Appendix C – Summary laboratory data

Table C-1-1 Summary of investigation SPT results

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A1-BH05	2.5 - 2.95	Sandy CLAY with gravel	Alluvium	4	Soft to Firm
A1-BH05	3.5 - 3.95	Clayey SAND with gravel	Alluvium	5	Loose
A1-BH05	0.5 - 0.95	Silty SAND with gravel	Fill	9	
A1-BH05	1.5 - 1.95	SAND/Silty SAND	Fill	8	
A1-BH05	4.5 - 4.95	Clayey SAND	Residual	5	Medium Dense
A1-BH06	1.5 - 1.95	Sandy GRAVEL with silt	Fill	6	
A1-BH06	2.5 - 2.95	CLAY with sand	Alluvium	2	Soft
A1-BH06	3.5 - 3.95	CLAY with sand	Alluvium	2	Soft
A1-BH06	4.5 - 4.95	Sandy CLAY	Alluvium	2	Soft
A1-BH06	0.5 - 0.95	Clayey SAND with gravel	Fill	14	
A1-BH07	3 - 3.45	CLAY with gravel	Alluvium	0	Very Soft
A1-BH07	4.5 - 4.95	Sandy CLAY	Alluvium	0	Very Soft
A1-BH07	0.5 - 0.65	Clayey SAND with gravel	Fill	Refusal	
A1-BH07	7.5 - 7.95	Clayey SAND	Residual	8	Stiff
A2-BH02	2.5 - 2.95	Sandy CLAY	Residual	9	Stiff
A2-BH02	3.5 - 3.95	Sandy CLAY	Residual	13	Stiff

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A2-BH02	0.5 - 0.95	Silty SAND with gravel	Fill	5	
A2-BH02	1.5 - 1.95	Clayey SAND	Residual	9	Loose
A2-BH02	4.5 - 4.65	SANDSTONE	Bedrock	Refusal	
A2D-BH04	0.5 - 0.95	Gravelly Sandy CLAY	Fill	13	
A2D-BH04	1.5 - 1.95	CLAY	Residual	8	Firm
A2D-BH04	2.5 - 2.95	Sandy CLAY	Residual	15	Stiff
A2D-BH05	0.5 - 0.95	Gravelly SAND	Fill	36	
A2D-BH05	1.5 - 1.95	CLAY with sand	Residual	8	Firm
A2D-BH05	2.5 - 2.79	SANDSTONE	Bedrock	R	
A2D-BH06	1.5 - 1.95	Sandy CLAY	Fill	5	
A2D-BH06	0.5 - 0.95	Sandy CLAY	Fill	9	
A2D-BH06	2.5 - 2.64	SANDSTONE	Bedrock	Refusal	
A2D-BH07	0.5 - 0.95	Sandy CLAY with gravel	Fill	7	
A2D-BH07	2.5 - 2.95	Sandy CLAY	Residual	6	Firm
A2D-BH07	1.5 - 1.73	Sandy CLAY with gravel	Fill	Refusal	
A2D-BH07	3.1 - 3.2	SANDSTONE	Bedrock	Refusal	
A2D-LD01	1 - 1.45	Gravelly Sandy SILT	Fill	10	
A2D-LD01	2 - 2.45	Gravelly SAND	Fill	28	

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A2D-LD01	3 - 3.45	Gravelly SAND	Fill	16	
A2D-LD01	4 - 4.24	SANDSTONE	Bedrock	Refusal	
A2D-LD02	0.5 - 0.95	Gravelly Sandy SILT with ballast cobbles	Fill	12	
A2D-LD02	1.5 - 1.95	Gravelly SAND with silt	Fill	9	
A2D-LD03	0.5 - 0.95	CLAY with sand	Residual	23	Very Stiff
A2D-LD03	1.5 - 1.95	CLAY	Residual	29	Very Stiff
A2D-LD04	1.5 - 1.95	Sandy CLAY	Fill	12	
A2D-LD04	2.5 - 2.95	Sandy CLAY	Fill	16	
A2D-LD04	3.5 - 3.95	Sandy CLAY	Fill	22	
A2D-LD04	4.5 - 4.95	Sandy CLAY	Fill	23	
A2D-LD04	5.5 - 5.95	Sandy CLAY	Fill	17	
A2D-LD04	6.5 - 6.95	Sandy CLAY	Fill	14	
A2D-LD04	0.5 - 0.95	Silty SAND with gravel	Fill	18	
A2D-LD04	7.5 - 7.95	CLAY with sand	Fill	4	
A2D-LD04	9 - 9.45	CLAY	Alluvium	10	Firm
A2D-LD04	11 - 11.45	Sandy CLAY	Residual	8	Firm
A3-BH04	0.5 - 0.95	Sandy CLAY	Fill	13	
A3-BH04	1.5 - 1.95	Gravelly CLAY with sand	Residual	18	Very Stiff

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A3-BH04	2.5 - 2.95	Gravelly CLAY with sand	Residual	17	Very Stiff
A3-BH04	3.5 - 3.95	CLAY	Residual	16	Very Stiff
A3-BH04	4.5 - 4.95	CLAY	Residual	24	Very Stiff
A3-BH04	5.5 - 5.55	SANDSTONE	Bedrock	Refusal	
A3-BH05	0.5 - 0.95	Silty Clayey SAND with gravel	Fill	9	
A3-BH05	1.5 - 1.95	Silty Clayey SAND with gravel	Fill	6	
A3-BH05	2.5 - 2.95	CLAY	Residual	15	Very Stiff
A3-BH05	3.5 - 3.95	CLAY	Residual	14	Very Stiff
A3-BH05	4.5 - 4.7	SANDSTONE	Bedrock	Refusal	
A3-BH06	1.5 - 1.95	Clayey SAND	Fill	12	
A3-BH06	2.5 - 2.95	Clayey SAND	Fill	9	
A3-BH06	3.5 - 3.95	CLAY with gravel	Fill	10	
A3-BH06	4.5 - 4.95	CLAY with gravel	Fill	6	
A3-BH06	0.5 - 0.95	Gravelly Sandy CLAY	Fill	8	
A3-BH06	5.5 - 5.95	CLAY	Residual	11	Stiff
A3-BH06	6.5 - 6.95	CLAY	Residual	14	Stiff
A3-BH08	2.5 - 2.95	CLAY	Residual	17	Very Stiff
A3-BH08	0.5 - 0.95	Silty SAND	Fill	18	

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A3-BH08	1.5 - 1.95	Sandy CLAY	Fill	8	
A3-BH08	3.5 - 3.95	CLAY	Residual	18	Very Stiff
A3-BH08	4.5 - 4.95	CLAY	Residual	19	Very Stiff
A3-BH08	6.8 - 6	CLAY	Residual	Refusal	Very Stiff
A3-BH09	1.5 - 1.95	CLAY	Residual	39	Very Stiff
A3-BH09	2 - 2.28	Gravelly CLAY	Residual	Refusal	Very Stiff
A3-BH09	0.5 - 0.95	CLAY	Residual	15	Very Stiff
A3-BH09	4.5 - 4.77	SHALE	Bedrock	Refusal	
A3-BH10	0.5 - 0.95	Gravelly SAND	Fill	12	
A3-BH10	1.5 - 1.95	Gravelly CLAY	Fill	13	
A3-BH10	2.5 - 2.95	Gravelly CLAY	Fill	18	
A3-BH10	3.5 - 3.95	Gravelly CLAY	Fill	6	
A3-BH10	4.5 - 4.79	SHALE	Bedrock	Refusal	
A3-BH11	0.5 - 0.95	Gravelly CLAY with sand	Fill	8	
A3-BH11	1.5 - 1.95	CLAY with gravel	Residual	8	Stiff
A3-BH11	2.5 - 2.95	Silty CLAY	Residual	22	Very Stiff
A3-LD/BH01	2.5 - 2.95	CLAY with gravel	Fill	15	
A3-LD/BH01	4.5 - 4.95	CLAY with gravel	Fill	12	

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A3-LD/BH01	0.5 - 0.95	Silty SAND	Fill	14	
A3-LD/BH01	1.5 - 1.95	CLAY	Fill	8	
A3-LD/BH01	3.5 - 3.95	CLAY with gravel	Fill	18	
A3-LD/BH01	7.28 - 7.73	CLAY	Residual	16	Very Stiff
A3-LD/BH01	8 - 8.29	Gravelly CLAY	Residual	Refusal	Very Stiff
A3-LD/BH01	9.2 - 9.65	Clayey SAND	Residual	20	Medium Dense
A3-LD/BH01	10.4 - 10.63	SANDSTONE	Bedrock	Refusal	
A3-LD02	0.5 - 0.95	Sandy CLAY with gravel	Fill	4	
A3-LD02	1.5 - 1.95	Sandy CLAY with gravel	Fill	17	
A3-LD02	2.5 - 2.95	CLAY	Residual	10	Stiff
A3-LD02	3.5 - 3.95	CLAY	Residual	13	Stiff
A3-LD02	4.5 - 4.95	Sandy CLAY	Residual	17	Very Stiff
A3-LD02	5.5 - 5.56	SANDSTONE	Bedrock	Refusal	
A4-BH01	1.5 - 1.95	CLAY with sand	Residual	12	Stiff
A4-BH01	0.5 - 0.95	SAND with clay	Fill	4	
A4-BH01	2.5 - 2.83	SANDSTONE	Bedrock	Refusal	
A4-BH02	0.5 - 0.95	Sandy CLAY	Fill	5	
A4-BH02	1.5 - 1.85	SANDSTONE	Bedrock	Refusal	

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A4-BH03	0.5 - 0.95	Gravelly Silty SAND with ballast cobbles	Fill	7	
A4-BH03	1.5 - 1.95	SAND	Fill	6	
A4-BH03	2.5 - 2.95	SAND	Fill	3	
A4-BH03	3.5 - 3.83	SANDSTONE	Bedrock	Refusal	
A4-BH04	2.5 - 2.95	Clayey GRAVEL with sand	Fill	41	
A4-BH04	3.5 - 3.95	Clayey GRAVEL with sand	Fill	9	
A4-BH04	0.5 - 0.95	Gravelly Silty SAND with ballast cobbles	Fill	33	
A4-BH04	1.5 - 1.95	Clayey GRAVEL with sand	Fill	16	
A4-BH04	4.5 - 4.95	Sandy CLAY	Fill	7	
A4-BH05	0.5 - 0.95	GRAVEL with ballast cobbles	Fill	43	
A4-BH05	1.5 - 1.95	GRAVEL with ballast cobbles	Fill	48	
A4-BH06	0.5 - 0.75	GRAVEL with ballast cobbles	Fill	Refusal	
A4-BH07	0.5 - 0.95	Gravelly Silty SAND	Fill	10	
A4-BH07	1.5 - 1.95	Sandy CLAY	Residual	12	Stiff
A4-BH07	2.5 - 2.95	Sandy CLAY	Residual	12	Stiff
A4-BH07	3.5 - 3.95	Clayey SAND	Residual	16	Medium Dense
A4-BH07	4.5 - 4.95	SAND with clay	Residual	20	Medium Dense
A4-BH09	0.5 - 0.95	Sandy CLAY	Residual	7	Stiff

Investigation ID	Depth (mbgl)	Material Description	Material Origin	SPT Value (uncorrected)	In-situ Consistency / Density
A4-BH09	1.5 - 1.95	Sandy CLAY	Residual	17	Stiff
A4-BH09	2.5 - 2.6	SANDSTONE	Bedrock	Refusal	
A4-BH10	0.5 - 0.95	Clayey Gravelly SAND	Fill	12	
A4-BH10	1.5 - 1.95	Clayey Gravelly SAND	Fill	9	
A4-BH10	2.6 - 2.67	SANDSTONE	Bedrock	Refusal	
A4-BH11	0.5 - 0.87	Clayey SAND	Residual	Refusal	Medium Dense to Dense
A4-BH11	1.2 - 1.22	SANDSTONE	Bedrock	Refusal	
A4-BH12	0.5 - 0.95	Silty SAND	Fill	8	
A4-BH12	1.1 - 1.14	SANDSTONE	Bedrock	Refusal	
A4-HAC01	1 - 1.45	Silty SAND with gravel	Fill	9	
A4-HAC01	3 - 3.03	SANDSTONE	Bedrock	Refusal	
A4-HAC02	0.5 - 0.95	Clayey SAND	Fill	4	
A4-HAC02	1.5 - 1.6	SANDSTONE	Bedrock	Refusal	
A4-LD01	0.5 - 0.95	Silty SAND	Fill	9	
A4-LD01	1.5 - 1.95	SAND	Fill	3	
A4-LD01	3 - 3.3	SANDSTONE	Bedrock	Refusal	

Table C-1-2 Summary of investigation DCP results

Investigation ID	Type of Investigation	Termination depth (mbgl)	Reason for termination
A1-BH01	Augered Borehole	2.5	Refusal
A1-BH02	Augered Borehole	3	Target depth
A1-HA01	Hand Auger	2	Target depth
A1-LD01	Large Diameter Augered Borehole	2	Target depth
A1-LD02	Large Diameter Augered Borehole	2	Target depth
A1-LD03	Large Diameter Augered Borehole	1.75	Refusal
A1-LD04	Large Diameter Augered Borehole	2	Target depth
A1-LD05	Large Diameter Augered Borehole	2	Target depth
A1-LD06	Large Diameter Augered Borehole	1.8	Refusal
A1-LD07	Large Diameter Augered Borehole	2	Target depth
A1-LD08	Large Diameter Augered Borehole	2	Target depth
A1-LD09	Large Diameter Augered Borehole	2	Target depth
A1-LD10	Large Diameter Augered Borehole	2	Target depth
A1-LD11	Large Diameter Augered Borehole	2	Target depth
A2D-BH08	Cored Borehole	2.3	Refusal
A2D-BH09	Cored Borehole	3.25	Refusal
A2-HA01	Hand Auger	1.95	Target depth
A2-HA02	Hand Auger	1.95	Target depth

Investigation ID	Type of Investigation	Termination depth (mbgl)	Reason for termination
A2-HA03	Hand Auger	0.15	Refusal
A2-BH03	Augered Borehole	1.19	Refusal
A2-BH04	Augered Borehole	0.83	Refusal
A2-HAC03	Hand Auger	1	Target depth
A3-HA01	Hand Auger	2	Target depth
A3-HA02	Hand Auger	2	Target depth
A3-HA03	Hand Auger	2	Target depth
A3-HA04	Hand Auger	2	Target depth
A3-HA05	Hand Auger	2	Target depth
A3-LD01	Large Diameter Augered Borehole	2	Target depth
A3-BH01	Augered Borehole	2	Target depth
A3-BH02	Augered Borehole	2	Target depth
A3-BH03	Augered Borehole	2	Target depth
A3-BH07	Cored Borehole	2.45	Refusal
A4-BH08	Augered Borehole	0.68	Refusal
A4-HAC05	Hand Auger	1.85	Target depth
A4-HAC06	Hand Auger	1.5	Target depth
A3-HA06	Hand Auger	1.36	Refusal
A3-HA07	Hand Auger	1.11	Refusal

Investigation ID	Depth (mbgl)	Material Description	Material Origin	FMC (%)	LL (%)	PL (%)	Ы
A1-BH01	2.20 - 2.30	Clayey SAND with gravel	Alluvium	20.3	24	15	9
A1-BH05	2.50 - 2.95	Sandy CLAY with gravel	Alluvium	17.4	27	15	12
A1-BH05	3.50 - 3.95	Clayey SAND with gravel	Alluvium	23	28	19	9
A1-BH06	2.50 - 2.95	CLAY with sand	Alluvium	55.7	46	21	25
A1-BH06	4.50 - 4.95	Sandy CLAY	Alluvium	26.8	26	14	12
A1-BH07	3.00 - 3.45	CLAY with gravel	Alluvium	45.9	57	25	32
A1-BH07	7.30 - 7.40	Clayey SAND	Residual	24	28	15	13
A1-LD04	1.80 - 1.90	CLAY	Alluvium	30.9	46	21	25
A1-LD06	1.10 - 1.50	CLAY	Alluvium	45.3	48	25	23
A2-BH02	3.50 - 3.95	Sandy CLAY	Residual	15.9	40	14	26
A2-BH03	0.70 - 0.90	CLAY	Residual	11.9	49	21	28
A2-BH04	0.30 - 0.50	Clayey SAND	Fill	10	23	13	10
A2D-BH07	2.50 - 2.95	Sandy CLAY	Residual	16.3	30	13	17
A2D-BH08	1.00 - 1.20	Sandy CLAY	Fill	16.4	32	15	17
A2D-BH09	2.40 - 2.65	Sandy CLAY with gravel	Residual	20.4	39	15	24
A2D-LD03	1.00 - 2.00	CLAY	Residual	16	52	17	35
A2D-LD04	1.50 - 3.95 combined	Sandy CLAY	Fill	9.5	28	16	12

Table C-1-3 FMC and Atterberg test results

Investigation ID	Depth (mbgl)	Material Description	Material Origin	FMC (%)	LL (%)	PL (%)	PI
A2D-LD04	4.10 - 4.40	Sandy CLAY	Fill	9.9	32	16	16
A2D-LD04	4.50 - 6.95 combined	Sandy CLAY	Fill	10.1	29	16	13
A3-BH01	1.20 - 1.30	CLAY	Residual	17.4	63	27	36
A3-BH03	1.70 - 1.80	CLAY	Residual	17.9	65	25	40
A3-BH04	0.50 - 0.95	Sandy CLAY	Fill	14.5	31	17	14
A3-BH04	1.50 - 1.95	Gravelly CLAY with sand	Residual	14.7	37	16	21
A3-BH05	0.50 - 1.95 combined	Silty Clayey SAND with gravel	Fill	13.8	25	20	5
A3-BH05	2.50 - 2.95	CLAY	Residual	16.9	55	20	35
A3-BH06	1.5 - 1.95	Clayey SAND	Fill	12.5	28	15	13
A3-BH06	3.50-4.95 combined	CLAY with gravel	Fill		35	19	16
A3-BH07	1.50 - 1.70	CLAY	Fill	14.4	32	18	14
A3-BH08	2.50 - 2.95	CLAY	Residual	13.2	74	22	52
A3-BH09	1.5 - 1.95	CLAY	Residual	17.1	62	26	36
A3-BH10	4.10 - 4.20	CLAY	Residual	21.5	49	24	25
A3-HA02	1.10 - 1.20	CLAY	Fill	24.9	35	21	14
A3-HA04	0.80-0.90	CLAY	Fill	22.9	52	21	31
A3-HA05	1.30-1.50	CLAY	Residual	19.7	42	20	22

Investigation ID	Depth (mbgl)	Material Description	Material Origin	FMC (%)	LL (%)	PL (%)	PI
A3-HA06	1.00-1.15	SHALE	Bedrock	4.3	24	21	3
A3-LD/BH01	2.50 - 2.95	CLAY with gravel	Fill	12.7	46	17	29
A3-LD/BH01	4.10 - 4.40	CLAY	Fill	15	44	16	28
A3-LD/BH01	4.50 - 4.95	CLAY with gravel	Fill	13.7	42	16	26
A3-LD01	1.10 - 1.40	CLAY	Residual	19.1	61	26	35
A3-LD02	0.50 - 1.95 combined	Sandy CLAY with gravel	Fill	16.8	36	17	19
A4-BH01	1.50 - 1.95	CLAY with sand	Residual	14.7	53	20	33
A4-BH09	0.50 - 0.95	Sandy CLAY	Residual	18.8	46	18	28
A4-TP01	2.0 - 2.60	CLAY with sand	Residual	15.4	41	16	25

Table C-1-4 PSD test results

Investigation ID	Depth (mbgl)	Material Description	Material Origin	Gravel content (% > 2.36 mm)	Sand content (% < 2.36 & > 0.075 mm)	Fines content (% < 0.075 mm)
A1-BH01	2.20 - 2.30	Clayey SAND with gravel	Alluvium	17	60	23
A1-BH05	2.30 - 2.40	Sandy CLAY with gravel	Alluvium	9	56	35
A1-BH05	3.50 - 3.95	Clayey SAND with gravel	Alluvium	25	55	20
A1-BH06	3.50 - 3.95	CLAY with sand	Alluvium	1	55	44
A1-BH07	4.50 - 4.95	Sandy CLAY	Alluvium	4	46	50

Investigation ID	Depth (mbgl)	Material Description	Material Origin	Gravel content (% > 2.36 mm)	Sand content (% < 2.36 & > 0.075 mm)	Fines content (% < 0.075 mm)
A1-BH07	7.30 - 7.40	Clayey SAND	Residual	0	70	30
A2-BH02	2.50 - 2.95	Sandy CLAY	Residual	1	38	61
A2D-BH09	1.25 - 1.40	Clayey Sandy GRAVEL	Fill	45	41	14
A2D-LD04	1.50 - 3.95 combined	Sandy CLAY	Fill	14	33	53
A2D-LD04	4.50 - 6.95 combined	Sandy CLAY	Fill	14	42	45
A3-BH04	2.50 - 2.95	Gravelly CLAY with sand	Residual	31	19	51
A3-BH05	0.50 - 1.95 combined	Silty Clayey SAND with gravel	Fill	20	47	33
A3-HA01	0.50-0.65	Clayey Sandy GRAVEL	Fill	44	37	19
A3-HA03	0.60 - 0.70	CLAY	Fill	16	26	58
A3-HA05	0.3 - 0.4	Clayey Sandy GRAVEL	Fill	49	32	19
A3-LD01	0.00 - 0.50	Silty SAND	Fill	20	24	56
A3-LD02	0.50 - 1.95 combined	Sandy CLAY with gravel	Fill	21	31	48
A4-BH04	2.50 - 3.95 combined	Clayey GRAVEL with sand	Fill	44	27	29
A4-BH05/06	Combined sample	GRAVEL with ballast cobbles	Fill	49	32	19
A4-BH08	0.30 - 0.40	Clayey SAND	Fill	2	64	34
A4-BH10	0.50 - 1.95	Clayey Gravelly SAND	Fill	40	41	19

Investigation ID	Depth (mbgl)	Material Description	Material Origin	Gravel content (% > 2.36 mm)	Sand content (% < 2.36 & > 0.075 mm)	Fines content (% < 0.075 mm)
A4-TP02	0.3 - 0.5	Silty SAND with cobbles and boulders	Fill	55	34	11

Table C-1-5 Compaction and CBR test results

Investigation ID	Depth (mbgl)	Material Description	Material Origin	FMC (%)	MDD (t/m³)	OMC (%)	CBR
A1-LD03	0.50 - 1.00	Silty SAND	Fill	14.2	1.902	12.5	6.1
A1-LD05	0.70 - 1.00	Silty CLAY with sand	Fill	30.1	1.658	18.7	3.9
A1-LD06	1.10 - 1.50	CLAY	Alluvium	45.3	1.423	28.2	3
A1-LD07	0.50 - 1.00	Silty SAND with gravel	Fill	11.1	1.923	11.2	6.8
A1-LD10	1.20 - 1.50	Clayey SAND with gravel	Fill	28	1.534	25.2	2.3
A2D-LD02	1.10 - 1.40	Gravelly Sandy SILT	Fill	9.6	1.755	13.8	7.7
A2D-LD03	0.20 - 1.00	CLAY with sand	Residual	13.2	1.813	14.6	3.6
A2D-LD04	4.10 - 4.40	Sandy CLAY	Fill	9.9	1.867	13.3	
A3-LD/BH01	4.10 - 4.40	CLAY	Fill	15	1.736	16.6	
A3-LD01	0.00 - 0.50	Silty SAND	Fill		1.675	20.5	4.4

Table C-1-6 Point load test results

Investigation ID	Depth (mbgl)	Material Description	Axial Is50 (MPa)	Diametral Is50 (MPa)
A1-BH06	9.5	Sandstone	0.16	0.14
A1-BH06	10.5	Sandstone	0.26	0.33
A1-BH06	11.48	Sandstone	0.50	0.38
A1-BH07	11.86	Sandstone	0.05	0.04
A1-BH07	12.7	Sandstone	0.77	0.52
A1-BH07	13.4	Sandstone	0.47	0.32
A1-BH07	14.35	Sandstone	1.61	1.20
A2-BH02	5.36	Sandstone	0.56	0.41
A2-BH02	6.31	Sandstone	0.32	0.11
A2-BH02	7.41	Sandstone	0.65	0.44
A2-BH02	8.56	Sandstone	1.52	1.08
A2D-BH04	4.23	Sandstone	0.67	0.43
A2D-BH04	5.16	Sandstone	1.41	1.09
A2D-BH04	6.08	Sandstone	1.33	1.41
A2D-BH04	7.05	Sandstone	0.22	1.30
A2D-BH05	3.7	Sandstone	1.07	0.37
A2D-BH05	4.75	Sandstone	1.39	0.83
A2D-BH05	5.67	Sandstone	0.95	1.12

Investigation ID	Depth (mbgl)	Material Description	Axial Is50 (MPa)	Diametral Is50 (MPa)
A2D-BH05	6.67	Sandstone	2.50	1.17
A2D-BH06	3.55	Sandstone	2.03	1.56
A2D-BH06	4.46	Sandstone	1.47	1.14
A2D-BH06	5.61	Sandstone	1.46	1.12
A2D-BH06	6.59	Sandstone	0.93	1.09
A2D-BH06	7.18	Sandstone	1.71	1.39
A2D-BH07	3.82	Sandstone	1.76	1.22
A2D-BH07	4.97	Sandstone	0.85	1.16
A2D-BH07	5.62	Sandstone	1.27	1.18
A2D-BH08	2.53	Sandstone	0.80	0.59
A2D-BH08	3.95	Sandstone	0.64	0.80
A2D-BH08	4.56	Sandstone	1.30	1.15
A2D-BH08	5.53	Sandstone	1.21	1.07
A2D-BH08	6.78	Sandstone	1.59	1.28
A2D-BH09	3.72	Sandstone	1.21	0.84
A2D-BH09	4.8	Sandstone	1.26	1.34
A2D-BH09	5.84	Sandstone	1.21	1.20
A2D-BH09	6.8	Sandstone	1.66	1.26
A2D-LD01	4.58	Sandstone	1.01	0.86

