity and place.
- > New buildings and precincts should be self-sufficient and not rely on kerbside loading zones to support their freight demand.
- > Optimisation of kerbside activities in the following ways:
 - Appropriate kerbside hierarchies;
 - Time of day demand and kerbside designation;
 - Short-term parking;
 - Evening and overnight loading zones;
 - Parking management systems;

- Role of side streets; and
- Provision of different types of space.

Actions supporting the future freight network are presented in **Table 3-13**.

Table 3-13 Freight network actions

Freight network actions

A-F1 Larger development controls to ensure the following:

- New development should be self-sufficient for loading and servicing, without relying on on-street parking zones to support their freight demand; and
- Loading facilities in new development should directly reflect the land use and place making objective of the building or precinct.

The development controls will likely need to be tailored to the various development types and sizes. Development size triggers should be investigated

A-F2 Review and consolidate on-street loading/ service zones through the following methods:

- Time of day demand and kerbside designation;
- Provision of short-term parking in appropriate areas;
- Evening and overnight loading zones;
- Centralised waste pick-up points;
- Parking management systems; and
- Side street parking.

A-F3 Review and rationalise waste vehicle movements servicing Parramatta Road.

A-F4 Prohibit or limit delivery access during peak pedestrian activity periods.

3.8 Parking

In order to encourage ready use of more sustainable transport It is proposed that Council's new development control plan should establish maximum, rather than minimum rights of on-site parking provision. The following recommendations are extracted from the supporting Parking Note: *Parking policy and rate review: Camperdown, Leichhardt and Taverners Hill.*

Parking space adaptability recommendations:

- > Prepare design guidelines that include development requirements for car parking which supports adaptive reuse of parking areas for future development.
- > Consider changes to parking policies that allow for off-site communal parking (e.g. unbundled from individual developments, managed to recognise the temporal variations in parking demand for different land use types and in so doing provide opportunities to share spaces where appropriate)

Car share recommendations:

Assist and support the location of car share spaces adjacent to dense residential development. Encourage on-site car share for residential and business developments, particularly where parking construction costs would impose high costs on tenants and reduce affordability.

Electric vehicle recommendations:

- As the EV fleet grows, market forces will govern the installation of EV charging units. Policy measures including community title for parking facilities, unbundled and decoupled supplies can be used to provide flexibility for developers and residents, and thereby reduce the opportunity cost of installation.
- > Electric vehicle charging points should be provided in off-street locations in the same way petrol stations are off-street for a range of safety and amenity reasons.
- Introduce development requirements to ensure all high-density residential development has access to EV charging bays for new applications. This should include provision of conduit to allow residents to reticulate power to individual bays, and to ensure electrical infrastructure is sized to support a charging demand.
- Introduce development requirements to ensure slow-charge EV charging points are provided for a percentage of long-stay employee parking (~10%, increasing as demand rises).

- Introduce development requirements to ensure future ability to supply EV charging points at a minimum of 50% of total bays.
- Policy support for conversion of public off-street parking spaces to EV fast-charging, through an expedited approval process.

Bicycle recommendation:

Given the current journey-to-work cycling mode share of less than one per cent, and with the assumption that increasing bicycle mode is consistent with Council objectives, a minimum bicycle parking rate to satisfy 2.5 per cent of employee mode share, plus additional spaces for visitors/ customers. This creates capacity for additional bicycle mode share.

Bicycle parking demand should be monitored in the locality and Council should host find or request a new bike parking space on their website.

Motorcycle recommendation:

Motorcycle parking should be provided for at a minimum of 1 space per 1,500sq.m of employment land use, with a minimum of one space where on-site parking is provided.

Servicing, delivery and loading recommendation:

Site loading and servicing facilities are provided on site, appropriate to the size and scale of the development.

Driveway recommendation:

To minimise conflict with pedestrians and streetscape impacts, the number of driveways should be minimised, with no more than one per site and where possible opportunities for the use of single driveways by multiple sites should be examined.

Residential parking recommendations:

The PRCUTS residential parking rates represent a significant reduction in on-site parking, compared with existing ownership behaviour. It is recommended that these rates be employed only where effective parking management mechanisms are in place for surrounding public parking provision.

The alternative maximum parking rates are considered feasible for implementation without substantial interventions, while still representing a substantial downward pressure on private parking supply.