Investigation ID	Depth (mbgl)	Material Description	Axial Is50 (MPa)	Diametral Is50 (MPa)
A2D-LD01	5.57	Sandstone	1.34	1.44
A2D-LD01	6.58	Sandstone	1.97	1.75
A2D-LD01	7.35	Sandstone	1.21	1.38
A3-BH04	6.42	Sandstone	0.95	1.19
A3-BH04	7.44	Sandstone	0.59	0.61
A3-BH04	8.51	Sandstone	0.73	0.86
A3-BH04	9.51	Sandstone	0.78	0.79
A3-BH05	4.91	Sandstone	1.12	0.89
A3-BH05	5.55	Sandstone	0.89	0.56
A3-BH05	6.61	Sandstone	1.01	0.96
A3-BH05	7.5	Sandstone	1.13	1.09
A3-BH05	8.33	Sandstone	0.55	0.43
A3-BH06	7.85	Sandstone	1.90	0.54
A3-BH06	8.13	Sandstone	0.09	0.04
A3-BH06	8.3	Sandstone	0.53	0.47
A3-BH06	9.29	Sandstone	0.74	0.68
A3-BH06	10.32	Sandstone	0.52	0.54
A3-BH06	11.43	Sandstone	1.43	1.41
A3-BH07	3.69	Siltstone	0.32	0.50

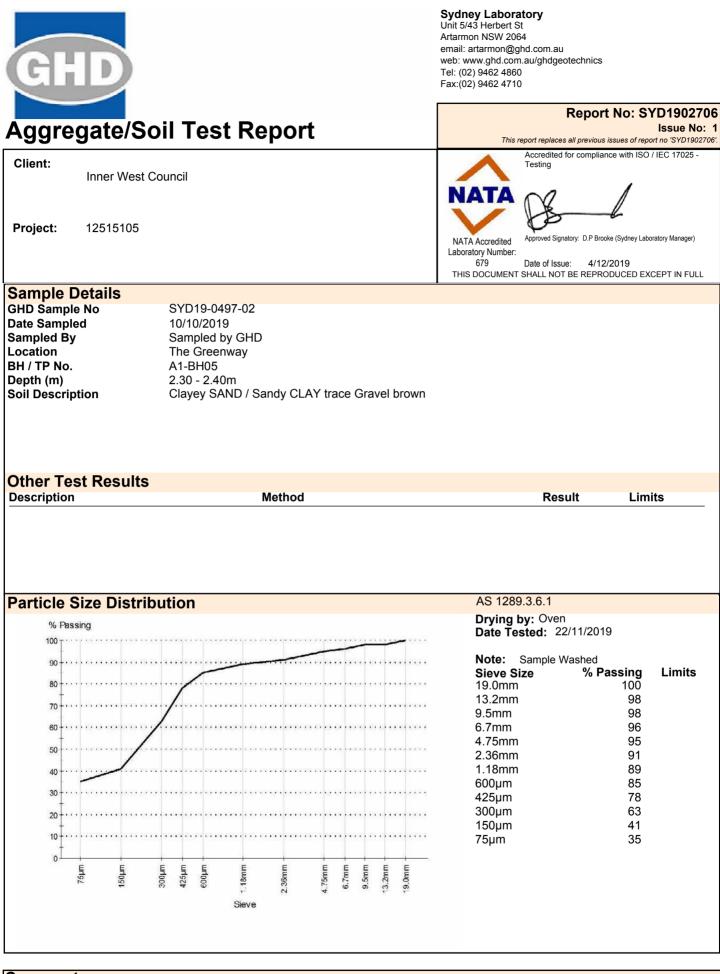
Investigation ID	Depth (mbgl)	Material Description	Axial Is50 (MPa)	Diametral Is50 (MPa)
A3-BH07	4.74	Sandstone	0.06	0.07
A3-BH07	5.73	Sandstone	0.37	0.24
A3-BH07	6.6	Sandstone	0.47	0.24
A3-BH08	6.37	Sandstone	1.11	0.65
A3-BH08	7.7	Sandstone	0.21	0.25
A3-BH08	8.81	Sandstone	0.17	0.30
A3-BH08	9.86	Sandstone	2.38	1.75
A3-BH09	5.45	Siltstone	0.18	0.03
A3-BH09	6.42	Siltstone	0.09	0.03
A3-BH09	7.41	Sandstone	0.36	0.01
A3-BH09	7.89	Sandstone	0.20	0.03
A3-BH09	8.21	Sandstone	0.23	0.26
A3-BH10	5.73	Sandstone	0.28	0.05
A3-BH10	6.25	Sandstone	1.22	0.66
A3-BH10	7.4	Sandstone	0.20	0.19
A3-BH10	7.95	Sandstone	0.61	0.33
A3-BH10	8.29	Sandstone	0.39	0.11
A3-BH10	9.16	Sandstone	1.59	1.81
A3-BH10	10.59	Sandstone	1.59	1.65

Investigation ID	Depth (mbgl)	Material Description	Axial Is50 (MPa)	Diametral Is50 (MPa)
A3-BH10	11.74	Sandstone	3.36	2.47
A3-BH10	12.6	Sandstone	2.96	2.19
A3-BH10	13.16	Sandstone	1.86	2.90
A3-BH11	4.73	Sandstone	0.32	0.09
A3-BH11	5.92	Sandstone	1.84	1.14
A3-BH11	6.83	Sandstone	1.37	1.22
A3-BH11	7.93	Sandstone	1.38	1.38
A3-BH11	8.94	Sandstone	1.85	1.65
A3-BH11	9.52	Sandstone	1.02	0.91
A3-BH11	10.2	Sandstone	0.20	0.22
A3-LD/BH01	11.25	Sandstone	0.71	0.87
A3-LD/BH01	12.19	Sandstone	1.20	1.00

Table C-1-7 Soil aggressivity suite test results

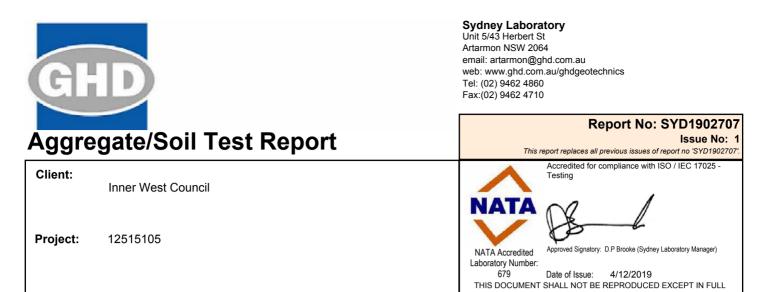
Investigation ID	Depth (mbgl)	Material Description	Material Origin	рН	CI [.] (mg/kg)	SO₄²- (mg/kg)	Ece (µS/cm)	Ece (dS/m)
A1-BH01	2.2 - 2.3	Clayey SAND with gravel	Alluvium	8.4	2800	540	2000	2.000
A1-BH02	0.8 - 0.9	Sandy GRAVEL with silt	Fill	8.8	1700	480	1400	1.400
A1-BH06	1.5 - 1.95	Sandy GRAVEL with silt	Fill	10.9	5900	780	3900	3.900

Investigation ID	Depth (mbgl)	Material Description	Material Origin	рН	Cl ⁻ (mg/kg)	SO₄²- (mg/kg)	Ece (µS/cm)	Ece (dS/m)
A1-BH06	3.5 - 3.95	CLAY with sand	Alluvium	8.3	9000	2900	6400	6.400
A1-BH07	3 - 3.45	CLAY with gravel	Alluvium	8.2	8700	2700	6000	6.000
A1-BH07	6.5 - 6.7	Sandy CLAY	Residual	8.4	2800	710	2200	2.200
A1-LD01	1.1 - 1.5	Sandy CLAY	Fill	9	890	180	790	0.790
A1-LD03	0.5 - 1	Silty SAND	Fill	7.8	1300	2100	1600	1.600
A1-LD04	1.8 - 1.9	CLAY	Alluvium	7.8	1800	3500	2500	2.500
A1-LD05	0.7 - 1	Silty CLAY with sand	Fill	7.8	67	7900	2400	2.400
A1-LD06	1.1 - 1.5	CLAY	Alluvium	8.1	1000	2800	2000	2.000
A1-LD07	0.5 - 1	Silty SAND with gravel	Fill	7.1	340	310	400	0.400
A1-LD09	0.3 - 0.5	Sandy CLAY with gravel with rubble	Fill	8.4	850	1200	1200	1.200
A1-LD10	1.2 - 1.5	Clayey SAND with gravel	Fill	7.2	240	290	350	0.350
A2-BH02	2.5 - 2.95	Sandy CLAY	Residual	5	<10	58	44	0.044
A2-BH03	0.7 - 0.9	CLAY	Residual	5.1	35	91	83	0.083
A2-BH04	0.3 - 0.5	Clayey SAND	Fill	6.8	<10	79	72	0.072
A2D-BH06	1.5 - 1.95	Sandy CLAY	Fill	7.2	<10	10	29	0.029
A2D-BH07	0.5 - 0.95	Sandy CLAY with gravel	Fill	8.4	10	30	120	0.120
A2D-BH07	2.5 - 2.95	Sandy CLAY	Residual	7.8	24	36	67	0.067
A2D-BH08	1 - 1.2	Sandy CLAY	Fill	8.1	25	20	54	0.054


Investigation ID	Depth (mbgl)	Material Description	Material Origin	рН	Cl [.] (mg/kg)	SO₄²- (mg/kg)	Ece (μS/cm)	Ece (dS/m)
A2D-BH09	1.25 - 1.4	Clayey Sandy GRAVEL	Fill	8.3	<10	10	66	0.066
A2D-BH09	2.4 - 2.65	Sandy CLAY with gravel	Residual	5.1	10	30	31	0.031
A2D-LD01	0.5 - 0.8	Gravelly Sandy SILT	Fill	6.9	41	50	160	0.160
A2D-LD02	0.5 - 0.95	Gravelly Sandy SILT with ballast cobbles	Fill	7.3	31	72	160	0.160
A2D-LD03	1 - 2	CLAY	Residual	5.4	44	89	89	0.089
A2D-LD04	1.5 - 3.95 combined	Sandy CLAY	Fill	7.8	10	130	120	0.120
A2D-LD04	4.5 - 6.95 combined	Sandy CLAY	Fill	8.3	25	410	300	0.300
A2-HA02	0.4 - 0.5	Sandy GRAVEL	Fill	7.2	20	10	54	0.054
A2-TP01	0.3 - 0.6	Gravelly SAND	Fill	7.3	10	10	42	0.042
A3-BH01	1.2 - 1.3	CLAY	Residual	5	42	110	100	0.100
A3-BH03	1.7 - 1.8	CLAY	Residual	4.7	10	79	61	0.061
A3-BH04	0.5 - 0.95	Sandy CLAY	Fill	7.4	<10	71	100	0.100
A3-BH04	2.5 - 2.95	Gravelly CLAY with sand	Residual	4.9	<10	94	66	0.066
A3-BH05	0.5 - 1.95	Silty Clayey SAND with gravel	Fill	6.9	10	58	65	0.065
A3-BH06	1.5 - 2.95	Clayey SAND	Fill	6.5	20	81	70	0.070
A3-BH06	3.5 - 4.95 combined	CLAY with gravel	Fill	5.5	10	330	200	0.200
A3-BH07	1.5 - 1.7	CLAY	Fill	5.5	20	160	110	0.110

Investigation ID	Depth (mbgl)	Material Description	Material Origin	рН	Cl [.] (mg/kg)	SO₄²- (mg/kg)	Ece (μS/cm)	Ece (dS/m)
A3-BH08	2.5 - 2.95	CLAY	Residual	4.6	170	97	180	0.180
A3-BH10	4.1 - 4.2	CLAY	Residual	4.8	<10	130	91	0.091
A3-HA01	0.5 - 0.65	Clayey Sandy GRAVEL	Fill	7.9	23	<10	57	0.057
A3-HA02	0.3 - 0.5	Gravelly SAND with rubble	Fill	8.7	26	200	190	0.190
A3-HA04	0.8 - 0.9	CLAY	Fill	5.4	20	42	46	0.046
A3-HA05	0.3 - 0.4	Clayey Sandy GRAVEL	Fill	6.7	10	10	35	0.035
A3-HA05	1.3 - 1.5	CLAY	Residual	7.3	310	160	340	0.340
A3-HA06	0.3 - 0.4	Silty SAND with cobbles	Fill	8.1	120	42	230	0.230
A3-HA06	1 - 1.15	SHALE	Bedrock	8.3	10	76	110	0.110
A3-HA07	0.6 - 0.7	Silty Sandy GRAVEL	Fill	7.3	20	10	39	0.039
A3-LD/BH01	2.5 - 2.95	CLAY with gravel	Fill	7.2	<10	36	40	0.040
A3-LD02	0.5 - 1.95 combined	Sandy CLAY with gravel	Fill	7.5	<10	38	74	0.074
A4-BH02	0.7 - 0.9	Sandy CLAY	Fill	6.9	<10	20	24	0.024
A4-BH04	2.5 - 3.95	Clayey GRAVEL with sand	Fill	8.2	10	190	220	0.220
A4-BH05	0.5 - 1.95	GRAVEL with ballast cobbles	Fill	8.5	20	100	150	0.150
A4-BH08	0.3 - 0.4	Clayey SAND	Fill	7.2	20	51	33	0.033
A4-BH09	0.5 - 0.95	Sandy CLAY	Residual	4.7	10	170	110	0.110
A4-BH10	0.5 - 1.95	Clayey Gravelly SAND	Fill	7.8	<10	25	58	0.058

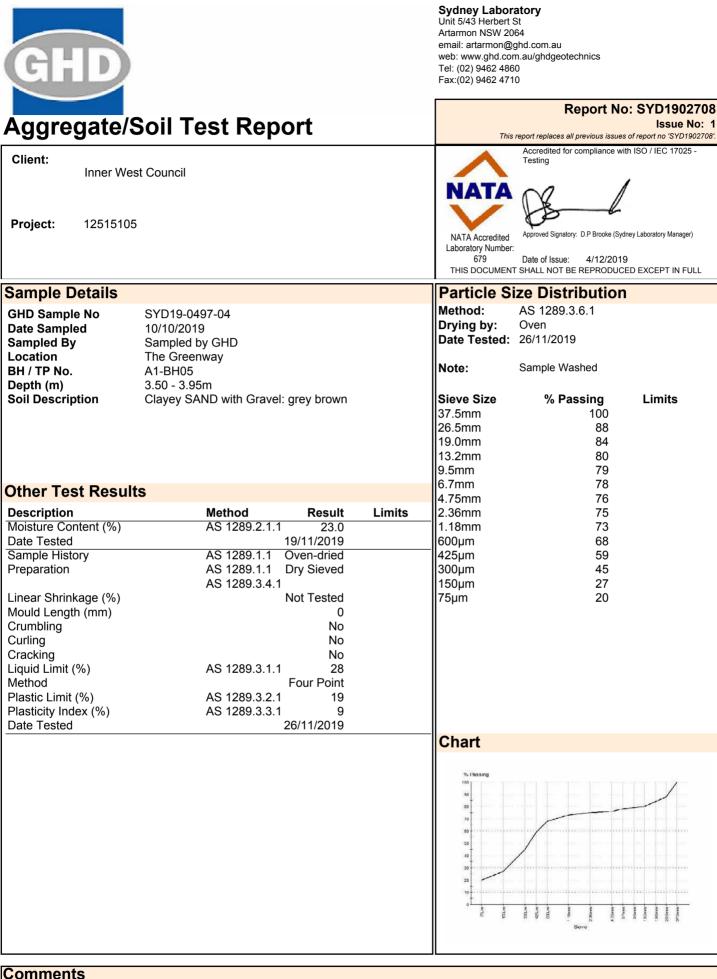
Investigation ID	Depth (mbgl)	Material Description	Material Origin	рН	CI [.] (mg/kg)	SO₄²- (mg/kg)	Ece (µS/cm)	Ece (dS/m)
A4-BH12	0.5 - 0.95	Silty SAND	Fill	7.2	<10	25	56	0.056
A4-TP02	0.3 - 0.5	Silty SAND with cobbles and boulders	Fill	5.6	<10	<10	29	0.029

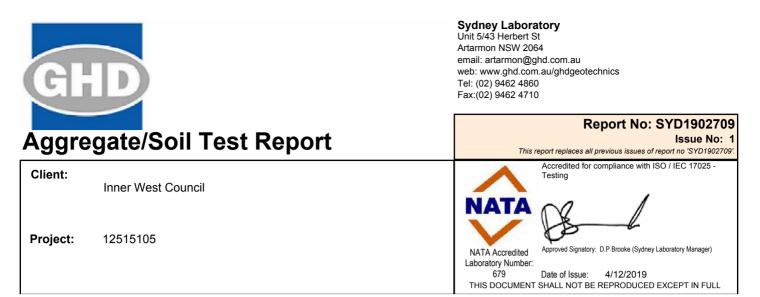

Appendix D – Laboratory certificates

GHD			Sydney Labor Unit 5/43 Herbert 3 Artarmon NSW 20 email: artarmon@ web: www.ghd.cor Tel: (02) 9462 486 Fax:(02) 9462 471	St 64 ghd.com.au m.au/ghdgeotechnics 50	
Aggregate/	Soil Test Report		This	report replaces all previous issues	
Project: 12515105	st Council 5			Date of Issue: 4/12/2019 T SHALL NOT BE REPRODUC	Iney Laboratory Manager) 9 ED EXCEPT IN FULL
Sample Details				ize Distribution	
GHD Sample No Date Sampled	SYD19-0497-01 10/10/2019		Method: Drying by:	AS 1289.3.6.1 Oven	
Sampled By	Sampled by GHD		Date Tested:		
Location BH / TP No. Depth (m)	The Greenway A1-BH01 2.20 - 2.30m		Note:	Sample Washed	
Soil Description	Clayey SAND with Gravel : grey/brown	:	Sieve Size 26.5mm 19.0mm 13.2mm 9.5mm 6.7mm 4.75mm	% Passing 100 97 97 95 92 89	Limits
Other Test Resul			2.36mm	83	
Description Moisture Content (%)	Method Result Li AS 1289.2.1.1 20.3		1.18mm 600µm	77 70	
Date Tested	19/11/2019	·	425µm	61	
Sample History Preparation	AS 1289.1.1 Oven-dried AS 1289.1.1 Dry Sieved		300µm 150µm	46 28	
rieparation	AS 1289.3.4.1		75µm	23	
Linear Shrinkage (%)	Not Tested				
Mould Length (mm) Crumbling	0 No				
Curling	No				
Cracking Liquid Limit (%)	No AS 1289.3.1.1 24				
Method	Four Point				
Plastic Limit (%)	AS 1289.3.2.1 15 AS 1289.3.3.1 9				
Plasticity Index (%) Date Tested	AS 1289.3.3.1 9 26/11/2019				
			Chart		
			W. Hassing		4.3.000 1.3.000 1.4.000 <t< td=""></t<>
Comments		1			

Comments

Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1

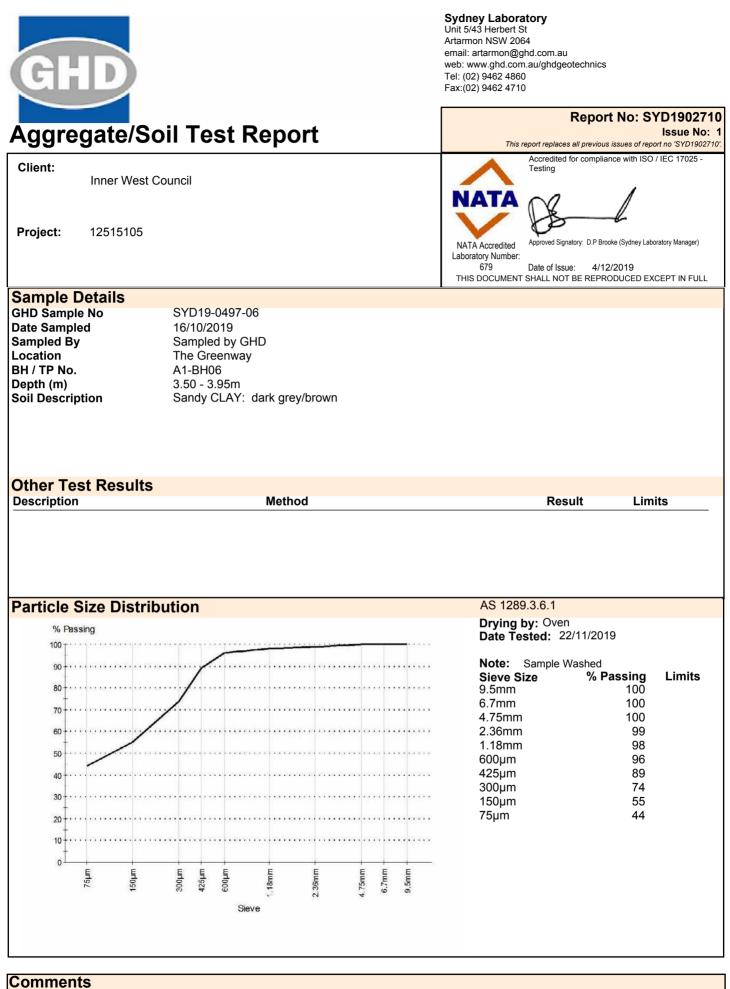



GHD Sample No	SYD19-0497-03
Date Sampled	10/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-BH05
Depth (m)	2.50 - 2.95m
Soil Description	Gravelly CLAY with sand brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	17.4	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	27	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	12	
Date Tested		26/11/2019	

Comments



GHD Sample No	SYD19-0497-05
Date Sampled	10/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-BH06
Depth (m)	2.50 - 2.95m
Soil Description	CLAY with Sand: dark grey/brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	55.5	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	46	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	21	
Plasticity Index (%)	AS 1289.3.3.1	25	
Date Tested		21/11/2019	

Comments

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

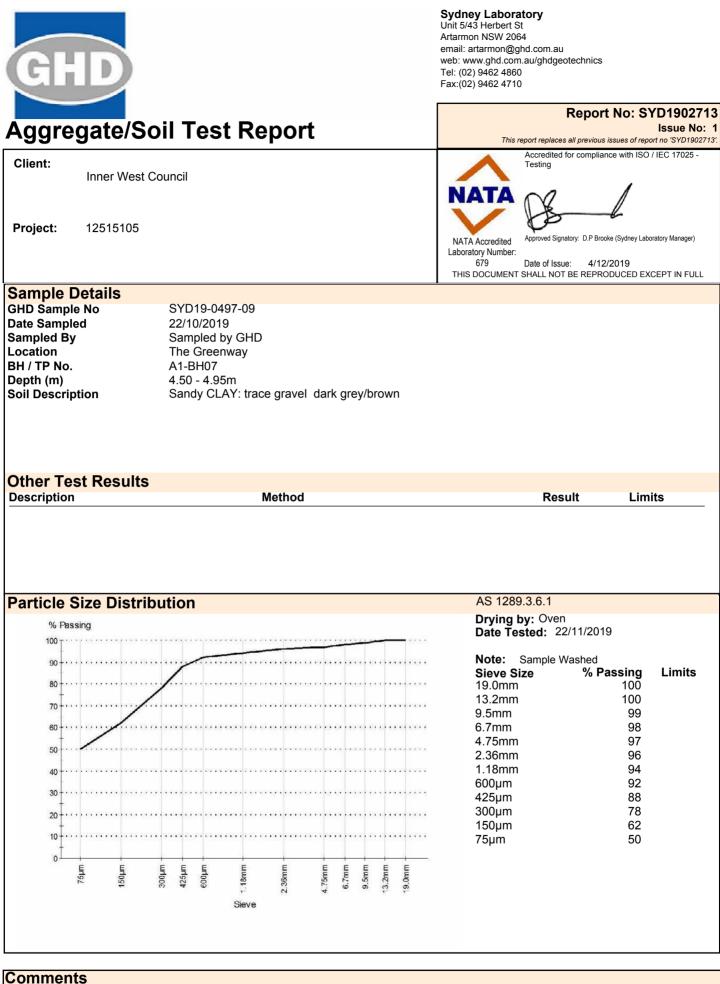
Sample Details

GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0497-07 16/10/2019 Sampled by GHD The Greenway A1-BH06 4.50 - 4.95m Sandy CLAY: grey/brown

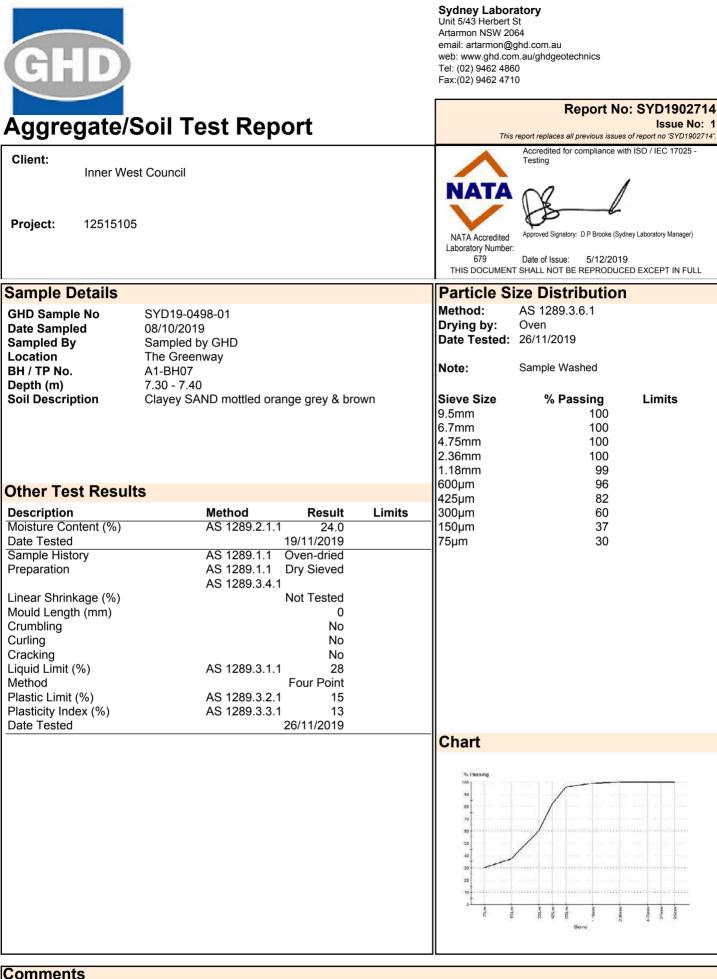
Test Results

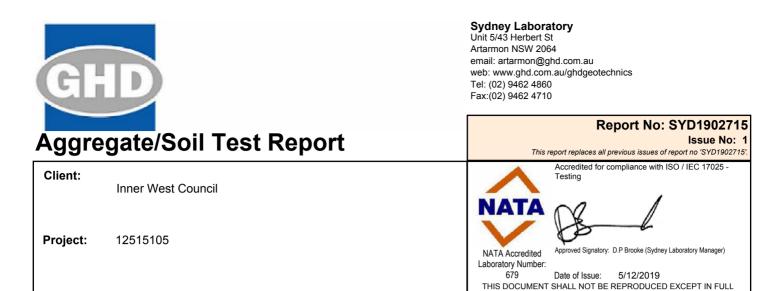
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	26.8	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	26	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	12	
Date Tested		22/11/2019	

Comments



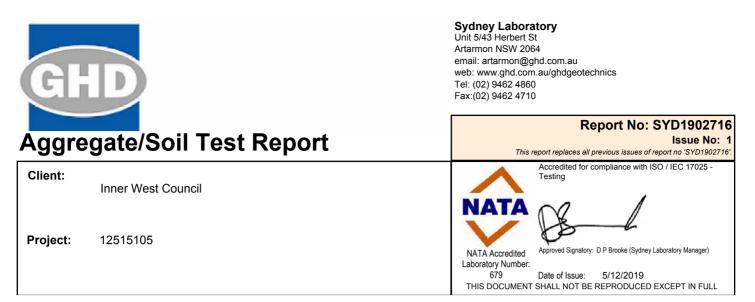
GHD Sample No	SYD19-0497-08
Date Sampled	22/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-BH07
Depth (m)	3.00 - 3.45m
Soil Description	CLAY with Sand: dark grey/brown


Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	45.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	57	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	25	
Plasticity Index (%)	AS 1289.3.3.1	32	
Date Tested		22/11/2019	

Comments

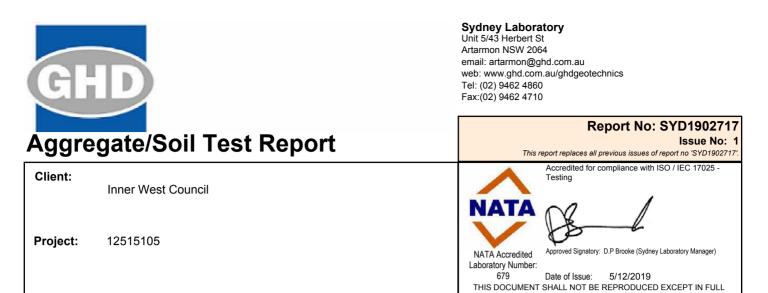
Comment N/A



GHD Sample No	SYD19-0498-02
Date Sampled	08/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-LD03
Depth (m)	0.50 - 1.00
Soil Description	Gravelly sandy CLAY: dark brown

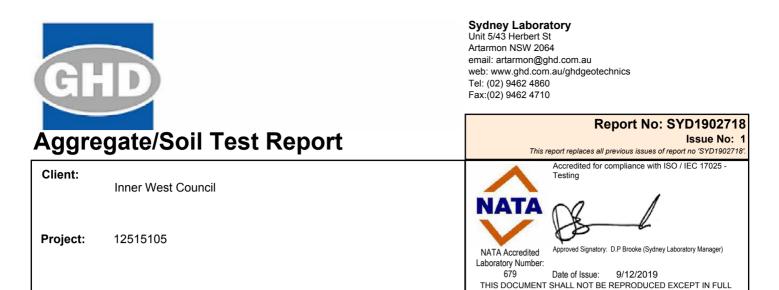
Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.2	
Date Tested		19/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.90	
Standard Optimum Moisture Content (%)		12.5	
Retained Sieve 19mm (%)		5	
Compactive Effort		Standard	
Date Tested		21/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	6	
CBR At 5.0mm (%)		6	
Maximum Dry Density (t/m ³)		1.90	
Optimum Moisture Content (%)		12.5	
Dry Density before Soaking (t/m ³)		1.80	
Density Ratio before Soaking (%)		95.0	
Moisture Content before Soaking (%)		12.7	
Moisture Ratio before Soaking (%)		101.0	
Dry Density after Soaking (t/m ³)		1.80	
Density Ratio after Soaking (%)		94.5	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		14.9	
Moisture Content of Remaining Depth (%)		15.2	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		5.5	
Date Tested		29/11/2019	


Comments

GHD Sample No	SYD19-0498-03
Date Sampled	08/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-LD04
Depth (m)	1.80 - 1.90
Soil Description	CLAY with sand dark grey brown

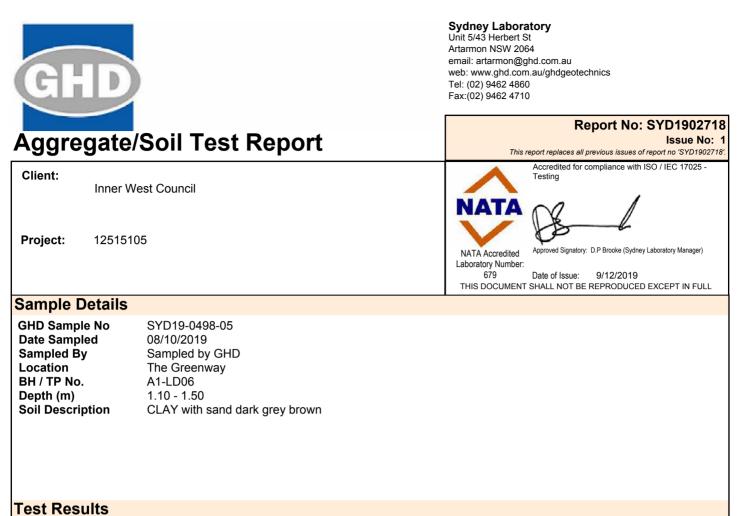
Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	30.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	46	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	21	
Plasticity Index (%)	AS 1289.3.3.1	25	
Date Tested		22/11/2019	

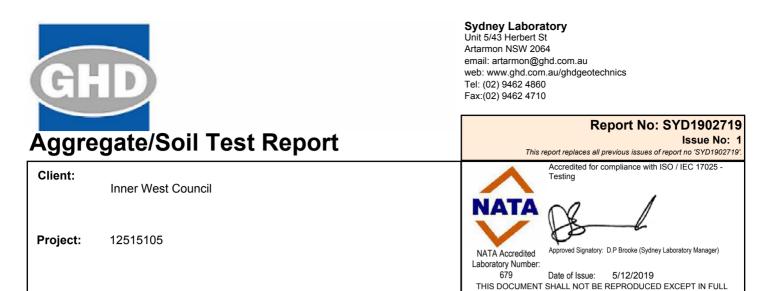
-	
GHD Sample No	SYD19-0498-04
Date Sampled	08/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-LD05
Depth (m)	0.70 - 1.00
Soil Description	CLAY with sand trace gravel dark grey brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	30.1	
Date Tested		20/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.66	
Standard Optimum Moisture Content (%)		18.5	
Retained Sieve 19mm (%)		2	
Compactive Effort		Standard	
Date Tested		25/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	4.0	
CBR At 5.0mm (%)		3.5	
Maximum Dry Density (t/m ³)		1.66	
Optimum Moisture Content (%)		18.7	
Dry Density before Soaking (t/m ³)		1.58	
Density Ratio before Soaking (%)		95.0	
Moisture Content before Soaking (%)		18.7	
Moisture Ratio before Soaking (%)		100.0	
Dry Density after Soaking (t/m ³)		1.56	
Density Ratio after Soaking (%)		94.0	
Swell (%)		1.0	
Moisture Content of Top 30mm (%)		24.2	
Moisture Content of Remaining Depth (%)		23.7	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		2.3	
Date Tested		2/12/2019	


GHD Sample No
Date Sampled
Sampled By
Location
BH / TP No.
Depth (m)
Soil Description

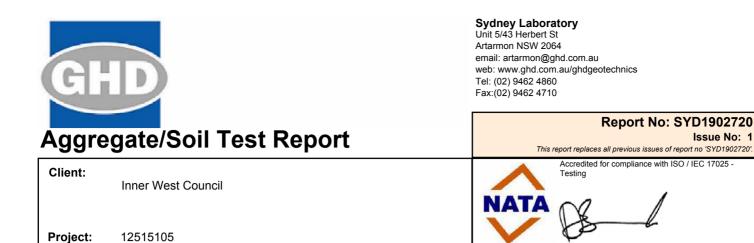
SYD19-0498-05 08/10/2019 Sampled by GHD The Greenway A1-LD06 1.10 - 1.50 CLAY with sand dark grey brown


Test Results

i est nesults			
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	45.3	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	48	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	25	
Plasticity Index (%)	AS 1289.3.3.1	23	
Date Tested		22/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.42	
Standard Optimum Moisture Content (%)		28.0	
Retained Sieve 19mm (%)		3	
Compactive Effort		Standard	
Date Tested		29/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	3.0	
CBR At 5.0mm (%)		3.0	
Maximum Dry Density (t/m ³)		1.42	
Optimum Moisture Content (%)		28.2	
Dry Density before Soaking (t/m ³)		1.35	
Density Ratio before Soaking (%)		95.0	
Moisture Content before Soaking (%)		28.2	
Moisture Ratio before Soaking (%)		100.0	
Dry Density after Soaking (t/m ³)		1.34	
Density Ratio after Soaking (%)		94.0	

N/A

Description	Method	Result	Limits
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		31.7	
Moisture Content of Remaining Depth (%)		31.5	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		2.8	
Date Tested		6/12/2019	



GHD Sample No	SYD19-0498-06
Date Sampled	09/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A1-LD07
Depth (m)	0.50 - 1.00
Soil Description	Gravelly clayey SAND yellow brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	11.1	
Date Tested		19/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.92	
Standard Optimum Moisture Content (%)		11.0	
Retained Sieve 19mm (%)		6	
Compactive Effort		Standard	
Date Tested		21/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	7	
CBR At 5.0mm (%)		6	
Maximum Dry Density (t/m ³)		1.92	
Optimum Moisture Content (%)		11.2	
Dry Density before Soaking (t/m ³)		1.82	
Density Ratio before Soaking (%)		95.0	
Moisture Content before Soaking (%)		11.3	
Moisture Ratio before Soaking (%)		100.0	
Dry Density after Soaking (t/m ³)		1.82	
Density Ratio after Soaking (%)		94.5	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		13.8	
Moisture Content of Remaining Depth (%)		14.5	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		5.9	
Date Tested		29/11/2019	

Comments

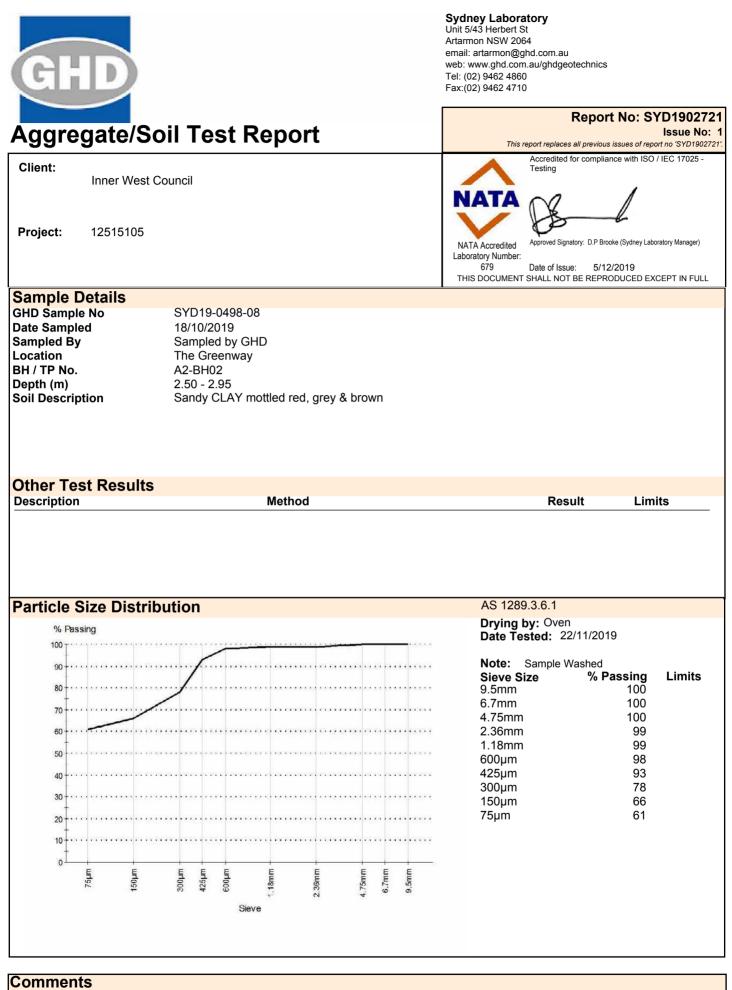
 NATA Accredited
 Approved Signatory: D.P. Brooke (Sydney Laboratory Manager)

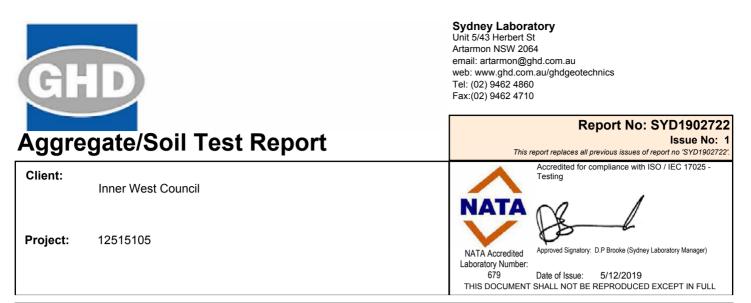
 Laboratory Number:
 679

 679
 Date of Issue:

 5/12/2019

 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

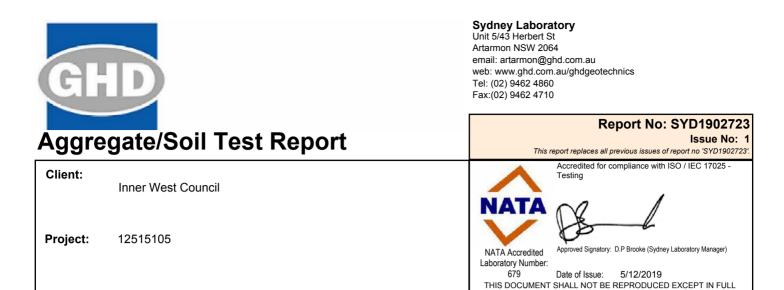

Sample Details


GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0498-07 09/10/2019 Sampled by GHD The Greenway A1-LD10 1.20 - 1.50 CLAY with sand brown

Test Results

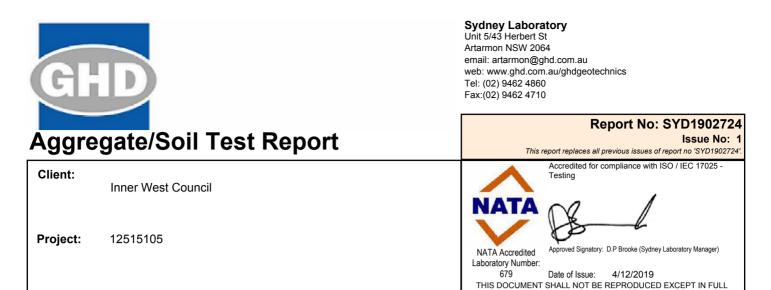
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	28.0	Linits
Date Tested	AS 1209.2.1.1	20.0 20/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.53	
Standard Optimum Moisture Content (%)	AG 1209.0.1.1	25.0	
Retained Sieve 19mm (%)		23.0	
Compactive Effort		Standard	
Date Tested		25/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	2.5	
CBR At 5.0mm (%)	//0/1200.0.1.1/ 2014	2.0	
Maximum Dry Density (t/m ³)		1.53	
Optimum Moisture Content (%)		25.2	
Dry Density before Soaking (t/m ³)		1.46	
Density Ratio before Soaking (%)		95.0	
Moisture Content before Soaking (%)		25.1	
Moisture Ratio before Soaking (%)		99.5	
Dry Density after Soaking (t/m ³)		1.44	
Density Ratio after Soaking (%)		94.0	
Swell (%)		1.0	
Moisture Content of Top 30mm (%)		28.8	
Moisture Content of Remaining Depth (%)		28.0	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		0.2	
Date Tested		2/12/2019	

Comments



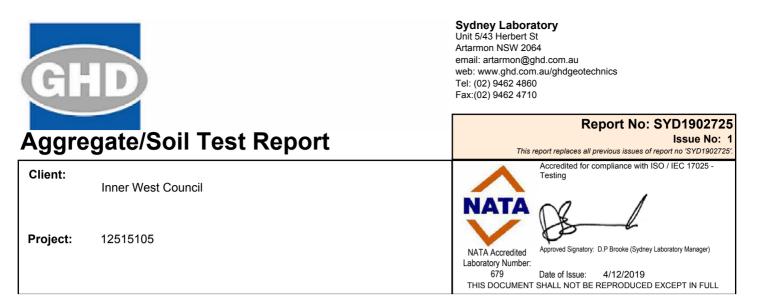
GHD Sample No	SYD19-0498-09
Date Sampled	18/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A2-BH02
Depth (m)	3.50 - 3.95
Soil Description	CLAY with sand mottled red, grey & brown

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	15.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	40	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	26	
Date Tested		21/11/2019	

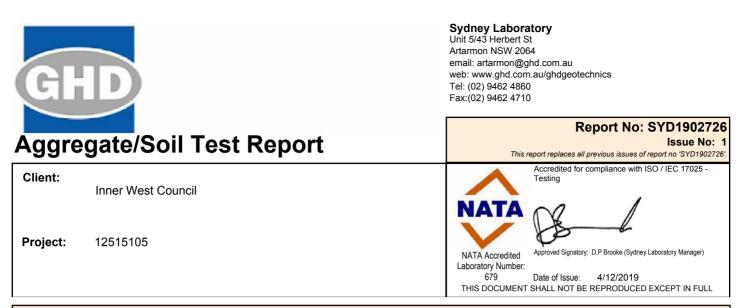
GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0498-10 16/10/2019 Sampled by GHD The Greenway A2-BH03 0.70 - 0.90 Sandy CLAY red brown

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	11.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	49	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	21	
Plasticity Index (%)	AS 1289.3.3.1	28	
Date Tested		22/11/2019	

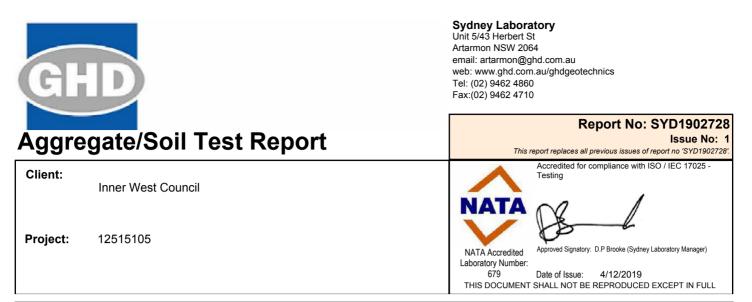
GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0499-01 11/10/2019 Sampled by GHD The Greenway A2-BH04 0.30 - 0.50m CLAY with sand dark grey

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	10.0	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	N/A	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	23	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	13	
Plasticity Index (%)	AS 1289.3.3.1	10	
Date Tested		25/11/2019	

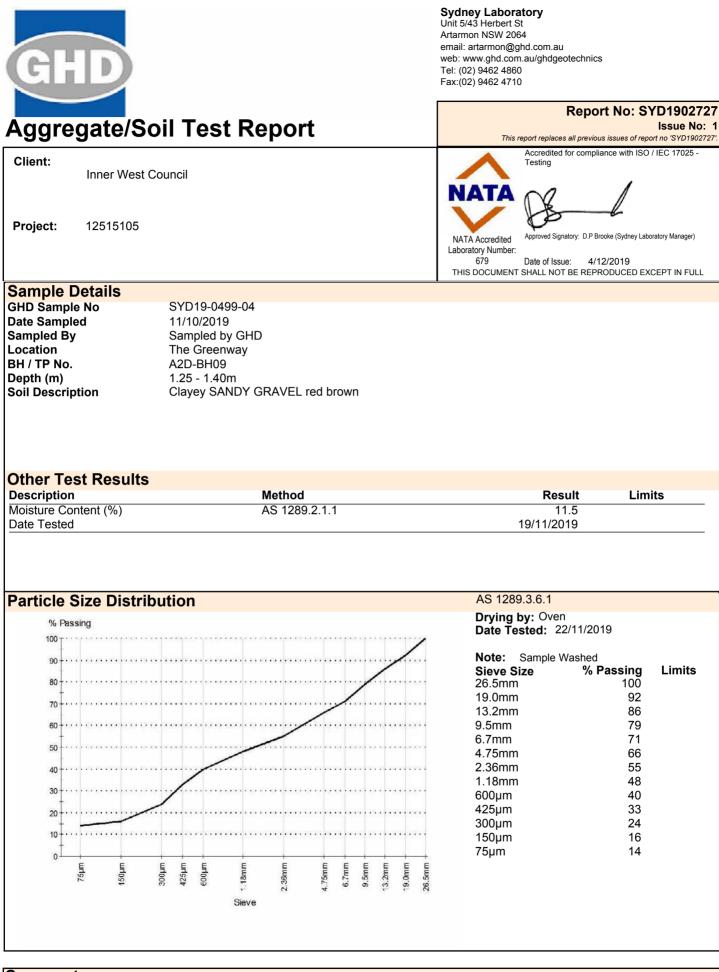
GHD Sample No	SYD19-0499-02
Date Sampled	14/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A2D-BH07
Depth (m)	2.50 - 2.95m
Soil Description	CLAY with sand brown speckled red

Test Results

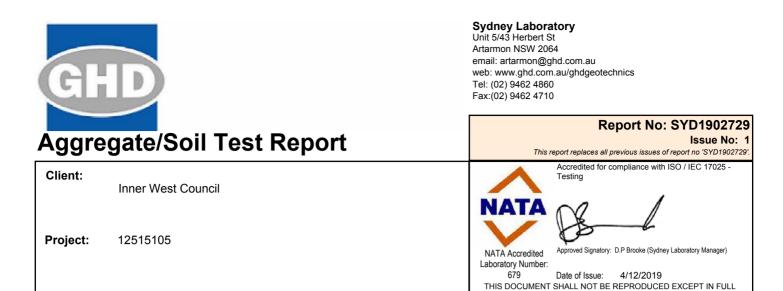

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	16.3	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	30	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	13	
Plasticity Index (%)	AS 1289.3.3.1	17	
Date Tested		25/11/2019	

GHD Sample No	SYD19-0499-03
Date Sampled	11/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A2D-BH08
Depth (m)	1.00 - 1.20m
Soil Description	CLAY with sand trace gravel mottled red, grey, brown

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	16.4	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	32	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	17	
Date Tested		21/11/2019	

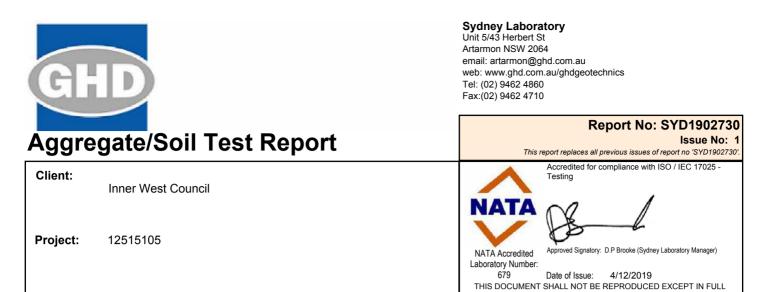
GHD Sample No	SYD19-0499-05
Date Sampled	11/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A2D-BH09
Depth (m)	2.40 - 2.65m
Soil Description	CLAY mottled yellow, grey, brown


Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	20.4	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	39	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	24	
Date Tested		26/11/2019	

Comments

Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1


GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description

SYD19-0499-06 11/10/2019 Sampled by GHD The Greenway A2D-LD02 1.10 - 1.40m Sandy CLAY dark brown