Land use	Bedrooms	Stage 1 Alternative maximum parking rates (consistent with existing transport environment)	PRCUTS maximum rate recommendations (with improved transport environment)
House	1	1.0 per house	0.3
	2	1.0 per house	0.7
	3+	1.0 per house	1
Apartment	0	0.15	0
	1	0.5	0.3
	2	1.0	0.7
	3+	1.2	1
	Visitor	0.1 space per dwelling, unless this can be provided on- street.	0

Residential parking permits recommendation:

Expand the residential permit scheme and price permits at a rate consistent with the opportunity cost of parking infrastructure, with a transition period to support behaviour change by residents.

(Key) Non-residential land use parking recommendation:

The PRCUTS recommended parking rates are considered to be appropriate under the future public transport provisions identified in the PRCUTS Plan. A series of alternative parking rates has been identified which would be sustainable even without significant capital works upgrades of public transport.

Land use	Stage 1 Alternative maximum parking rates (consistent with existing transport environment)	PRCUTS maximum rate recommendations (with improved transport environment)	
Student housing/ Boarding house	0.15 space per dwelling	No recommendation	
Health/ Medical centre	2 spaces per consulting room	No recommendation	
Hospital	Parking assessment as part of development application	No recommendation	
Commercial/ office	1 space per 100 sq.m. (1.00 spaces/ 100sq.m) of floor area	1 per 150sq.m (0.67 space/ 100sq.m)	
Retail/ shop	1 space per 50sq.m (2 spaces/ 100sq.m) of floor area.	1 per 100sq.m.	
Restaurant	1 space per 50sq.m (2 spaces/ 100sq.m) of floor area	1 per 100sq.m.	
Bulky goods	1 per 100sq. Must include an off-street loading zone for customer pick-up	No recommendation	
Industrial	1 per 150sq.m (0.67 space/ 100sq.m)	1 per 150sq.m (0.67 space/ 100sq.m)	
Out of centre uses along the Parramatta Road corridor	General rate (Not a maximum): 1 space per 40 square metres (2.5 per 100 square metres)	Differentiated by suburb only.	

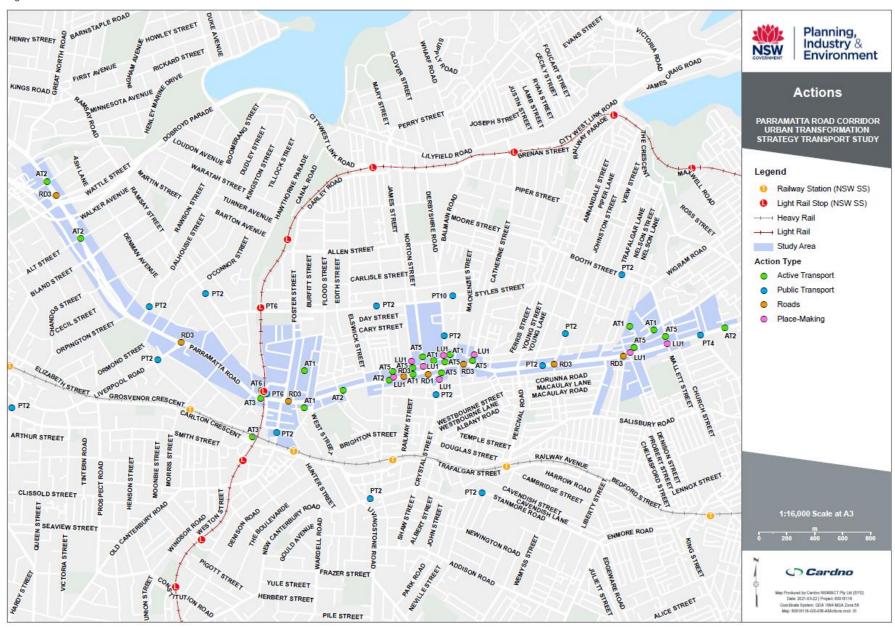

The actions that will support the parking strategy are presented in **Table 3-14**.