Test Results

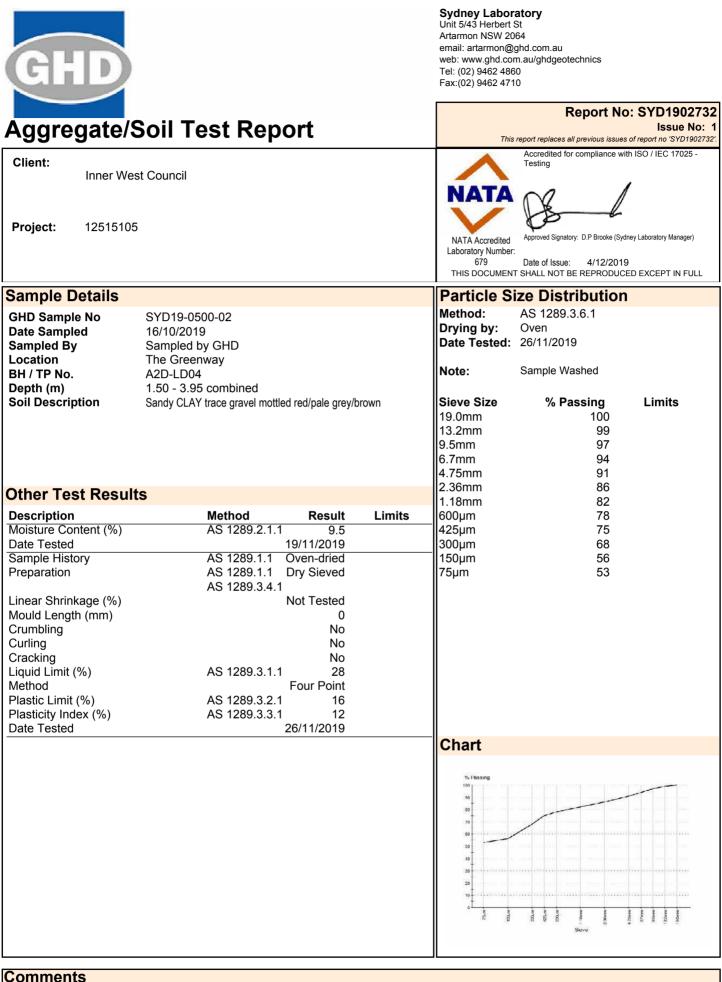
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	9.6	
Date Tested		21/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.75	
Standard Optimum Moisture Content (%)		14.0	
Retained Sieve 19mm (%)		2	
Compactive Effort		Standard	
Date Tested		21/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	8	
CBR At 5.0mm (%)		6	
Maximum Dry Density (t/m ³)		1.75	
Optimum Moisture Content (%)		13.8	
Dry Density before Soaking (t/m ³)		1.66	
Density Ratio before Soaking (%)		94.5	
Moisture Content before Soaking (%)		13.8	
Moisture Ratio before Soaking (%)		100.0	
Dry Density after Soaking (t/m ³)		1.66	
Density Ratio after Soaking (%)		94.5	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		18.1	
Moisture Content of Remaining Depth (%)		17.3	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		2.4	
Date Tested		29/11/2019	

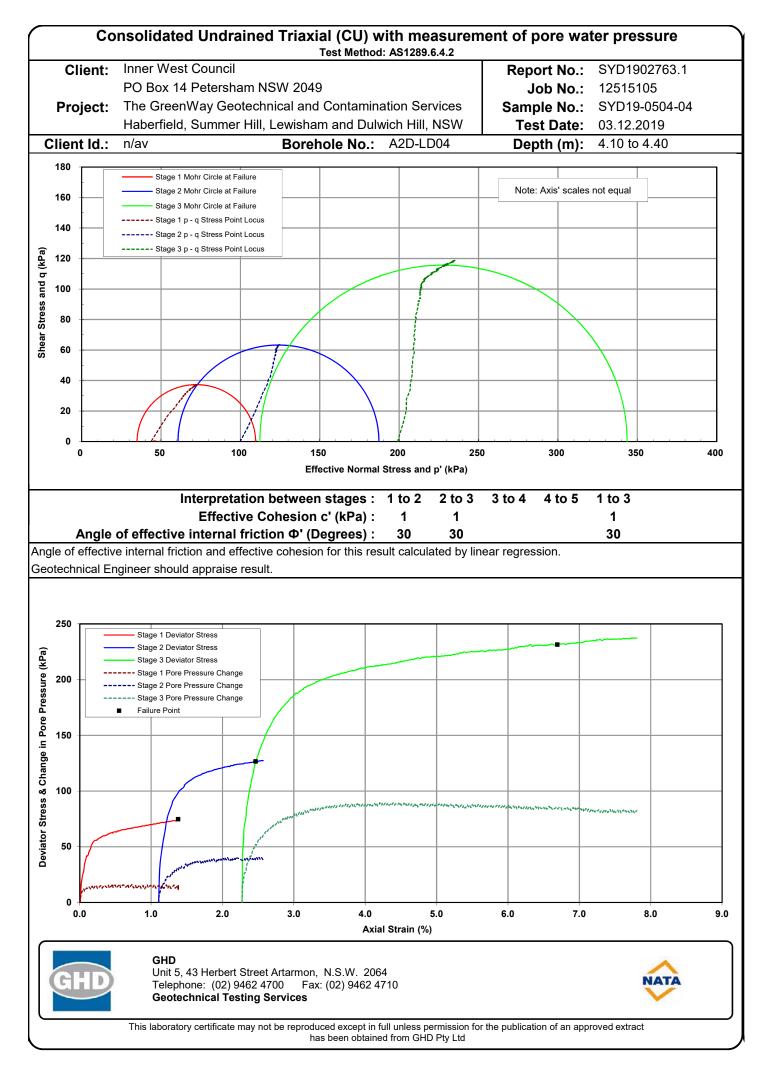
Comments

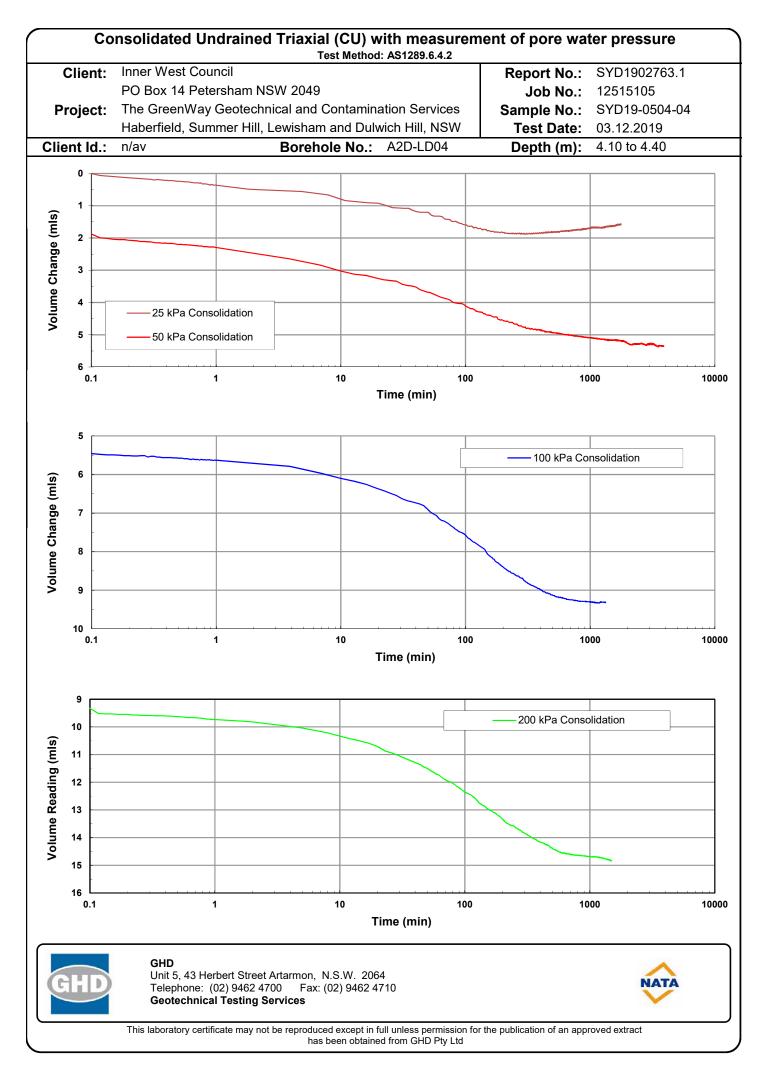
GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0499-07 11/10/2019 Sampled by GHD The Greenway A2D-LD03 0.20 - 1.00m CLAY with sand pale grey brown

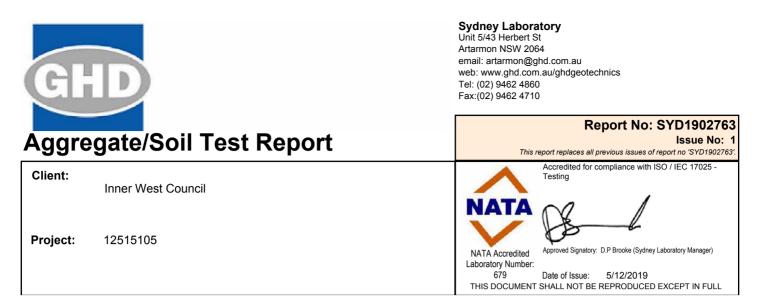
Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	13.2	
Date Tested		19/11/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.81	
Standard Optimum Moisture Content (%)		14.5	
Retained Sieve 19mm (%)		0	
Compactive Effort		Standard	
Date Tested		21/11/2019	
CBR At 2.5mm (%)	AS 1289.6.1.1 - 2014	3.5	
CBR At 5.0mm (%)		3.0	
Maximum Dry Density (t/m³)		1.81	
Optimum Moisture Content (%)		14.6	
Dry Density before Soaking (t/m ³)		1.70	
Density Ratio before Soaking (%)		94.0	
Moisture Content before Soaking (%)		14.6	
Moisture Ratio before Soaking (%)		99.5	
Dry Density after Soaking (t/m ³)		1.69	
Density Ratio after Soaking (%)		93.0	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		18.3	
Moisture Content of Remaining Depth (%)		18.2	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		0.3	
Date Tested		29/11/2019	

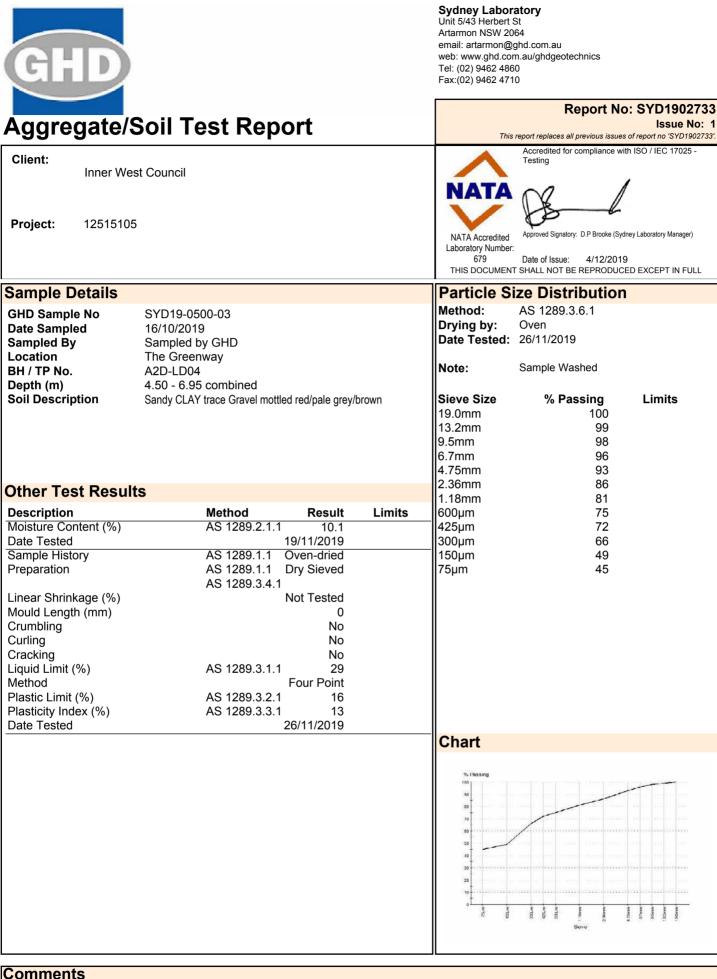

Comments

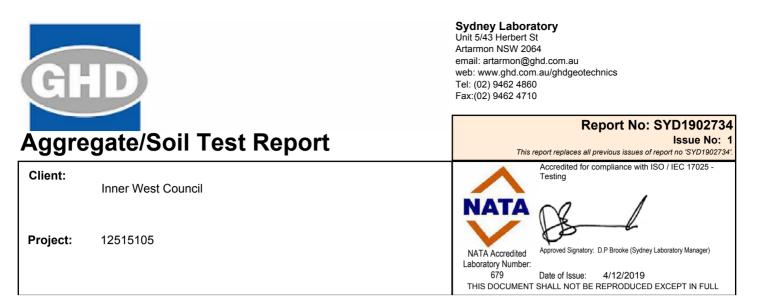

GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0500-01 11/10/2019 Sampled by GHD The Greenway A2D-LD03 1.00 - 2.00 CLAY: mottled red/pale grey


Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	16.0	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	52	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	17	
Plasticity Index (%)	AS 1289.3.3.1	35	
Date Tested		25/11/2019	

Consolidated Undrained	• •	with measuren	nent of pore wa	ater pressure
Client: Inner West Council			Report No.:	SYD1902763.1
PO Box 14 Petersham N	SW 2049		Job No.:	12515105
Project: The GreenWay Geotech	nical and Contami	nation Services	Sample No.:	SYD19-0504-04
Haberfield, Summer Hill,	Lewisham and Du	llwich Hill, NSW	Test Date:	03.12.2019
Client Id.: n/av	Borehole No.:	A2D-LD04	Depth (m):	4.10 to 4.40
Description: CLAY with sand	, trace gravel, pale	e brown	• • • •	
Sample History: Sampled by GH			Sample Type:	Remoulded
	SAMPLE I	NFORMATION		
Specimen No.:	1			
Initial Height (mm):	125.5			
Initial Diameter (mm):	63.5			
Initial Wet Density (t/m³):	2.04			
Initial Dry Density (t/m³):	1.80	MDD (t/m ³):	1.87	
Initial Moisture Content (%):	13.3	OMC (%):	13.3	
Final Moisture Content: Top (%):	16.5			
Middle (%):	15.5	Note: Material p	assing 9.5mm used	for sample
Bottom (%):	16.4			
B Response (%):	97.8			
	TEST DATA (Multi-Stage Test)		
Stage No.:	1	2	3	
Back Pressure (kPa):	500	500	500	
Effective Consolidation Stress (kPa):	50	100	200	
Rate of Strain (mm/min):	0.00122	0.00122	0.00122	
Deviator Stress at Failure (kPa):	75	127	231	
Pore Water Pressure at Failure (kPa):	15	38	84	
Consolidation Volume Change (ml):	5.4	9.3	14.8	
Strain at Failure (%):	1.4	2.5	6.7	
σ'_1 (kPa):	110	187	344	
σ' ₃ (kPa):	35	61	112	
	Test Cor		ains not used ble shear failure pl	
Client: Franch Without Channell Progress: Third Strength and Constraintion Strength Progress: Third Strength and Constraintion Strength Jack Mon. 12 (2019) 300-440 Jack Mon. 12 (2019) 400-440 Jack M	Client: Inner/Vest Council Project: The GreenWay Goldedhinol and Contamination Services Borehole No.: A20-LDD			
Remarks: Tested By: S. Ihnativ Checked By: TSH	GHD	GHD Unit 5, 43 Herl Telephone: (0	bert Street Artarmon,)2) 9462 4700 Fax:	N.S.W. 2064 (02) 9462 4710
Approved Signatory:		Geotechnical Accredited for	Testing Services	IEC 17025 - Testing
D. Brooke Date: 19/12/2019 This laboratory certificate may no	t be reproduced except in	Labo	ratory Accreditation N	umber 679

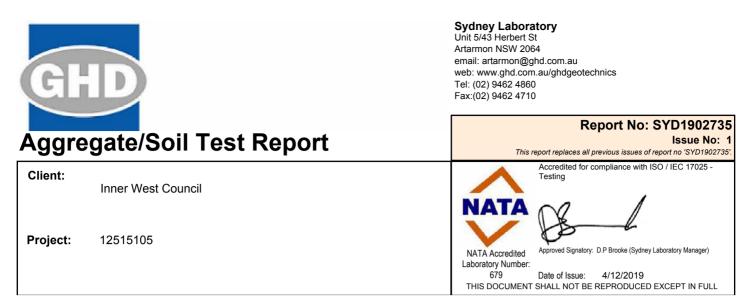



GHD Sample No
Date Sampled
Sampled By
Location
BH / TP No.
Depth (m)
Soil Description

SYD19-0504-04 16/10/2019 Sampled by GHD The Greenway A2D-LD04 4.10 - 4.40 CLAY with sand trace gravel pale brown

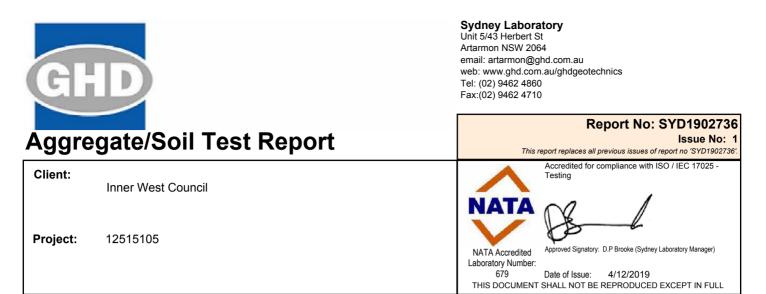
Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	9.9	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	32	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	16	
Date Tested		3/12/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.87	
Standard Optimum Moisture Content (%)		13.5	
Retained Sieve 19mm (%)		0	
Compactive Effort		Standard	
Date Tested		25/11/2019	



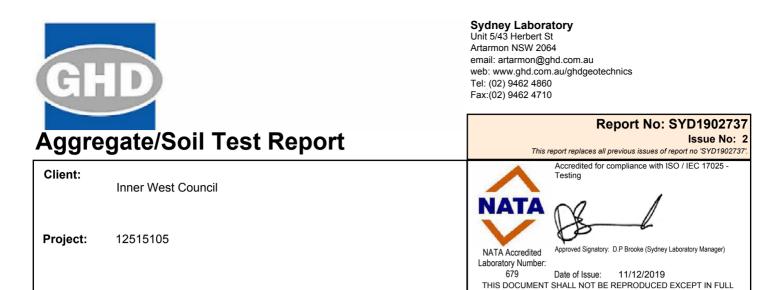
GHD Sample No	SYD19-0500-04
Date Sampled	10/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-BH01
Depth (m)	1.20 - 1.30
Soil Description	CLAY with Sand trace gravel: red

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	17.4	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	63	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	27	
Plasticity Index (%)	AS 1289.3.3.1	36	
Date Tested		26/11/2019	

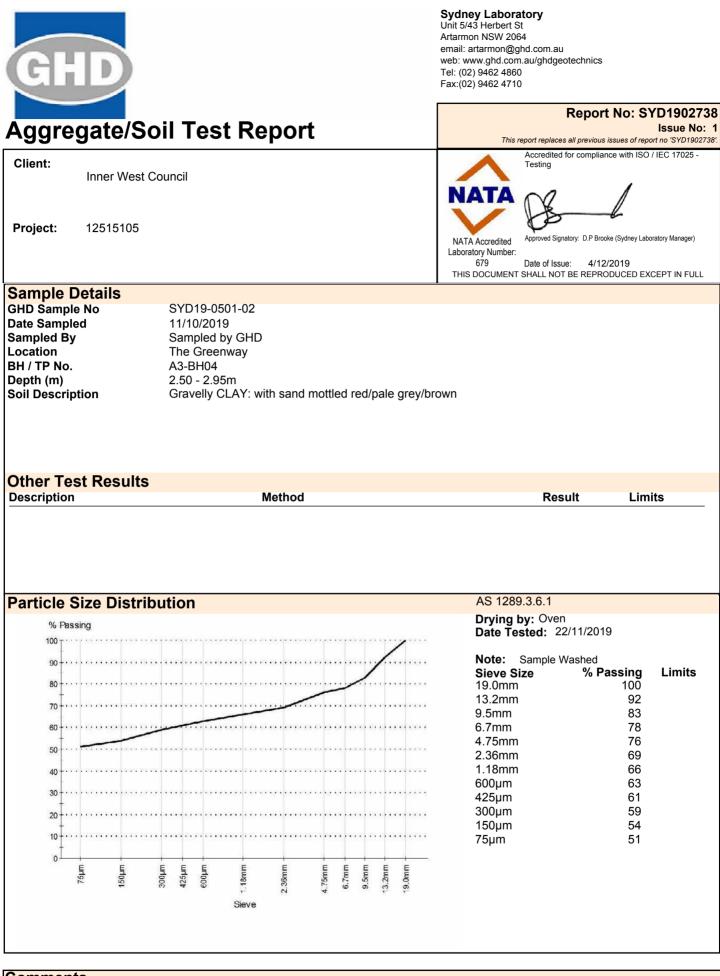
GHD Sample No	SYD19-0500-05
Date Sampled	10/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-BH03
Depth (m)	1.70 - 1.80
Soil Description	CLAY: mottled pale grey/red/brown

Test Results

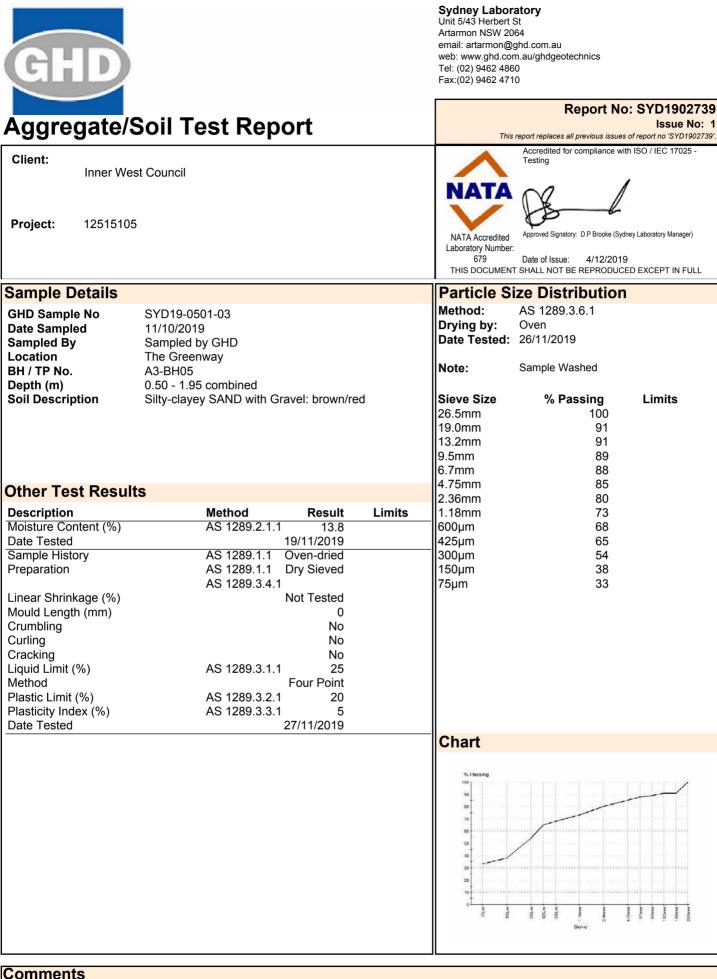

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	17.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	65	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	25	
Plasticity Index (%)	AS 1289.3.3.1	40	
Date Tested		27/11/2019	

GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0500-06 10/10/2019 Sampled by GHD The Greenway A3-BH04 0.50 - 0.95 CLAY with Sand: brown

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.5	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	31	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	17	
Plasticity Index (%)	AS 1289.3.3.1	14	
Date Tested		27/11/2019	

SYD19-0501-01 11/10/2019 Sampled by GHD The Greenway A3-BH04 1.50 - 1.95 CLAY with Sand: orange/brown


Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.7	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	37	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	21	
Date Tested		28/11/2019	

Comments

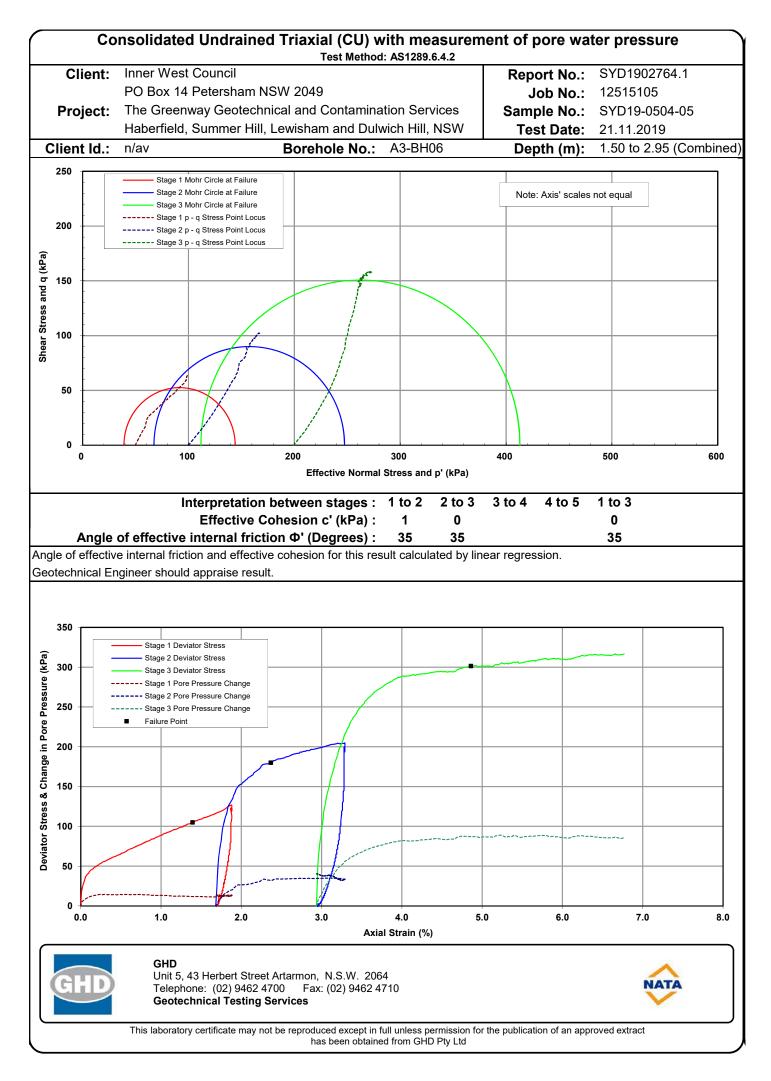
Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1

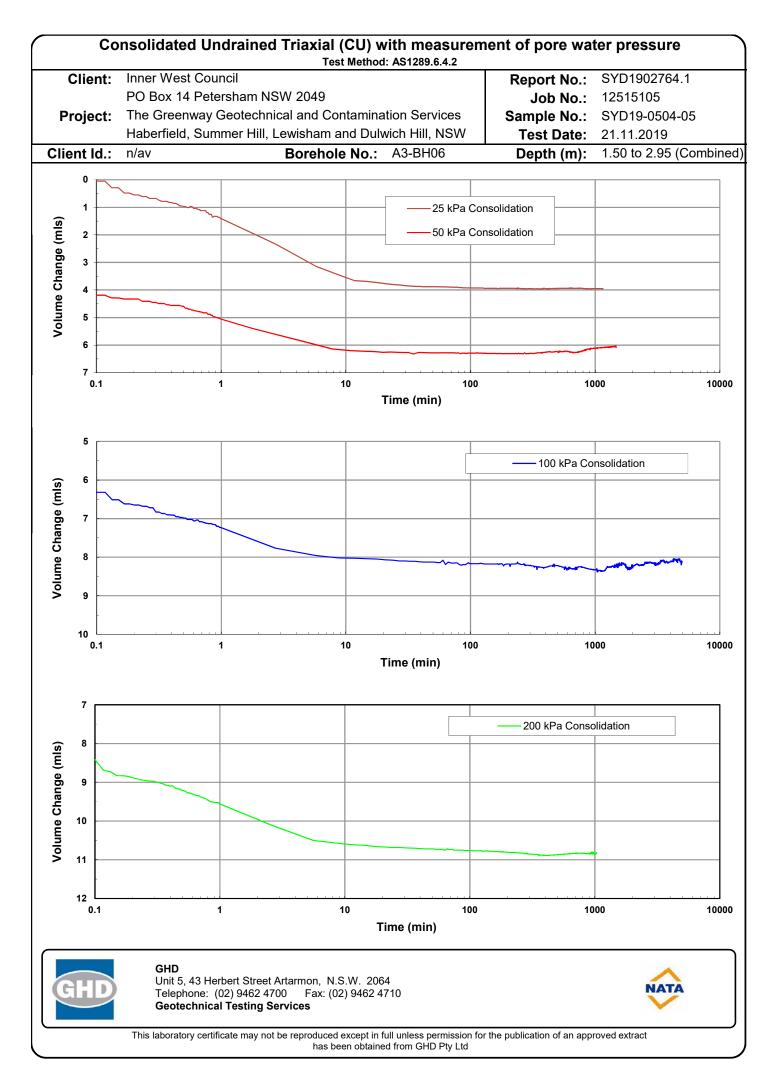
679

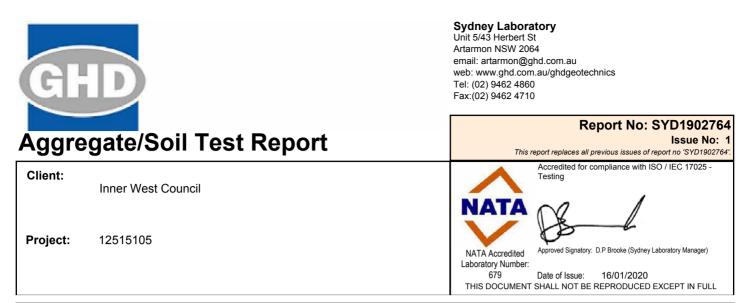
Date of Issue:

4/12/2019

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL


Sample Details


GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0501-04 21/10/2019 Sampled by GHD The Greenway A3-BH05 2.50 - 2.95m CLAY: red/pale grey


Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	16.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	55	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	20	
Plasticity Index (%)	AS 1289.3.3.1	35	
Date Tested		27/11/2019	

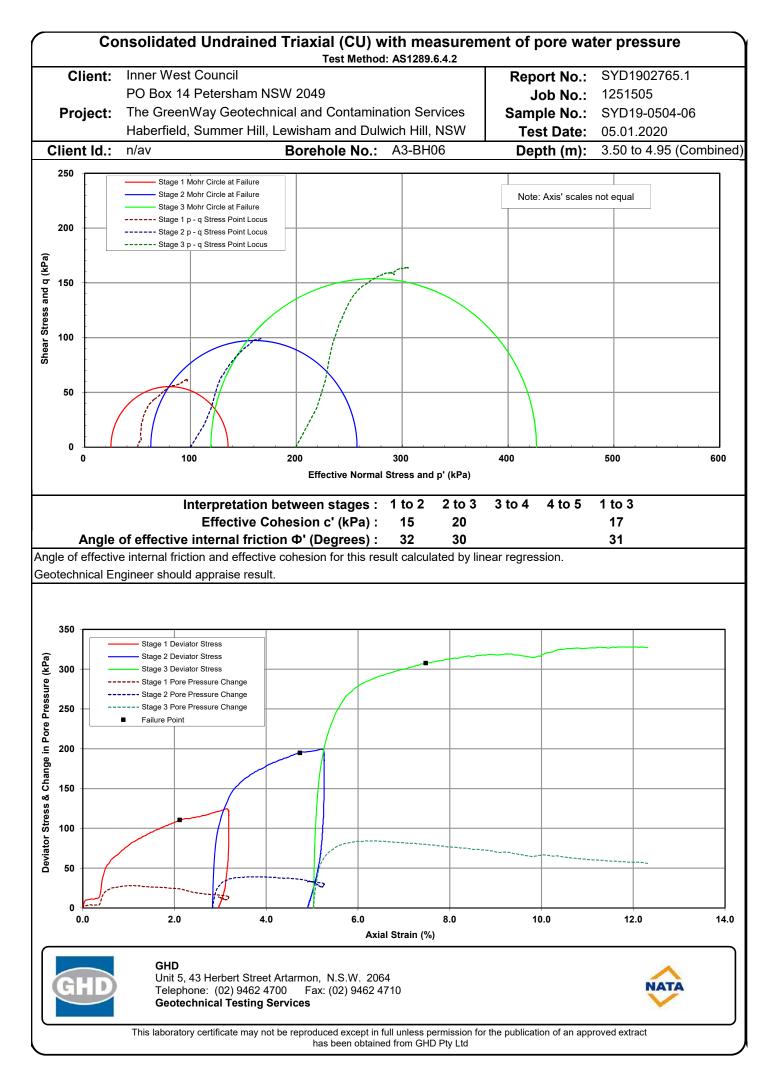
PC Project: Th	ner West Council					
Project: Th				Report No.:	SYD1902764.1	
	D Box 14 Petersham N	SW 2049		Job No.:	12515105	
	Project: The Greenway Geotechnical and Contamination Services		Sample No.:	SYD19-0504-0	5	
	berfield, Summer Hill,	Lewisham and Du	lwich Hill, NSW	Test Date:	21.11.2019	
Client Id.: n/a	av	Borehole No.:	A3-BH06	Depth (m):	1.50 to 2.95 (Co	ombined
Descripti		/n and grey CLAY		_ •p ():		
Sample Histo				Sample Type:	SPT Combined	Sample
			NFORMATION	Campie Typer		
	Specimen No.:	1				
	Initial Height (mm):	101.6				
	Initial Diameter (mm):	50.4				
Ini ⁺	tial Wet Density (t/m³):	2.06	Note: Sample re	emoulded to an appr	oximate medium re	lative
	itial Dry Density (t/m³):	1.83	-	PT N value of 10 (B		
	Moisture Content (%):	12.5	-	bassing 4.75mm use		,
Final Moisture	· · ·	16.5		J 200		
	Middle (%):	16.7				
	Bottom (%):	17.1				
	B Response (%):	98.6				
			Multi-Stage Test)			
	Stage No.:	1	2	3		
	Back Pressure (kPa):	500	500	500		1
Effective Cons	olidation Stress (kPa):	50	100	200		
	te of Strain (mm/min):	0.00122	0.00122	0.00122		
	Stress at Failure (kPa):	105	180	301		
	ssure at Failure (kPa):	12	32	87		
	Volume Change (ml):	6.3	8.4	10.9		
	Strain at Failure (%):	1.4	2.4	4.9		
	σ'_1 (kPa):	144	247	413		
	σ'_3 (kPa):	39	67	112		
		Test Cor	nments: Side dr	rains not used		•
Client: Inner West Council Project: The Greenway Geostedment and Contamination Service Borehole No.: 43-8Hols Uppth (m): 1,50 to 235 (Combined) Job No.: 13515105 Sample No.: SY059-4504-05		Client: Inne: West Council Project: The Greenway Geotechnical and Contamination Services	Borehole No.: 43-EH05 Depth (m): 1.66 to 2.95 (Combined) Job No.: 12515105 Sample No.: SYD19-9504-05	ble shear failure pl		
Remarks:						
Tester	d By: S. Ihnativ		CHD			
	d By: TSH	GHD	J Telephone: (0	bert Street Artarmon, 02) 9462 4700 Fax: Testing Services	N.S.W. 2064 (02) 9462 4710	
Approved Signa	tory:			J		
	D. Brooke Date: 20/12/2019	NATA		compliance with ISO/I pratory Accreditation N		

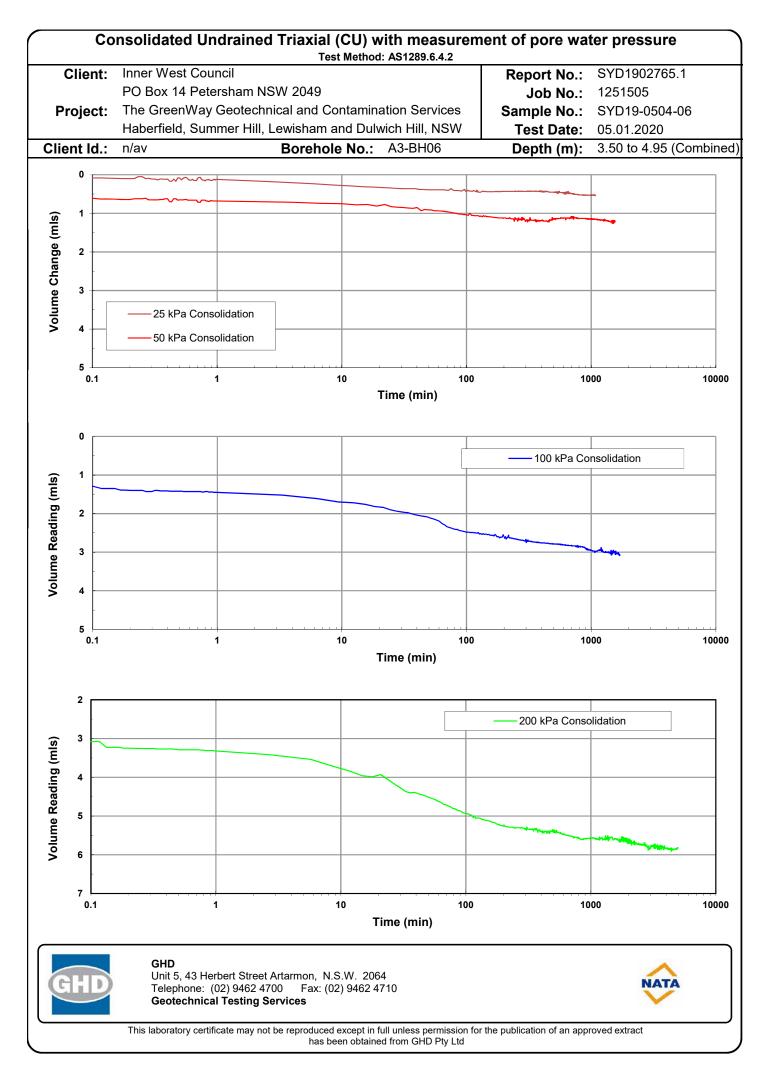
GHD Sample No
Date Sampled
Sampled By
Location
BH / TP No.
Depth (m)
Soil Description

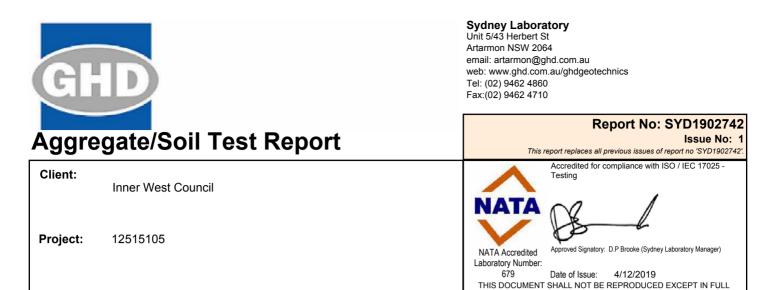
SYD19-0504-05 17/10/2019 Sampled by GHD The Greenway A3-BH06 1.5 - 1.95 CLAY: mottled red brown & grey

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	12.5	
Date Tested		3/12/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	28	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	13	
Date Tested		18/12/2019	

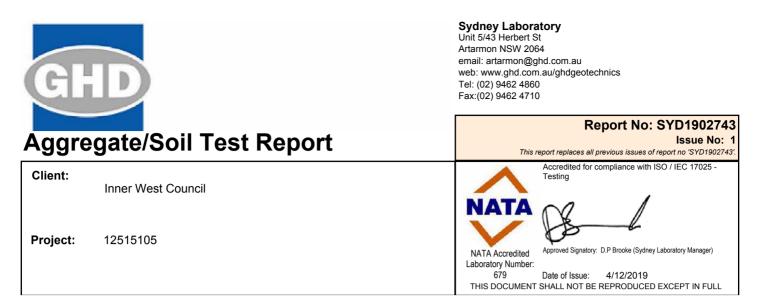



GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0504-06 17/10/2019 Sampled by GHD The Greenway A3-BH06 3.50-4.95 combined CLAY: with gravel grey


Test Results

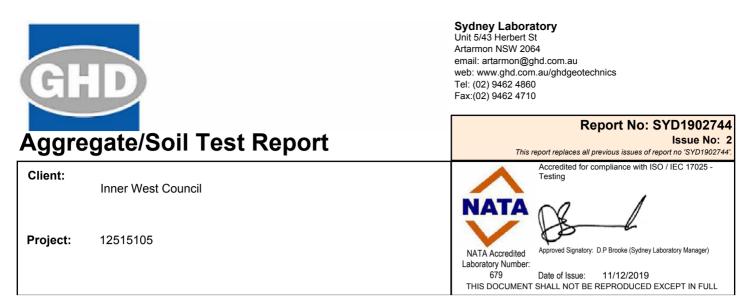
Description	Method	Result L	imits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	35	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	16	
Date Tested		3/12/2019	

Consolidated I	Jndrained	• •	with measuren d: AS1289.6.4.2	nent of pore wa	ater pressure		
Client: Inner West C	ouncil			Report No.:	SYD1902765.1		
PO Box 14 Petersham NSW 2049			Job No.:	1251505			
Project: The GreenWa	Project: The GreenWay Geotechnical and Contamination Services			Sample No.:	SYD19-0504-06	5	
-	ummer Hill,	Lewisham and Du	lwich Hill, NSW	Test Date:	05.01.2020		
Client Id.: n/av		Borehole No.:	A3-BH06	Depth (m):	3.50 to 4.95 (Co	mbined)	
	Y with grave				, , , , , , , , , , , , , , , , , , ,	,	
	pled by GHI			Sample Type:	SPT Combined	Sample	
		SAMPLE II	NFORMATION			·	
Spec	cimen No.:	1					
Initial He	eight (mm):	99.6					
Initial Dian	neter (mm):	51.2					
Initial Wet De	• • •	1.92		emoulded to an appr			
Initial Dry De	• • •	1.55	-	PT N value of 10 (B		′m³)	
Initial Moisture C	. ,	24.0	Material p	passing 4.75mm use	d for sample		
Final Moisture Content:	Top (%):	23.0					
	Middle (%):	23.6					
	Bottom (%):	22.3					
B Res	ponse (%):	98.3	Multi Stans Tast				
	Stage No.:		Multi-Stage Test) 2	3			
	stage No.: sure (kPa):	1 500	2 500	3 500			
Effective Consolidation St	. ,	50	100	200			
Rate of Strain	. ,	0.0024	0.0024	0.0024			
Deviator Stress at Fa	. ,	111	195	308			
Pore Water Pressure at Fa	```	24	36	80			
Consolidation Volume Cl	. ,	1.3	3.1	5.9			
	ailure (%):	2.1	4.7	7.5			
	σ'_1 (kPa):	135	257	427			
	σ'_3 (kPa):	25	63	119			
		Test Cor	nments: Side di	rains not used			
			No visi	ble shear failure pl	lane		
	Boreh	Ces					
	Clier Projec Iole No Job No	n Serv		· · • • • • • • • • • • • • • • • • • •			
	st In of Th of A3	sinatio		CASE CONTRACTOR	A COLUMN TO		
1.7.10	e Gra BH06 51505	antar	6 4.95		15 3		
	an Main	and Conta	3.560 a				
A BUSICIAL COLOR	Gind De Date	Inical	Depth (m):		the second		
	tuchni spth (Inner West Council The GreenWay Geotechnical	Depti				
	inal an mit 3	Client: Inner West Council reject: The GreenWay Geo		the loss and the			
	1d Co .50 to 77D19	West	PPC PPC				
	4,95 0504	The C	43-BH06		Constant in the second		
MACK - STAND	nation 06	Client	S.	A State Tak	2.1.8		
	Serv	a.	the second se		124 00000		
	ices	1000	â	- BARRIEL			
Remarks:							
Tested By: S. Ihna	itiv		GHD			$\overline{}$	
		CHID	Unit 5, 43 Her	bert Street Artarmon,			
Checked By: TSH		GHD		02) 9462 4700 Fax: I Testing Services	(02) 9462 4710		
Approved Signatory:	/		Geotechnica				
	l	\wedge					
D. Brooke Accredited for compliance with ISO/IEC 17025 - Testing Laboratory Accreditation Number 679							
Date: 3/02/2020							
This laboratory certificate may not be reproduced except in full unless permission for the publication of an approved extract has been obtained from GHD Pty Ltd							



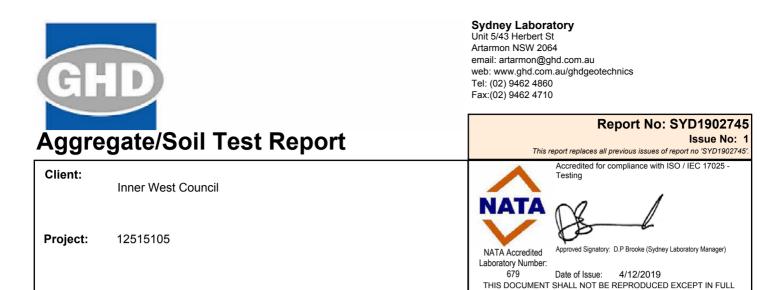
GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0501-06 30/10/2019 Sampled by GHD The Greenway A3-BH07 1.50 - 1.70m CLAY with Sand: brown

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.4	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	32	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	18	
Plasticity Index (%)	AS 1289.3.3.1	14	
Date Tested		27/11/2019	

GHD Sample No	SYD19-0501-07
Date Sampled	17/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-BH08
Depth (m)	2.50 - 2.95m
Soil Description	CLAY with Sand and Gravel: orange/brown

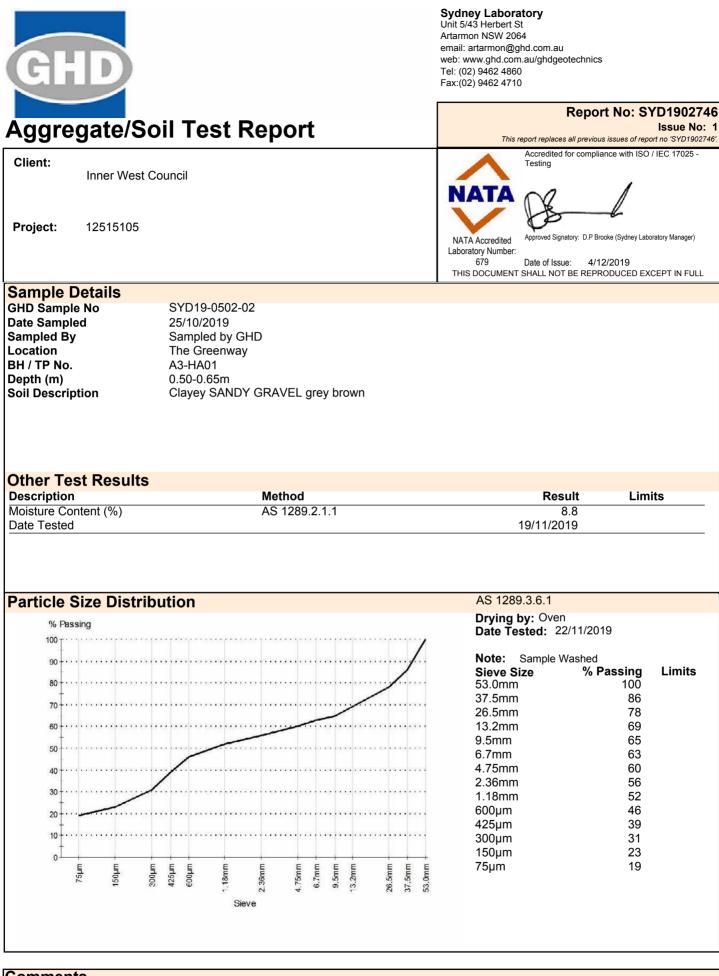
Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	13.2	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	74	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	22	
Plasticity Index (%)	AS 1289.3.3.1	52	
Date Tested		28/11/2019	

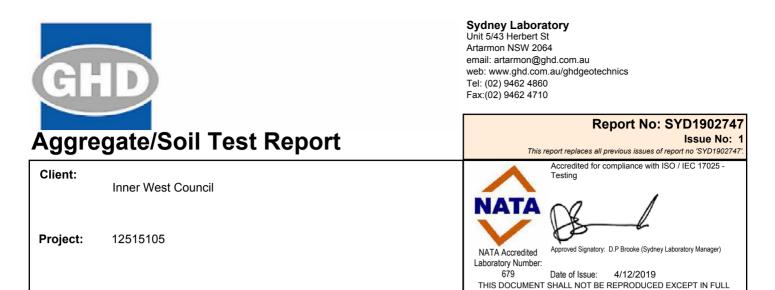
GHD Sample No	SYD19-0501-08
Date Sampled	23/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-BH09
Depth (m)	1.5 - 1.95
Soil Description	CLAY with sand pale red brown white & brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	17.1	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	62	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	26	
Plasticity Index (%)	AS 1289.3.3.1	36	
Date Tested		28/11/2019	

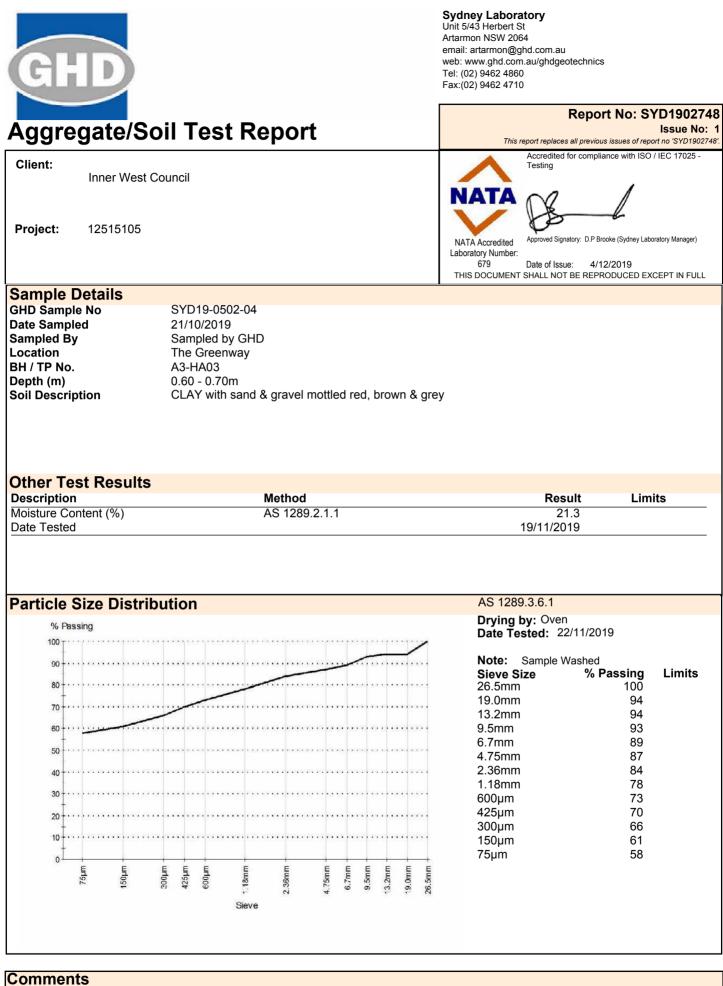


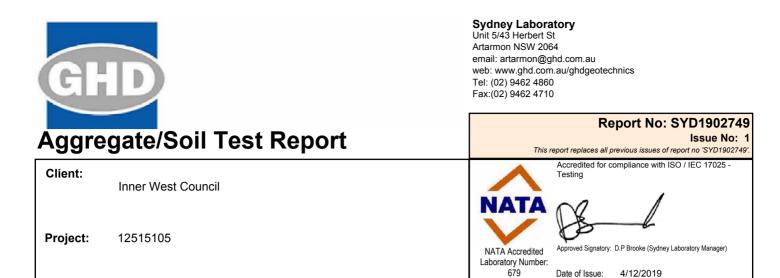
GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description