Table 3-14 Parking actions

	5			
Parking actions				
A-Pa1	Reduce on-site car parking provision for both origin and destination parking.			
A-Pa2	Implement the recommended parking rate and adopted PRCUTS recommendations after notable public transport improvements are committed.			
A-Pa3	Provide opportunities for kerbside parking on Parramatta Road outside of peak periods.			
A-Pa4	Ensure any new off-street car parking is designed with consideration of adaptive re-use so that these structures can be used for alternative purposes in both the short and long term.			
A-Pa5	Introduce unbundled parking for new developments so that multiple users can utilise a single parking space, controlled by likely time of use.			
A-Pa6	Establish temporal recognition of demand and provide access to parking in response i.e. parklets on weekends, use of off-street car parks for community spaces such as markets on some weekends.			
A-LU9	Consider use of existing off-street car parks as market places or community "nodes".			

Figure 3-13 Actions

4 Implementation plan

To achieve the strategic transport vision, 8 actions have been proposed for the IWC Precincts that address the transport issues and opportunities. These are summarised in **Table 4-1**.

4.1 Timeframes and feasibility

Actions have been assigned an indicative time frame associated with its strategic importance, providing the most impact, and feasibility. Feasibility of proposed actions was determined via criteria relating to funding opportunities such as through development contributions, and alignment with strategic plans.

4.2 Costing and Responsibilities

Pedestrian and cycling infrastructure actions have associated costs based on unit rates and are provided in **Table 3-8**. The funding mechanisms for road upgrades / infrastructure contributions will require discussion and agreement by Council and DPIE. Each action has been assigned responsibility (which are subject to change) for planning and funding, for the following three stages of project program:

- > Planning/ designing;
- > Construction/implementing; and
- > Maintenance and monitoring.

Table 4-1 Implementation plan

Item	Description	Action	Lead	Timeframe
1	Parking controls	Council to refine and implement parking recommendations through its Development Control Plan aligned with planning proposal to implement PRCUTS	Council and DPIE	Short term
2	Local road improvements *	Council to refine recommended local road improvements through local infrastructure planning and detailed design	Council and DPIE	Short to medium term
3	State road improvements *	TfNSW to refine recommended state road works through TfNSW's road network planning and detailed design	TfNSW	Short to medium term
4	Public Transport improvements	TfNSW implement enhanced public transport solutions through service planning and project business Cases	TfNSW	Short to medium term
5	Local bicycle network and public domain improvements	Council to refine and implement cycle path recommendations through it's capital works and local contributions plans. Opportunities exist for other funding mechanisms.	Council and DPIE	Short to medium term
6	Bicycle network improvements on state roads	TfNSW to implement bicycle network improvements on state roads through infrastructure planning and detailed design and subject to comprehensive Council and community consultation.	TfNSW	Short to medium term
7	Footpath improvements on local roads	Council to refine and implement pedestrian improvements to local roads as part of it's capital works and local contributions plans	Council and DPIE	Short to medium term
8	Footpath improvements on state roads	TfNSW to implement place based recommendation for state roads as part of project business cases	TfNSW	Short to medium term

^{*} road widenings along state and local roads to improve traffic flow and through traffic capacity are not supported on the grounds that these are contradictory to the overarching vision of this report and Parramatta Road Corridor Urban Transformation Strategy. Any state or local road improvements should be focused on improving public transport accessibility and enhancing public domain for attractiveness of walking and cycling only.

5 Monitoring and review

The monitoring and review of the Transport Plan actions, and reporting against its guiding principles, is a crucial element of implementation. Council and DPIE should review the implementation plan at 5 year intervals and decide if any further transport analysis is required to align with planning horizons (2026, 2031 and beyond).

To assess progress towards achieving the Transport Plan guiding principles in alignment with PRCUTS, a series of performance indicators as extracted from PRCUTS and their recommended targets are shown in **Table 2-2**.

The Transport Plan should also be reviewed and updated following the completion of WestConnex Stage 3 in 2023.

About Cardno

Cardno is a professional infrastructure and environmental services company, with expertise in the development and improvement of physical and social infrastructure for communities around the world. Cardno's team includes leading professionals who plan, design, manage and deliver sustainable projects and community programs. Cardno is an international company listed on the Australian Securities Exchange [ASX:CDD].

Contact

Level 9 - The Forum 203 Pacific Highway St Leonards NSW 2065 Australia

Phone +61 2 9496 7700

Web Address www.cardno.com

now