SYD19-0502-01 24/10/2019 Sampled by GHD The Greenway A3-BH10 4.10 - 4.20m CLAY with sand pale brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	21.5	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	49	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	24	
Plasticity Index (%)	AS 1289.3.3.1	25	
Date Tested		28/11/2019	

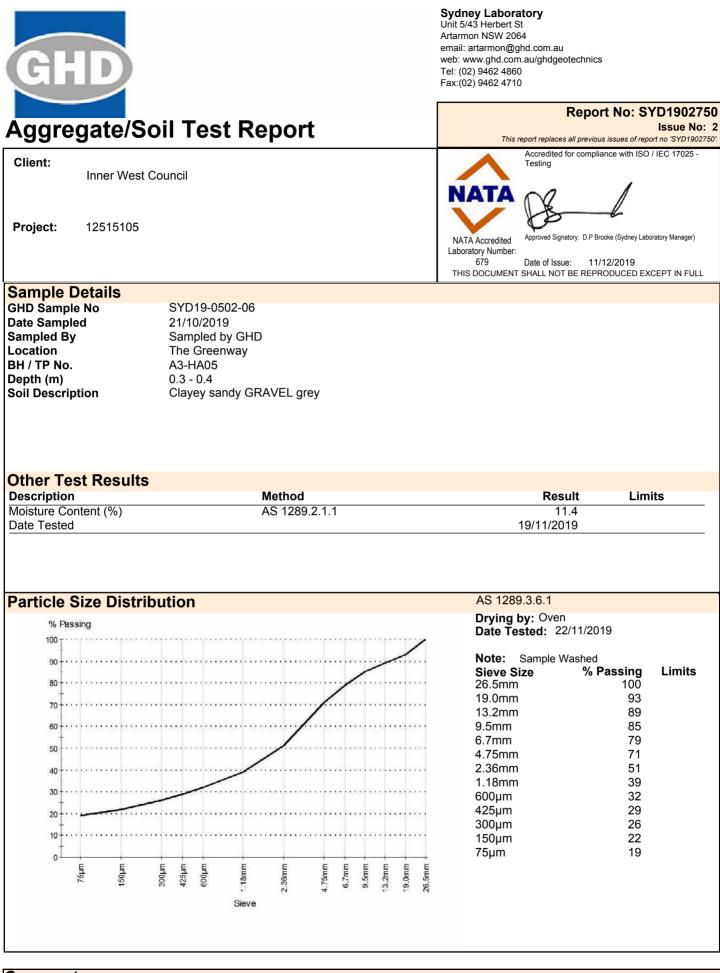

Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1


GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0502-03 21/10/2019 Sampled by GHD The Greenway A3-HA02 1.10 - 1.20m CLAY with sand pale brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	24.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	35	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	21	
Plasticity Index (%)	AS 1289.3.3.1	14	
Date Tested		29/11/2019	

N/A

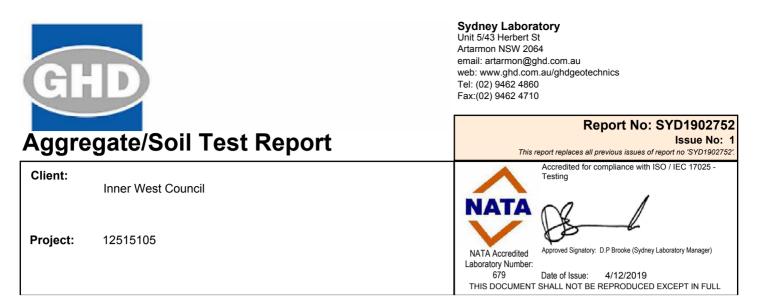

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0502-05 21/10/2019 Sampled by GHD The Greenway A3-HA04 0.80-0.90m Gravelly CLAY

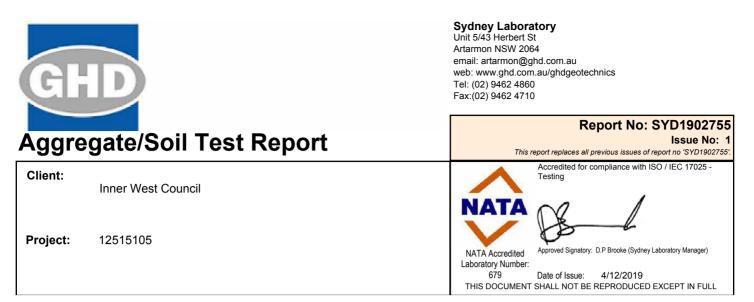
Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	22.9	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	52	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	21	
Plasticity Index (%)	AS 1289.3.3.1	31	
Date Tested		28/11/2019	


Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1

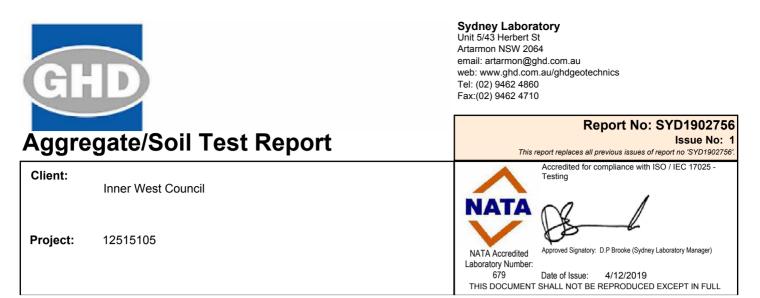
GHD Sample No	SYD19-0502-07
Date Sampled	15/11/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-HA05
Depth (m)	1.30-1.50m
Soil Description	CLAY mottled pale grey, orange, brown
-	

Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	19.7	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	42	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	20	
Plasticity Index (%)	AS 1289.3.3.1	22	
Date Tested		29/11/2019	

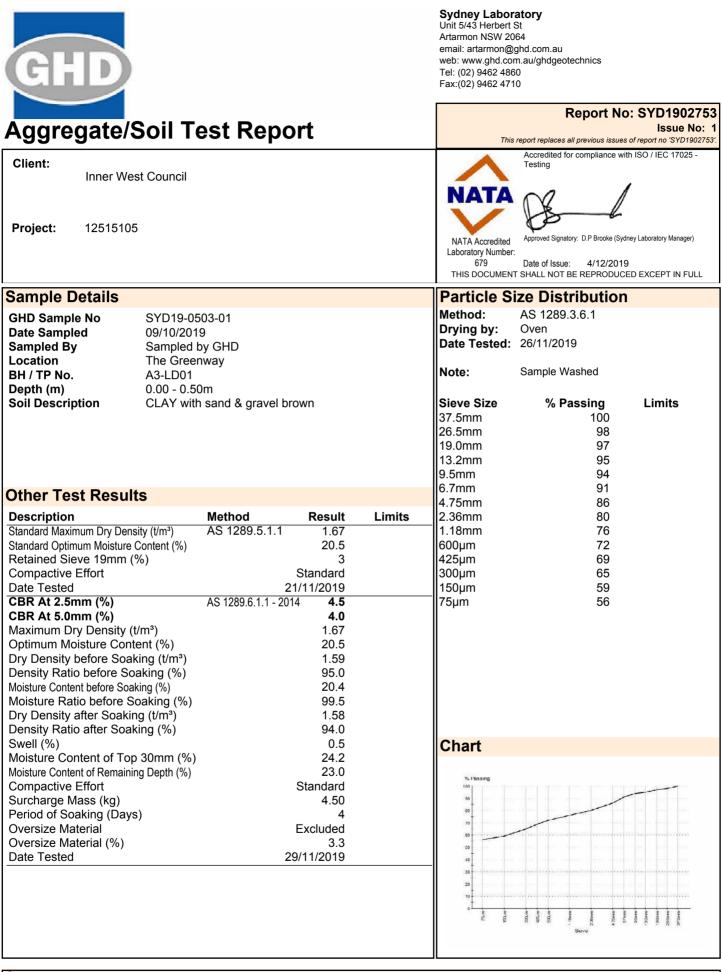
•	
GHD Sample No	SYD19-0502-08
Date Sampled	15/11/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-HA06
Depth (m)	1.00-1.15m
Soil Description	SAND with gravel & silt yellow brown

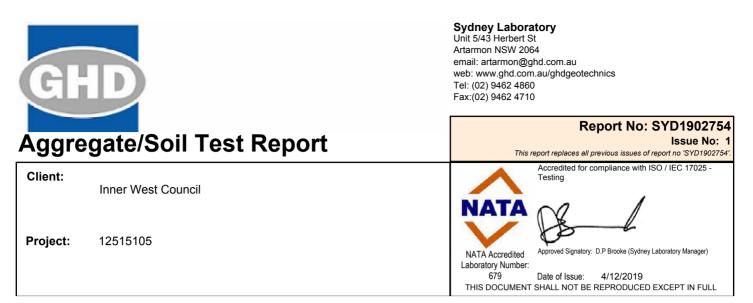
Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	4.3	
Date Tested		19/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	24	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	21	
Plasticity Index (%)	AS 1289.3.3.1	3	
Date Tested		29/11/2019	

GHD Sample No	SYD19-0503-03
Date Sampled	18/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-LD/BH01
Depth (m)	2.50 - 2.95m
Soil Description	CLAY with sand mottled red, grey & brown

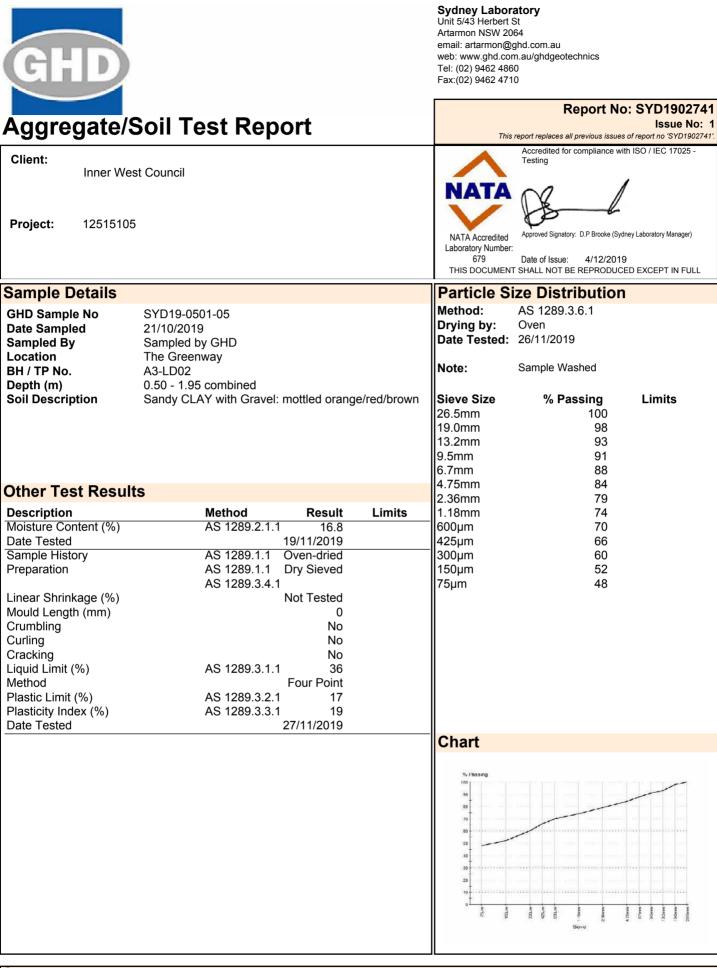
Test Results

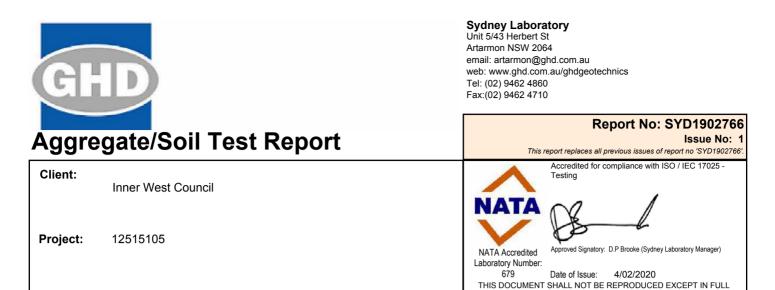

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	12.7	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	46	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	17	
Plasticity Index (%)	AS 1289.3.3.1	29	
Date Tested		2/12/2019	


GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0503-04 18/10/2019 Sampled by GHD The Greenway A3-LD/BH01 4.50 - 4.95m CLAY with sand grey brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	13.7	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	N/A	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	42	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	26	
Date Tested		2/12/2019	

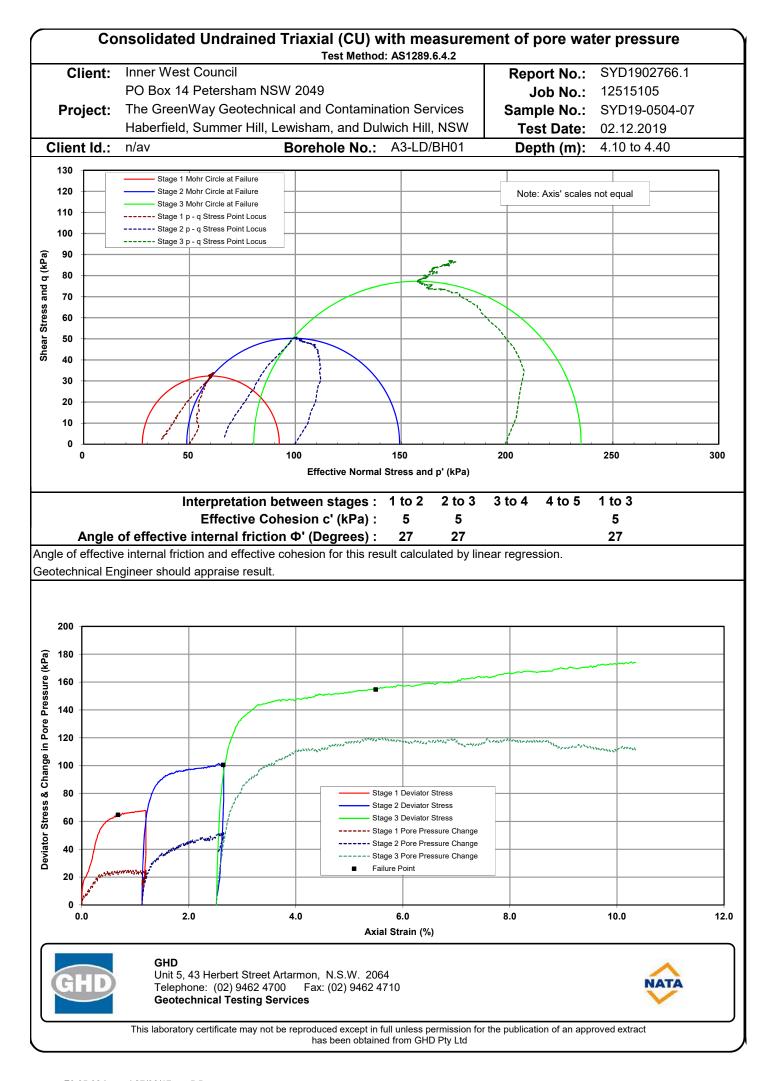

N/A

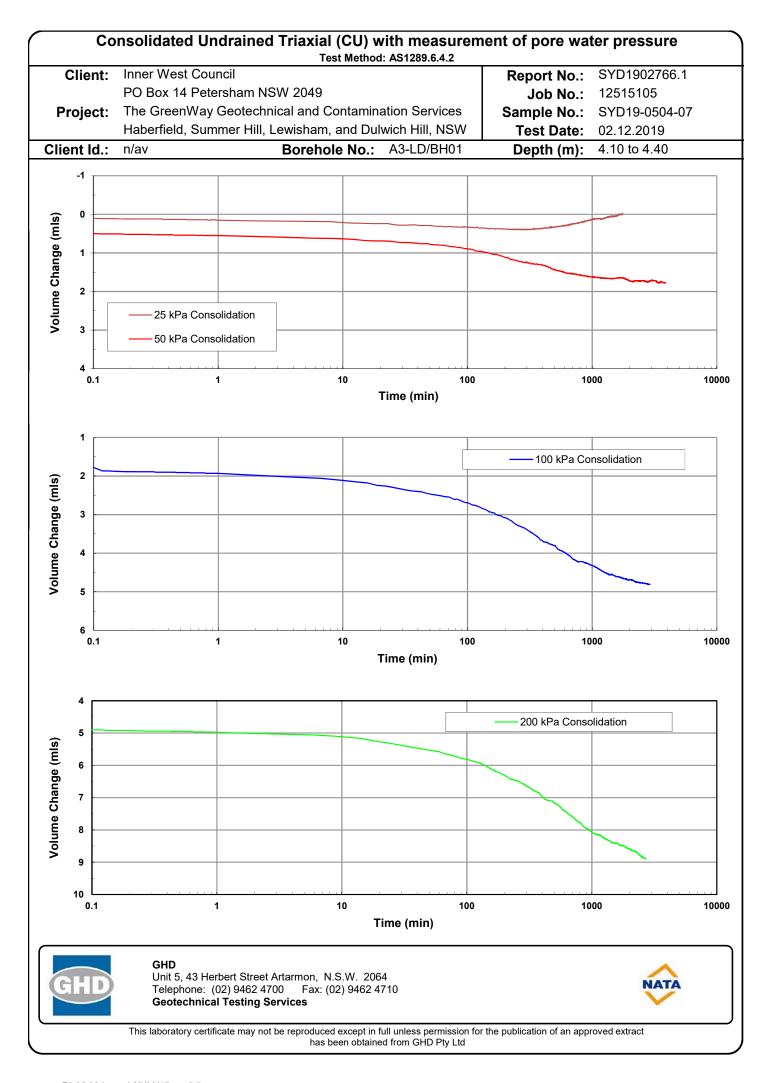

GHD Sample No	SYD19-0503-02
Date Sampled	09/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A3-LD01
Depth (m)	1.10 - 1.40m
Soil Description	CLAY with sand & gravel mottled grey, red & brown

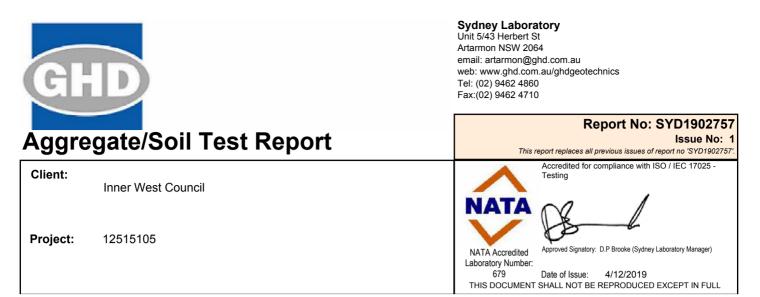
Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	19.1	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	61	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	26	
Plasticity Index (%)	AS 1289.3.3.1	35	
Date Tested		25/11/2019	

Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1

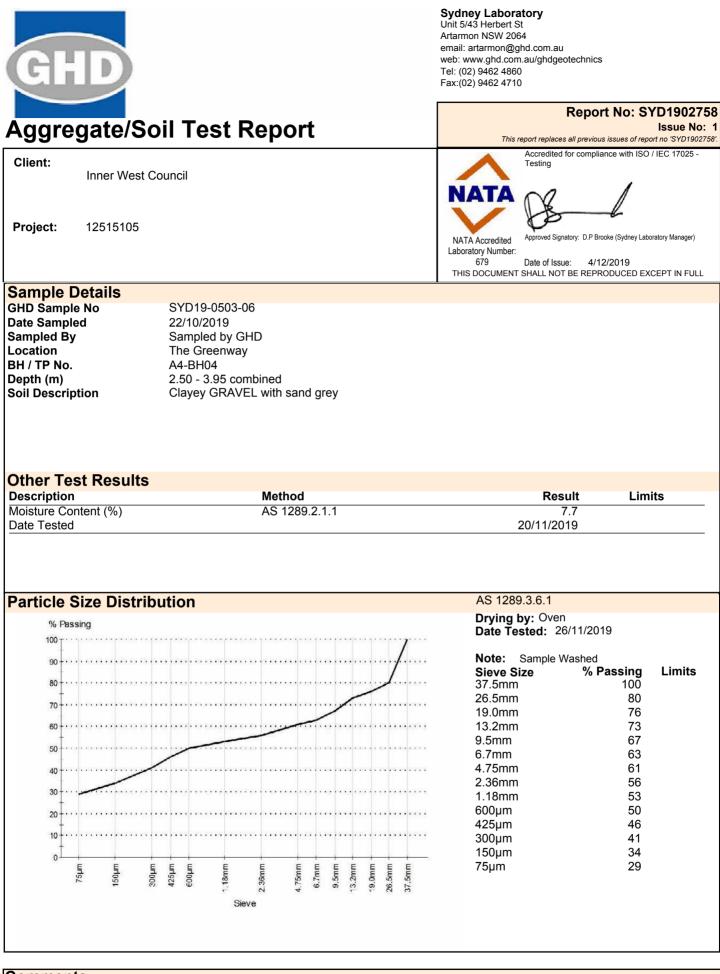


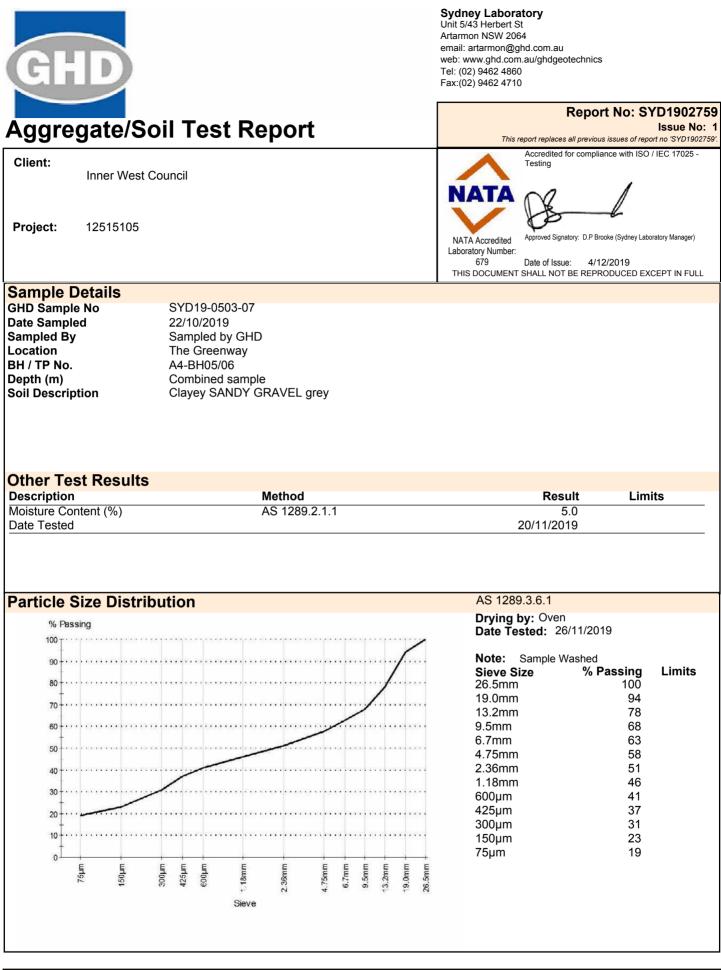

GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0504-07 18/10/2019 Sampled by GHD The Greenway A3-LD/BH01 4.10 - 4.40 CLAY with sand orange brown


Test Results

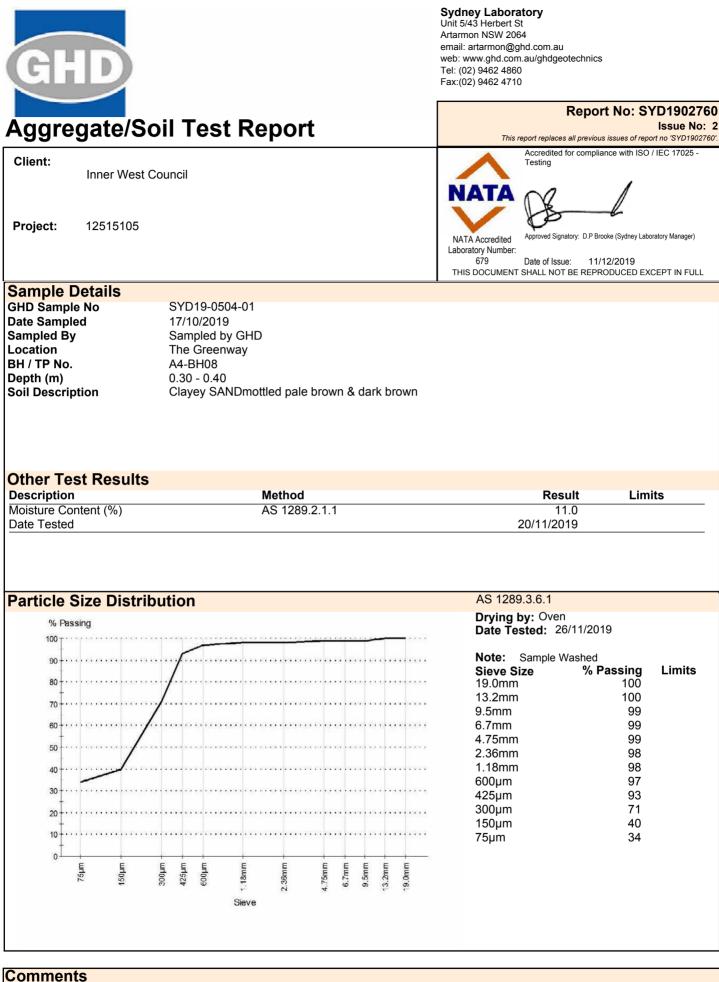
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	15.0	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	44	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	28	
Date Tested		3/12/2019	
Standard Maximum Dry Density (t/m ³)	AS 1289.5.1.1	1.74	
Standard Optimum Moisture Content (%)		16.5	
Retained Sieve 19mm (%)		0	
Compactive Effort		Standard	
Date Tested		25/11/2019	

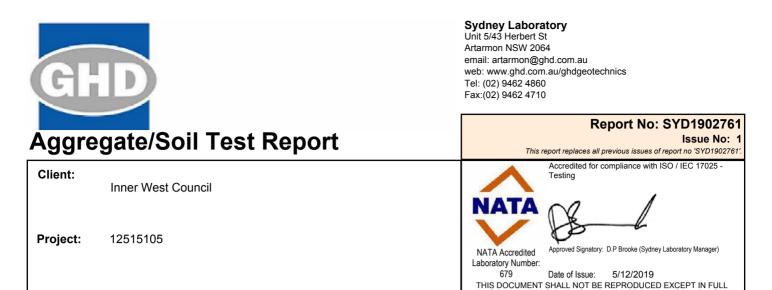
	solidated Undrained		with measuren d: AS1289.6.4.2	nent of pore wa	ater pressure	
Client:	nner West Council			Report No.:	SYD1902766.1	
I	PO Box 14 Petersham NS	SW 2049		Job No.:	12515105	
Project:	The GreenWay Geotechn	ical and Contami	nation Services	Sample No.:	SYD19-0504-07	
I	Haberfield, Summer Hill, L	ewisham, and Du	ulwich Hill, NSW	Test Date:	02.12.2019	
Client Id.:	n/av	Borehole No.:	A3-LD/BH01	Depth (m):	4.10 to 4.40	
Descrip	otion: CLAY with sand:	orange brown				
Sample His	story: Sampled by GHE)		Sample Type:	Remoulded (-9.5	mm)
		SAMPLE II	NFORMATION			
	Specimen No.:	1				
	Initial Height (mm):	125.5				
	Initial Diameter (mm):	63.5				
	nitial Wet Density (t/m³):	1.93				
	Initial Dry Density (t/m ³):	1.66				
	al Moisture Content (%):	16.7				
Final Moistur	/	19.2				
	Middle (%):	19.2				
	Bottom (%):	18.9 96.3				
	B Response (%):		Multi-Stage Test)			
	Stage No.:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	3	Г	
	Back Pressure (kPa):	500	500	500		
Effective Co	nsolidation Stress (kPa):	50	100	200		
	Rate of Strain (mm/min):	0.00122	0.00122	0.00122		
	Stress at Failure (kPa):	65	101	155		
	ressure at Failure (kPa):	22	52	118		
	on Volume Change (ml):	1.8	4.8	8.9		
	Strain at Failure (%):	0.7	2.6	5.5		
	σ'_1 (kPa):	92	149	235		
	σ' ₃ (kPa):	28	49	80		
Remarks:	ted By: S. Ihnativ		GHD			
Check	xed By: TSH	GHD	Unit 5, 43 Her Telephone: (0		N.S.W. 2064 (02) 9462 4710	
Approved Sig	natory: D. Brooke Date: 24/01/2020	Geotechnical Testing Services Accredited for compliance with ISO/IEC 17025 - Testing Laboratory Accreditation Number 679				



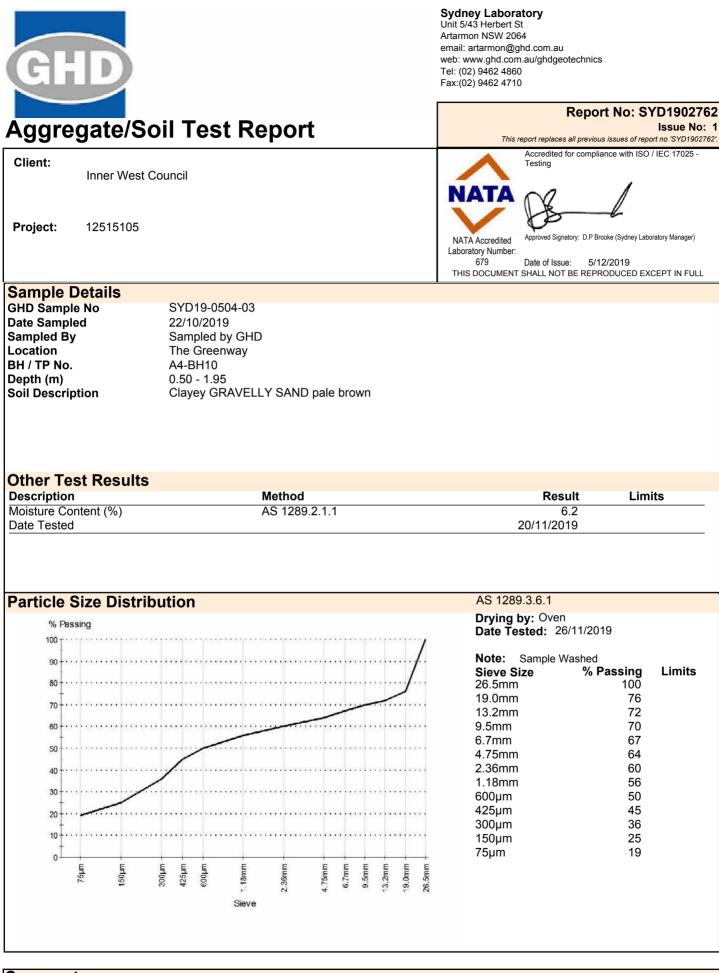

•	
GHD Sample No	SYD19-0503-05
Date Sampled	21/10/2019
Sampled By	Sampled by GHD
Location	The Greenway
BH / TP No.	A4-BH01
Depth (m)	1.50 - 1.95m
Soil Description	CLAY with sand & gravel mottled red, orange & brown

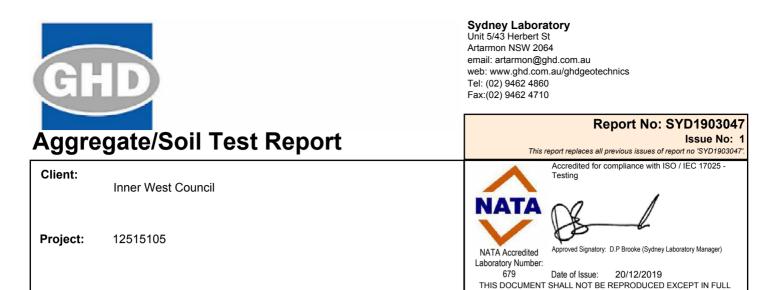
Test Results


Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.7	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	53	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	20	
Plasticity Index (%)	AS 1289.3.3.1	33	
Date Tested		2/12/2019	


Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1

Combined samples. A4-BH04 0.5-0.95m, A4-BH05 1.5-1.95m, A4-BH06 0.5-0.75m Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1

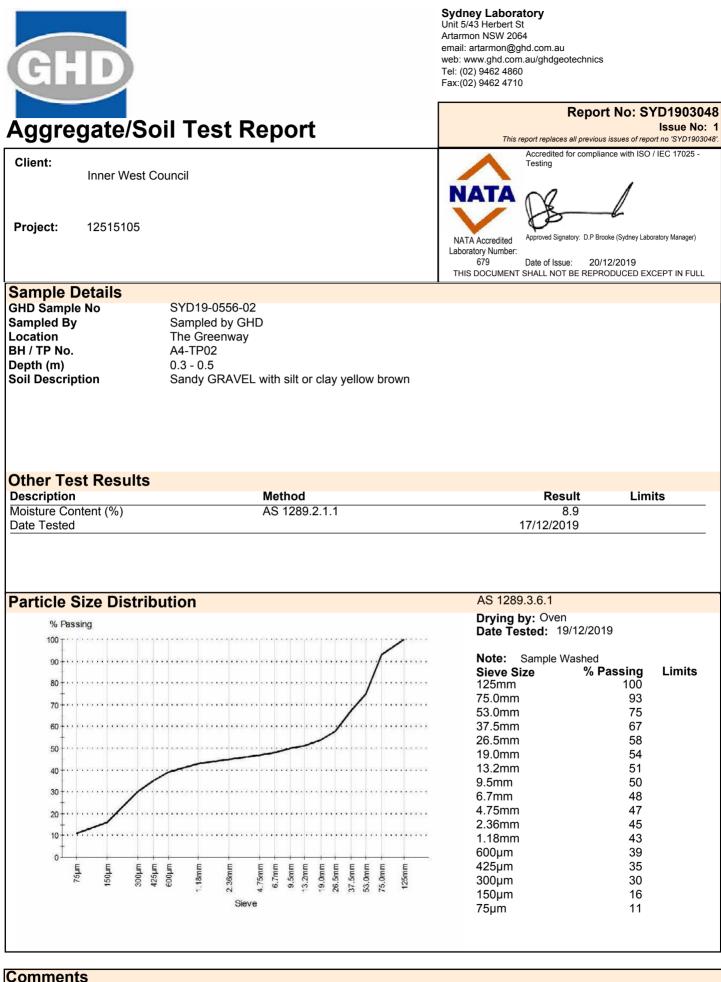

N/A


GHD Sample No Date Sampled Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0504-02 22/10/2019 Sampled by GHD The Greenway A4-BH09 0.50 - 0.95 CLAY with sand orange brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	18.8	
Date Tested		20/11/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	46	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	18	
Plasticity Index (%)	AS 1289.3.3.1	28	
Date Tested		3/12/2019	

Small sample - Insufficient sample mass to comply with minimum mass requirements AS1289 1.1


GHD Sample No Sampled By Location BH / TP No. Depth (m) Soil Description SYD19-0556-01 Sampled by GHD The Greenway A4-TP01 2.0 - 2.60 Sandy CLAY yellow brown

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	15.4	
Date Tested		17/12/2019	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	41	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	25	
Date Tested		19/12/2019	

Comments

N/A

N/A

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
Borehole / Sample No.:	A1-BH06
Job No.:	12515105
Location:	The Bay Run, Haberfield, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.1

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

	Results					1		•-		-		
	Test		Dimensio	ns				ults		Samp	le Descriptio	n
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls₅₀ (MPa)	Rock Type	Structure	Moisture
9.50	D	51.5	40.7		51.5	0.36	2	0.14	0.14	SS	BE	Moist
9.50	А	40.7		51.5	51.7	0.426	3	0.16	0.16	SS	BE	Moist
10.50	D	52.0	46.8		52.0	0.88	2	0.32	0.33	SS	BE	Moist
10.50	А	46.8		52.0	55.7	0.782	3	0.25	0.26	SS	BE	Moist
11.48	D	51.8	38.7		51.8	1.006	2	0.37	0.38	SS	BE	Moist
11.48	A	38.7		51.8	50.5	1.283	3	0.50	0.50	SS	BE	Moist
Comm	nents (if	applic	able):									
MOIST (W) \ (M) M (D) [(AD) A			CK TYPE) Sandst) Siltston) Shale (S) Maggity		STRUCTF (MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	URE MODE Fracture throu Fracture alon Fracture influ G) Joint plane Partial fractur	ugh fabric o g bedding ugh rock ma enced by pr e, (M) Micro	ass e-existing: fracture, (F)	Foliation, (V) V	ein
MOIST((W) \(\) (M) \(\) (D) [[] (AD) \(\) (AR) \(\) TEST TY D = Dian	URE Wet Moist Dry As Drilled As Received YPES netral	ROC (SS (ST (SH (G) (MS (MS	CK TYPE) Sandst) Siltston) Shale (S) Maggity	e andtone	(MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry	ssive Ided Irbedded ninated stalline Time Since Storage:	1 = 1 2 = 1 3 = 1 4 = 1 5 = 1	Fracture throu Fracture alon Fracture throu J) Joint plane Partial fractur = 1	ugh fabric ol g bedding ugh rock ma enced by pr e, (M) Micro e or chip (Ir Days	ass e-existing: fracture, (F)	Foliation, (V) V	
MOISTI (W) V (M) M (D) [] (AD) A (AR) A D = Dian A = Axia	URE Wet Moist Dry As Drilled As Received YPES netral	ROC (SS (ST (SH (G) (MS (MS (MS	CK TYPE) Sandst) Siltston) Shale (S) Metalits (T) Meta S	e àndtone iltstone L > 0.5	(MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry D D	ssive Ided Irbedded ninated stalline Time Since	1 = 1 2 = 1 3 = 1 4 = 1 6 5 = 1 8 Sampling BOX	Fracture throu Fracture alon Fracture throu Fracture influ J) Joint plane Partial fractur = 1	ugh fabric o g bedding ugh rock ma enced by pr e, (M) Micro e or chip (In Days	ass re-existing: fracture, (F) avalid result) Sampled	Foliation, (V) V By: LM pled: 16/10	

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
T (NA ()	
Borehole / Sample No.:	
Job No.:	12515105
Location:	The Bay Run, Haberfield, NSW
	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.2

Issue No:

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

Test R	esults					1				1		
	Test		Dimensio	ons	1			sults		Samp	le Descriptio	n
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
11.86	D	51.8	43.5		51.8	0.11	2	0.04	0.04	SS	BE	Moist
11.86	А	43.5		51.8	53.6	0.15	3	0.05	0.05	SS	BE	Moist
12.70	D	51.6	38.2		51.6	1.36	2	0.51	0.52	SS	BE	Moist
12.70	А	38.1		51.6	50.1	1.94	3	0.77	0.77	SS	BE	Moist
13.40	D	51.7	49.6		51.7	0.85	2	0.32	0.32	SS	BE	Moist
13.40	А	49.6		51.7	57.1	1.43	3	0.44	0.47	SS	BE	Moist
14.35	D	51.9	46.0		51.9	3.18	2	1.18	1.20	SS	BE	Moist
14.35	А	46.0		51.9	55.1	4.69	3	1.55	1.61	SS	BE	Moist
Comm	ents (if	applic	able):									
(M) N (D) D (AD) A	JRE Vet Moist Ory us Drilled us Received	(SS (ST (SH (G)) Siltston) Shale S) Maggity	e andtone	STRUCTF (MA) Mas (BE) Bed (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture thro Fracture alor Fracture thro Fracture influ (J) Joint plan Partial fractur	ugh fabric o ng bedding ugh rock ma ienced by pi e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	ein
TEST TY D = Diam	C	, <u>∟</u>) () ()	ΔĪσ	L > 0.5	D	Time Since Storage:	e Sampling	= 5	Days	Sampled	By: LM	
A = Axial		T⊳	,	0.6W <	D < W		вох 🗴		OVER	Date Sar	mpled: 23/1	0/2019
l = Irregu	lar Lump	- 		D0.6W <	D < W		_			Tested By	y: LM	
5			w .			UNWR		UNKNOW	N	Date Test	ied: 28/10	/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
Borehole / Sample No.:	A2-BH02
Job No.:	12515105
Location:	IWLR Corridor, Lewisham, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.3

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

D. Brooke 5/12/19

No. (nm)	iest R	esuits					1				1		
(m) (p,A,l) (mm) <		Test		Dimensio	ns	1		1	sults		Samp	le Descripti	on
5.36 A 43.8 52.0 53.8 1.58 3 0.55 0.56 6.31 D 51.5 40.5 51.5 51.5 0.29 2 0.11 0.11 6.31 A 40.5 51.5 51.5 0.85 3 0.32 0.32 7.41 D 51.4 35.5 51.4 1.14 2 0.43 0.44 7.41 A 35.5 51.4 48.2 1.54 3 0.66 0.65 8.56 D 51.7 40.9 51.7 2.85 2 1.07 1.08 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 Comments (if applicable): Structure model figure to bedding (B) interbedded (C) Comments (C) Sistone (C)	-							Mode	ls (MPa)			Structure	Moisture
6.31 D 51.5 40.5 51.5 0.29 2 0.11 0.11 0.11 6.31 A 40.5 51.5 51.5 0.85 3 0.32 0.32 7.41 D 51.4 35.5 51.4 48.2 1.54 3 0.66 0.65 8.56 D 51.7 40.9 51.7 2.85 2 1.07 1.08 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 MOSTURE ROCK TYPE STRUCTSUE STRUCTSUE STRUCTSUE STRUCTSUE (I) Division (V) Vein (ST) Statistone (I) States (C) States (5.36	D	52.0	43.8		52.0	1.09	2	0.40	0.41			
6.31 A 40.5 51.5 51.5 0.85 3 0.32 0.32 7.41 D 51.4 35.5 51.4 48.2 1.54 3 0.66 0.65 8.56 D 51.7 40.9 51.7 2.85 2 1.07 1.08 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 S.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 S.57 S.50 Sandstone (B) Bedded (B) Interbedded (C) S.5 Sandstone (5.36	А	43.8		52.0	53.8	1.58	3	0.55	0.56			
7.41 D 51.4 35.5 51.4 1.14 2 0.43 0.44 7.41 A 35.5 51.4 48.2 1.54 3 0.66 0.65 8.56 D 51.7 40.9 51.7 2.85 2 1.07 1.08 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 omments (if applicable): FOCK TYPE (M) Moist (S) Sandatone (B) Sitistione (MA) Massive (B) 1 FALUPE MODE (M) Moist (ST) Sandatone (MS) Sitistione (CR) Crystalline 2 Fracture through fabric oblique to bedding 2 2 5 Fracture through fabric oblique to bedding 2 3 3 3 7 1 9 4 4 5 7 1	6.31	D	51.5	40.5		51.5	0.29	2	0.11	0.11			
7.41 A 35.5 51.4 48.2 1.54 3 0.66 0.65 8.56 D 51.7 40.9 51.7 2.85 2 1.07 1.08 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 B.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 Comments (if applicable): Image: Comments (if applicable): MOSTURE (M) Most (ST) State State Image: Comments (If applicable): Image: Comments (If applicable): Image: Comments (Image: Comments (6.31	А	40.5		51.5	51.5	0.85	3	0.32	0.32			
8.56 D 51.7 40.9 51.7 2.85 2 1.07 1.08 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 Image: state	7.41	D	51.4	35.5		51.4	1.14	2	0.43	0.44			
8.56 A 40.9 51.7 51.9 4.04 3 1.50 1.52 A A 4.09 51.7 51.9 4.04 3 1.50 1.52 Comments (if applicable): Image: Comments (if applicable): Image: Comments (if applicable): Image: Comments (if applicable): Moist (M) Moist (ST) Sitistone (AR) As Received (ST) Sitistone (CR) Sitistone (CR) As Received (ST) Sitistone STRUCTRUE (MA) Massive (ST) Sitistone (CR) Crystalline FALURE MODE (COMMended ded (CR) Crystalline (AD) As Drilled (AR) As Received (ST) Sitistone (ST) Sitistone (ST) Sitistone (CR) Foliation, (V) Vein 5 = Partial fracture or chip (Invalid result) TEST TYPES L > 0.5 D 0.6W < D < W	7.41	А	35.5		51.4	48.2	1.54	3	0.66	0.65			
Molsture Rock type Struct rule Fallure mode (W) Wet (SS) Sadatone (WA) (W) Wet (SS) Sadatone I = Fracture through fabric oblique to bedding (D) Dry (SH) Shale (BE) Bedded 2 = Fracture along bedding (AD) As Drilled (G) (IX) MetaBilisandtone (IX) L> 0.5 D (AR) As Received (MSS) MetaBilisandtone (IX) Fracture influenced by pre-existing: (J) Joint plane, (M) Motor through fabric oblique to bedding 2 = Fracture influenced by pre-existing: (J) Joint plane, (M) MidBilisandtone (IX) L > 0.5 D D = Diametral L > 0.5 D L > 0.5 D Sampled By: LM A = Axial D D, 0.6W < D < W	8.56	D	51.7	40.9		51.7	2.85	2	1.07	1.08			
MOISTURE (W) Wet (M) MoistROCK TYPE (SS) SandstoneSTRUCTRUE (MA) MassiveFAILURE MODE 1 = Fracture through fabric oblique to bedding 2 = Fracture along bedding 3 = Fracture through rock mass (AD) As Drilled (AR) As ReceivedROCK TYPE (SS) Sandstone (BE) BeddedI = Fracture through fabric oblique to bedding 3 = Fracture through rock mass (LA) Laminated (CR) CrystallineI = Fracture through rock mass 4 = Fracture influenced by pre-existing: (J) Joint plane, (M) Microfracture, (F) Foliation, (V) Vein 5 = Partial fracture or chip (Invalid result)TEST TYPES D = Diametral A = AxialL<> 0.5 D 0.6W < D < WTime Since Sampling = W RAPPEDD Days OPEN AIRSampled By: L LMLM Date Sampled:Sampled By: 18/10/2019 Tested By:LM	8.56	А	40.9		51.7	51.9	4.04	3	1.50	1.52			
MOISTURE (W) Wet (M) MoistROCK TYPE (SS) SandstoneSTRUCTRUE (MA) MassiveFAILURE MODE 1 = Fracture through fabric oblique to bedding 2 = Fracture along bedding 3 = Fracture through rock mass (AD) As Drilled (AR) As ReceivedROCK TYPE (SS) Sandstone (BE) BeddedI = Fracture through fabric oblique to bedding 3 = Fracture through rock mass 													
(W)Wet(SS)Sandstone(MA)Massive1 = Fracture through fabric oblique to bedding(M)Moist(ST)Siltstone(BE)Bedded2 = Fracture along bedding(D)Dry(SH)Shale(IB)Interbedded3 = Fracture through rock mass(AD)As Drilled(G)(LA)Laminated4 = Fracture influenced by pre-existing: (J) Joint plane, (M) Microfracture, (F) Foliation, (V) Vein 5 = Partial fracture or chip (Invalid result)TEST TYPESD = DiametralL > 0.5 DA = Axial0.6W < D < W	Comm	ients (if	applic	able):									
D = Diametral A = Axial I = Irregular Lump L > 0.5 D 0.6W < D < W I = Irregular Lump L > 0.5 D 0.6W < D < W I = Irregular Lump I = Irregul	(W) V (M) M (D) E (AD) A	Vet Aoist Dry As Drilled	(SS (ST (SH (G) (MS) Sandst) Siltston) Shale	e andtone	(MA) Mas (BE) Bec (IB) Inte (LA) Lan	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	Fracture thro Fracture alon Fracture thro Fracture influ (J) Joint plan	ugh fabric o Ig bedding ugh rock ma Ienced by pl e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V)	/ein
A = Axial $0.6W < D < W$ X CORE BOX X UNDER COVER Date Sampled: 18/10/2019 I = Irregular Lump $0.6W < D < W$ W WRAPPED OPEN AIR Date Sampled: 18/10/2019		C) () (Δīρ	L > 0.5	D	L.	e Sampling	= 10	Days	Sampled	By: LM	
I = Irregular Lump 0.6W < D < W WRAPPED OPEN AIR Tested By: LM	A = Axial	—_W		- 	0.6W <	D < W		вох 🗡		OVER	Date Sam	npled: 18/1	0/2019
S N N	= rreau	Ilar Lump				D < W			-		Tested By	y: LM	
	inogu	La .mp		W						N	Date Test	ted: 28/1	0/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1	
Test Mathad		
Borehole / Sample No.:	A2D-BH04	
Job No.:	12515105	
Location:	The GreenWay Footpath, Summer Hill, N	
Project:	The GreenWay Geotech and Contam SI	1
Client:	Inner West Council	

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.3

Issue No: 1

Date of issue :

Accredited for compliance with ISO / IEC 17025 - Testing

Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

Testr	esults					1						
	Test		Dimensio	ns	1			sults		Samp	le Descriptio	n
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
4.23	D	51.6	31.1		51.6	1.134	2	0.43	0.43	SS	BE	Moist
4.23	A	31.1		51.6	45.2	1.435	1	0.70	0.67	SS	BE	Moist
5.16	D	52.3	34.6		52.3	2.931	2	1.07	1.09	SS	BE	Moist
5.16	A	34.6		52.3	48.0	3.305	1	1.43	1.41	SS	BE	Moist
6.08	D	51.6	36.0		51.6	3.715	2	1.39	1.41	SS	BE	Moist
6.08	A	36.0		51.6	48.7	3.182	1	1.34	1.33	SS	BE	Moist
7.05	D	51.7	39.7		51.7	3.432	2	1.28	1.30	SS	BE	Moist
7.05	А	39.7		51.7	51.1	0.564	2	0.22	0.22	SS	BE	Moist
	ents (if		-									
(M) N (D) D (AD) A	JRE Vet Aoist Ory As Drilled As Received	ROG (SS (ST (SH (G) (MS) Siltston I) Shale SS) Matagits	e àndtone	STRUCTF (MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture thro Fracture alon Fracture thro Fracture influ (J) Joint plan Partial fractur	ugh fabric o ng bedding ugh rock ma ienced by pi e, (M) Micro	ass re-existing: ofracture, (F)) Foliation, (V) V	ein
TEST TY D = Diam	ſ) () (ΔĪΡ	L > 0.5	D	Time Since Storage:	e Sampling	= 2	Days	Sampled	By: JS	
A = Axial			,	0.6W <	D < W		вох 🗴		OVER	Date Sam	npled: 15/10	/2019
l = Irregu	Ilar Lump				D < W		=			Tested By	y: LM	
5			W '					UNKNOWI	N	Date Test	ted: 17/10	/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Location:The GreenWay Footpath, SummerJob No.:12515105Borehole / Sample No.:A2D-BH05Test Method:AS4133.4.1		
Job No.: 12515105	,	
- , ,	,	
Location: The GreenWay Footpath, Summer	,	
	Hill N	
Project: The GreenWay Geotech and Conta	am SI	
Client: Inner West Council		

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.4

Date of issue :

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

lest R	esults					1				-		
	Test		Dimensio	ons	1			ults		Samp	le Descriptio	on
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
3.70	D	51.5	33.1		51.5	0.956	2	0.36	0.37	SS	BE	Moist
3.70	A	33.1		51.5	46.6	2.397	1	1.10	1.07	SS	BE	Moist
4.75	D	51.6	35.2		51.6	2.174	2	0.82	0.83	SS	BE	Moist
4.75	A	35.2		51.6	48.0	3.273	1	1.42	1.39	SS	BE	Moist
5.67	D	51.8	30.6		51.8	2.967	2	1.11	1.12	SS	BE	Moist
5.67	Α	30.6		51.8	44.9	2.009	1	0.99	0.95	SS	BE	Moist
6.67	D	51.6	32.6		51.6	3.061	2	1.15	1.17	SS	BE	Moist
6.67	A	32.6		51.6	46.3	5.555	1	2.59	2.50	SS	BE	Moist
Comm	ents (if	applic	able):									
(M) M (D) E (AD) A	JRE Vet Moist Dry As Drilled As Received	ROC (SS (ST (SH (G) (MS) Siltston) Shale S) Maalits	e àndtone	STRUCTF (MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture throi Fracture alon Fracture throi Fracture influ (J) Joint plane Partial fractur	ugh fabric o Ig bedding ugh rock ma Ienced by pl e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	ein
TEST TY	ſ	<u>_</u>) () ()	ΩĪΓ	L > 0.5	D	Time Since Storage:	e Sampling	= 2	Days	Sampled	By: JS	
A = Axial		T⊳		0.6W <	D < W		вох 🛛		OVER	Date Sam	npled: 15/10	/2019
	Ilar Lump	- -			D < W	WRAP				Tested By	y: LM	
i – inegu	nai Luilip		W	_ 0.000 <					N	Date Test	ted: <u>17/10</u>	/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A2D-BH06
Job No.:	12515105
Location:	Gadigal Reserve, Summer Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.5

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing

Laboratory Accreditation No. 679

D. Brooke 5/12/19

lest R	esults											
	Test		Dimensio	ons				sults		Samp	le Descriptio	on
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
3.55	D	51.6	40.3		51.6	4.09	3	1.54	1.56	SS	BE	As Drilled
3.55	А	40.3		51.6	51.5	5.31	3	2.01	2.03	SS	BE	As Drilled
4.46	D	51.5	41.9		51.5	2.99	3	1.13	1.14	SS	BE	As Drilled
4.46	А	41.9		51.5	52.4	3.95	3	1.44	1.47	SS	BE	As Drilled
5.61	D	51.5	40.4		51.5	2.93	3	1.10	1.12	SS	BE	As Drilled
5.61	А	40.4		51.5	51.5	3.83	3	1.45	1.46	SS	BE	As Drilled
6.59	D	51.7	37.2		51.7	2.86	3	1.07	1.09	SS	BE	As Drilled
6.59	А	37.2		51.7	49.5	2.3	3	0.94	0.93	SS	BE	As Drilled
7.18	D	51.7	35.7		51.7	3.67	3	1.37	1.39	SS	BE	As Drilled
7.18	А	35.7		51.7	48.5	4.07	3	1.73	1.71	SS	BE	As Drilled
			- 1.1 - >									
20mm	ents (if	applic	abie):									
(M) N (D) D (AD) A	JRE Vet Moist Dry ss Drilled ss Received	ROC (SS (ST (SH (G) (MS) Siltston) Shale S) Metalits	e andtone	STRUCTF (MA) Mas (BE) Bed (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture thro Fracture alon Fracture thro Fracture influ (J) Joint plan Partial fractur	ugh fabric o ng bedding ugh rock ma lenced by pl e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	/ein
TEST TY	C	<u>, ∟</u>)	ŻI⊳	L > 0.5	D	L	e Sampling	= 10	Days	Sampled	By: VW	
D = Diam				0.6W <	D < W	Storage:	вох 🗴		OVER	Date Sam	pled: 14/1	0/2019
A = Axial	0682		, L ,			Ë			OVER			
A = Axial I = Irregu		5 73	<u>7</u>	_D_0.6W <		WRAP	PED	OPEN AIR		Tested By	/: JS	

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1	
Borehole / Sample No.:	A2D-BH07	
Job No.:	12515105	
Location:	The GreenWay Footpath, Summer Hill, N	
Project:	The GreenWay Geotech and Contam SI	
Client:	Inner West Council	

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902568.6

Ad Lab

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

\$___l

D. Brooke

Date of issue : 5/12/19 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Test Results												
Т	est		Dimensio	ons				sults	Sample Description			
Deptn Ty	ype ,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
3.82	D	51.5	49.1		51.5	3.2	3	1.21	1.22	SS	BE	As Drilled
3.82	A	49.1		51.5	56.7	5.36		1.66	1.76	SS	BE	As Drilled
4.97	D	51.6	47.2		51.6	3.05		1.15	1.16	SS	BE	As Drilled
4.97	A	47.2		51.6	55.7	2.5		0.81	0.85	SS	BE	As Drilled
5.62	D	51.6	40.0		51.6	3.1		1.16	1.18	SS	BE	As Drilled
5.62	A	40.0		51.6	51.3	3.29		1.25	1.27	SS	BE	As Drilled
Comment	ts (if a	applica	able):									
	(W)Wet(SS)Sandstone(MA)Ma(M)Moist(ST)Siltstone(BE)Bed				ssive 1 = Fracture through fabric oblique to bedding dded 2 = Fracture along bedding brbedded 3 = Fracture through rock mass ninated 4 = Fracture influenced by pre-existing:							
TEST TYPES D = Diametral A = Axial			∫I⊳ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	L > 0.5 0.6W <	D < W	Time Since Storage: X CORE	_			Sampled Date Sam Tested By	pled: 14/10	/2019
l = Irregular Lu	ımp	كدو	₩ <u>₹_</u> _ <u></u> [_D 0.6W <	D < W					Date Test		/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A2D-BH08
Job No.:	12515105
Location:	Gadigal Reserve, Summer Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.7

Laboratory Accreditation No. 679

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing

Authorised Signatory:

D. Brooke 5/12/19

lest R	lesults											
	Test		Dimensio	ons	1			sults	Sample Description			
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
2.53	D	51.9	37.1		51.9	1.57	2	0.58	0.59	SS	BE	As Drilled
2.53	А	37.1		51.9	49.5	1.96	3	0.80	0.80	SS	BE	As Drilled
3.95	D	52.2	37.0		52.2	2.15	2	0.79	0.80	SS	BE	As Drilled
3.95	А	37.0		52.2	49.6	1.57	3	0.64	0.64	SS	BE	As Drilled
4.56	D	52.0	46.1		52.0	3.05	2	1.13	1.15	SS	BE	As Drilled
4.56	А	46.1		52.0	55.2	3.78	3	1.24	1.30	SS	BE	As Drilled
5.53	D	51.8	47.0		51.8	2.83	2	1.05	1.07	SS	BE	As Drilled
5.53	А	47.0		51.8	55.7	3.58	3	1.15	1.21	SS	BE	As Drilled
6.78	D	51.8	46.0		51.8	3.37	2	1.26	1.28	SS	BE	As Drilled
6.78	А	46.0		51.8	55.0	4.62		1.53	1.59	SS	BE	As Drilled
Somu	nents (if	applic	able):									
(W) Wet (SS) Sandstone (M (M) Moist (ST) Siltstone (B (D) Dry (SH) Shale (IE (AD) As Drilled (G) (L						STRUCTRUE FAILURE MODE (MA) Massive 1 = Fracture through fabric oblique to bedding (BE) Bedded 2 = Fracture along bedding (IB) Interbedded 3 = Fracture through rock mass (LA) Laminated 4 = Fracture influenced by pre-existing: (CR) Crystalline (J) Joint plane, (M) Microfracture, (F) Foliation, (V) Versity						
TEST TY	PES		 ⊀⊤	1 > 0 5	D	Time Since	e Sampling	= 0	Days	Sampled	Bv: LM	
TEST TY D = Dian A = Axia	netral (IW		ŌΙο	L > 0.5 0.6W <		Storage:		7		Sampled Date Sam	2	0/2019
D = Dian A = Axia	netral (IW				D < W		вох 🗴	-	OVER		npled: 28/10	0/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
Borehole / Sample No.:	A2D-BH09
Job No.:	12515105
Location:	IWLR Corridor, Summer Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.8

Date of issue :

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

lest R	esults											
	Test		Dimensio	ons			1	sults	Sample Description			
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls₅₀ (MPa)	Rock Type	Structure	Moisture
3.72	D	50.1	36.1		50.1	2.11	2	0.84	0.84	SS	BE	As Drilled
3.72	А	36.1		50.1	48.0	2.84	3	1.23	1.21	SS	BE	As Drilled
4.80	D	51.0	42.9		51.0	3.45	2	1.33	1.34	SS	BE	As Drilled
4.80	А	42.9		51.0	52.8	3.42	3	1.23	1.26	SS	BE	As Drilled
5.84	D	50.2	40.2		50.2	3.02	2	1.20	1.20	SS	BE	As Drilled
5.84	A	40.2		50.2	50.7	3.09	3	1.20	1.21	SS	BE	As Drilled
6.80	D	50.7	42.8		50.7	3.23	2	1.26	1.26	SS	BE	As Drilled
6.80	A	42.8		50.7	52.6	4.5	3	1.63	1.66	SS	BE	As Drilled
Comm	ents (if	applic	able):									
(M) M (D) E (AD) A	JRE Vet Aoist Dry As Drilled As Received	ROC (SS (ST (SH (G) (MS) Siltston) Shale S) Maan	e andtone	STRUCTF (MA) Mas (BE) Bed (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture thro Fracture alor Fracture thro Fracture influ (J) Joint plan Partial fractur	ugh fabric o ng bedding ugh rock ma nenced by pr e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	ein
TEST TY	netral		JI⊳	L > 0.5	D	Time Since Storage:	e Sampling	= 2	Days	Sampled	By: LM	
A = Axial		TD		0.6W <	D < W		вох Х		OVER	Date Sam	pled: 29/10	/2019
l = Irreau	Ilar Lump			_ _D_0.6W <	D < W	WRAP				Tested By	/: LM	
	·		W			UNWR			N	Date Test	ed: 31/10	/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A2D-LD01
Job No.:	12515105
Location:	Gadigal Reserve, Summer Hill
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.9

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

iest R	esults		Dimensi	20			Dee	wite		Sem.		
Donth	Test		Dimensio	ons				sults	Sample Description			
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
4.58	D	51.9	42.9		51.9	2.29	3	0.85	0.86	SS	BE	Moist
4.58	Α	42.9		51.9	53.2	2.78	3	0.98	1.01	SS	BE	Moist
5.57	D	51.7	43.2		51.7	3.78	3	1.41	1.44	SS	BE	Moist
5.57	А	43.2		51.7	53.3	3.69	3	1.30	1.34	SS	BE	Moist
6.58	D	52.1	38.2		52.1	4.65	3	1.71	1.75	SS	BE	Moist
6.58	А	38.2		52.2	50.3	4.98	3	1.96	1.97	SS	BE	Moist
7.35	D	52.1	42.2		52.1	3.67	3	1.35	1.38	SS	BE	Moist
7.35	А	42.2		52.1	52.9	3.29	3	1.18	1.21	SS	BE	Moist
	ients (if											
(M) N (D) D (AD) A	JRE Vet Aoist Dry As Drilled As Received	RO0 (SS (ST (SH (G) (MS (MS) Siltston) Shale S) Maalits	e àndtone	STRUCTF (MA) Mas (BE) Bed (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture throu Fracture alon Fracture throu Fracture influ (J) Joint plan Partial fractur	ugh fabric o Ig bedding ugh rock ma Ienced by pl e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	/ein
TEST TY D = Diam	C) () (ŻĿ	L > 0.5	D	Time Since Storage:	e Sampling	= 3	Days	Sampled	By: JS	
A = Axial		To	,	0.6W <	D < W		вох Х		OVER	Date Sam	pled: 25/10)/2019
					D < W	WRAP	_			Tested By	/: JS	
I = Irregu												

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH04
Job No.:	12515105
Location:	Johnson Park, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.10

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Ø

Authorised Signatory:

D. Brooke 5/12/19

lest Results												
	Test		Dimensio	ons	1		Res	Samp	Sample Description			
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
6.42	D	51.8	36.8		51.8	3.14	3	1.17	1.19	SS	BE	As Drilled
6.42	Α	36.8		51.8	49.3	2.31	3	0.95	0.95	SS	BE	As Drilled
7.44	D	51.4	37.6		51.4	1.58	3	0.60	0.61	SS	BE	As Drilled
7.44	Α	37.6		51.4	49.6	1.45	3	0.59	0.59	SS	BE	As Drilled
8.51	D	39.4	51.4		39.4	1.48	3	0.95	0.86	SS	BE	As Drilled
8.51	A	51.4		39.4	50.8	1.86	3	0.72	0.73	SS	BE	As Drilled
9.51	D	51.4	38.7		51.4	2.07	3	0.78	0.79	SS	BE	As Drilled
9.51	А	38.7		51.4	50.3	1.98	3	0.78	0.78	SS	BE	As Drilled
Comm	ients (if	applic	able):									
MOISTURE ROCK TYPE STRUCT (W) Wet (SS) Sandstone (MA) Ma (M) Moist (ST) Siltstone (BE) Ber (D) Dry (SH) Shale (IB) Integration (IA) (AD) As Drilled (G) (LA) Lar (AR) As Received (MSS) Meta Siltstone (CR) Cry (MST) Meta Siltstone (CR) Cry (MST) Meta Siltstone						issive 1 = Fracture through fabric oblique to bedding dded 2 = Fracture along bedding erbedded 3 = Fracture through rock mass minated 4 = Fracture influenced by pre-existing:						
TEST TY	PES			L > 0.5	D	Time Since	e Sampling	= 13	Days	Sampled	By: JS	
D = Diam A = Axial	IW) () () 1 1 1 1 1 1	DID	L > 0.5 0.6W <		Storage:		_		Date Sam	,)/2019
	eant	<u>تر</u> ک	 ۲۲ ((())	D new <	D < 14	WRAP	=			Tested By	/: JS	
I = Irregu	ılar Lump	q	W	_D 0.6W <	U < VV					Date Test	ed: 24/10)/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH05
Job No.:	12515105
Location:	Johnson Park, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD02658.11

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing

Laboratory Accreditation No. 679

gnatory:

D. Brooke 5/12/19

lest R	esuits												
_	Test		Dimensio	ons	1			sults	Sample Description				
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture	
4.91	D	51.5	44.0		51.5	2.34	3	0.88	0.89	SS	BE	As Drilled	
4.91	А	44.0		51.5	53.7	3.14	3	1.09	1.12	SS	BE	As Drilled	
5.55	D	51.4	37.0		51.4	1.45	3	0.55	0.56	SS	BE	As Drilled	
5.55	А	37.0		51.4	49.2	2.16	3	0.89	0.89	SS	BE	As Drilled	
6.61	D	51.5	37.8		51.5	2.5	3	0.94	0.96	SS	BE	As Drilled	
6.61	А	37.8		51.5	49.8	2.52	3	1.02	1.01	SS	BE	As Drilled	
7.50	D	50.8	34.7		50.8	2.79	3	1.08	1.09	SS	BE	As Drilled	
7.50	А	34.7		50.8	47.4	2.59	3	1.15	1.13	SS	BE	As Drilled	
8.33	D	51.4	41.0		51.4	1.11	3	0.42	0.43	SS	BE	As Drilled	
8.33	А	41.0		51.4	51.8	1.45	3	0.54	0.55	SS	BE	As Drilled	
Comm	ents (if	applic	able):										
MOISTURE ROCK TYPE (W) Wet (SS) Sandstone (M) Moist (ST) Siltstone (D) Dry (SH) Shale (AD) As Drilled (G) (AR) As Received (MSS) Metalitisandtone (MST) Meta Siltstone				e andtone	STRUCTF (MA) Mas (BE) Bed (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	Fracture alon Fracture thro Fracture influ (J) Joint plan	ugh fabric o Ig bedding ugh rock ma Ienced by pl e, (M) Micro				
TEST TY D = Diam	netral C) () () 	ŻΙ₀	L > 0.5		Time Since Storage:	e Sampling	= 13	Days	Sampled			
A = Axial		\Box	, L ,	0.6W <	D < W	X CORE	вох 🛛		OVER	Date Sam	npled: 11/10)/2019	
l = Irregu	lar Lump	\Box	<u>j</u>		D < W	WRAP	PED	OPEN AIR		Tested By	y: JS		
5			W '					UNKNOWI	N	Date Test	ied: 24/10)/2019	

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH06
Job No.:	12515105
Location:	Constitution Rd, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.12

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

ps_

D. Brooke

5/12/19

1621 K	esuits		Dia i			1				0					
Depth	Test		Dimensio	ons				sults		Samp	le Descriptio	n			
(m) Type	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture			
7.85	D	51.5	42.6		51.5	1.41	3	0.53	0.54	SS	BE	As Drilleo			
7.85	А	42.6		51.5	52.9	5.17	3	1.85	1.90	SS	BE	As Drilleo			
8.13	D	51.5	40.6		51.5	0.1	3	0.04	0.04	SS	BE	As Drilleo			
8.13	А	40.6		51.5	51.6	0.24	3	0.09	0.09	SS	BE	As Drilleo			
8.30	D	51.6	38.7		51.6	1.23	3	0.46	0.47	SS	BE	As Drilleo			
8.30	А	38.7		51.6	50.4	1.34	3	0.53	0.53	SS	BE	As Drilleo			
9.29	D	51.6	36.2		51.6	1.79	3	0.67	0.68	SS	BE	As Drilleo			
9.29	А	36.2		51.6	48.8	1.77	3	0.74	0.74	SS	BE	As Drilleo			
10.32	D	51.6	37.0		51.6	1.42	3	0.53	0.54	SS	BE	As Drilleo			
10.32	А	37.0		51.6	49.3	1.28	3	0.53	0.52	SS	BE	As Drilleo			
11.43	D	51.7	40.2		51.7	3.7	3	1.38	1.41	SS	BE	As Drilleo			
11.43	А	40.2		51.7	51.4	3.74	3	1.42	1.43	SS	BE	As Drilled			
Comm	ents (if	applic	able):												
MOISTURE (W) Wet (M) Moist (D) Dry (AD) As Drilled (AR) As Received		ROC (SS (ST (SH (G) (MS (MS) Siltstor) Shale S) Menaits		STRUCTI (MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture throi Fracture alon Fracture throi Fracture influ (J) Joint plan Partial fractur	ugh fabric o g bedding ugh rock ma enced by pi e, (M) Micro	re-existing: fracture, (F)	Foliation, (V) V	/) Vein			
TEST TY	C) () (ŻΙο	L > 0.5	D		e Sampling	= 7	Days	Sampled	By: JS				
D = Diam A = Axial	<u> </u>			0.6W <	D < W	Storage:	вох 🗴		OVER	Date Sam	ipled: 17/10	/2019			
l = Irregu	lar Lump			_ _D 0.6W <	D < W	WRAP	-			Tested By	/: JS				
			vv					UNKNOW	N	Date Test	ed: 24/10	/2019			

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH07
Job No.:	12515105
Location:	IWLR Corridor, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.13

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing

Laboratory Accreditation No. 679

D. Brooke

5/12/19

IESIK	esuits		Dimensio	ne			Ros	ults		Samn	le Descriptio	Moisture As Drilled				
Depth	Test				De		Failure	Suits	10							
(m) (D,A,I)		D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Mode (1,2,3)	ls (MPa)	ls₅₀ (MPa)	Rock Type	Structure	Moisture				
3.69	D	48.5	42.1		48.5	1.18	4(J)	0.50	0.50	BR	MA	As Drilled				
3.69	А	42.1		48.5	51.0	0.82	4(J)	0.32	0.32	BR	MA	As Drilled				
4.74	D	49.1	46.3		49.1	0.17	2	0.07	0.07	SS	BE	As Drilled				
4.74	А	46.3		49.1	53.8	0.17	3	0.06	0.06	SS	BE	As Drilled				
5.73	D	51.1	39.2		51.1	0.63	2	0.24	0.24	SS	BE	As Drilled				
5.73	А	39.2		51.1	50.5	0.95	3	0.37	0.37	SS	BE	As Drilled				
6.60	D	51.3	39.3		51.3	0.62	2	0.24	0.24	SS	BE	As Drilled				
6.60	А	39.3		51.3	50.6	1.19	3	0.46	0.47	SS	BE	As Drilled				
Comments (if ap MOISTURE (W) Wet (M) Moist (D) Dry (AD) As Drilled (AR) As Received			CK TYPE		STRUCTI (MA) Maa (BE) Beo	ssive	1 = I	URE MODE Fracture thro Fracture alon	ugh fabric o	oblique to bedding						
		(SH (BR (MS (MS	l) Shale 3) SS) Meta S	andtone	(IB) Inte (LA) Lar (CR) Cry	erbedded ninated	3 = 4 = (Fracture thro Fracture influ	ugh rock ma ienced by pi e, (M) Micro	re-existing: ofracture, (F)	Foliation, (V) ∖)	(V) Vein				
TEST TY D = Diam	C) () (ŌĿ	L > 0.5	D	Time Since Storage:	e Sampling	= 1	Days	Sampled	By: LM					
		\rightarrow –		0.6W <	D < W		вох 🛛		OVER	Date Sam	npled: 30/10)/2019				
A = Axial						X CORE BOX X UNDER COVER WRAPPED OPEN AIR				Tested By: LM						
l = Irregu	lar Lump	حصده	J	_D 0.6W <	D < W			OPEN AIR								

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH08
Job No.:	12515105
Location:	1-3 Williams Parade, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.14

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing

Laboratory Accreditation No. 679 D. Brooke

Authorised Signatory:

Date of issue :

5/12/19

Iest R	esults					1				1		
	Test		Dimensio	ons				sults		Samp	le Descriptio	n
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
6.37	D	51.8	49.9		51.8	1.73	2	0.64	0.65	SS	BE	As Drilled
6.37	А	49.9		51.8	57.4	3.43	3	1.04	1.11	SS	BE	As Drilled
7.70	D	51.7	41.6		51.7	0.66	2	0.25	0.25	SS	BE	As Drilled
7.70	А	41.6		51.7	52.3	0.55	3	0.20	0.21	SS	BE	As Drilled
8.81	D	51.8	43.8		51.8	0.8	2	0.30	0.30	SS	BE	As Drilled
8.81	А	43.8		51.8	53.8	0.48	4(J)	0.17	0.17	SS	BE	As Drilled
9.86	D	51.6	40.3		51.6	4.59	2	1.73	1.75	SS	BE	As Drilled
9.86	А	40.3		51.6	51.4	6.22	3	2.35	2.38	SS	BE	As Drilled
Comm	ents (if	applic	able):									
(M) N (D) D (AD) A	JRE Vet Moist Dry As Drilled As Received	ROG (SS (ST (SH (G) (MS) Siltston l) Shale Granitic SS) Meta Sa	e ; andtone	STRUCTF (MA) Mas (BE) Bed (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture throi Fracture alon Fracture throi Fracture influ (J) Joint plani Partial fractur	ugh fabric o Ig bedding ugh rock ma Ienced by pl e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	ein
TEST TY D = Diam	C) () ()	ŌI⊳	L > 0.5	D	Time Since Storage:	e Sampling	= 11	Days	Sampled	By: LM	
A = Axial		Ē	ı	0.6W <	D < W		вох 🗴		OVER	Date Sam	pled: 17/10	/2019
l = Irregu	Ilar Lump			_ _D0.6W <	D < W	WRAP	=	OPEN AIR		Tested By	/: LM	
5			w .			UNWR		UNKNOW	N	Date Test	ed: 28/10	/2019

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH09
Job No.:	12515105
Location:	IWLR Corridor, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.15

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

	esults		Dimensio	ons			Res	ults		Samp	le Descriptio	n
Depth (m)	Test Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	Is ₅₀ (MPa)	Rock Type	Structure	Moisture
5.45	D	51.4	32.6		51.4	0.07	2	0.03	0.03	ST	LA	As Drilled
5.45	А	32.6		51.4	46.2	0.4	3	0.19	0.18	ST	LA	As Drilled
6.42	D	51.4	31.5		51.4	0.07	2	0.03	0.03	ST	LA	As Drilled
6.42	А	31.5		51.4	45.4	0.2	3	0.10	0.09	ST	LA	As Drilled
7.41	D	51.2	31.5		51.2	0.02	2	0.01	0.01	SS	BE	As Drilled
7.41	А	31.5		51.2	45.3	0.78	3	0.38	0.36	SS	BE	As Drilled
7.89	D	51.2	36.5		51.2	0.07	3	0.03	0.03	SS	BE	As Drilled
7.89	А	36.5		51.2	48.8	0.47	3	0.20	0.20	SS	BE	As Drilled
8.21	D	51.0	37.5		51.0	0.66	3	0.25	0.26	SS	BE	As Drilled
8.21	А	37.5		51.0	49.3	0.57	3	0.23	0.23	SS	BE	As Drilled
comm	ents (if	applic	able):									
(W) V (M) N (D) E (AD) A	M) Moist (ST) Siltstone (BE) Bec					issive 1 = Fracture through fabric oblique to bedding dded 2 = Fracture along bedding erbedded 3 = Fracture through rock mass minated 4 = Fracture influenced by pre-existing:						
TEST TY	PES		ΔĪΡ	L > 0.5	D	Time Since	Sampling	= 1	Days	Sampled	By: JS	
D = Diam			JID			Storage:						/2019
A = Axial 0.6W < D < W												
A = Axial I = Irregu	20000	 لار_∑	╔╋╦┷═┽┰			WRAP	PED			Tested By	y: JS	

GHD GEOTECHNICS

Point Load Strength Index - Report

or, Dulwich Hill, NSW
ay Geotech and Contam SI
ouncil

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.16

Issue No: 1

Date of issue :

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

Authorised Signatory:

D. Brooke 5/12/19

Test Results													
	Test		Dimensio	ons				sults		Sample Description			
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls₅₀ (MPa)	Rock Type	Structure	Moisture	
5.73	D	51.2	40.8		51.2	0.14	3	0.05	0.05	SS	BE	As Drilled	
5.73	А	40.8		51.2	51.6	0.74		0.28	0.28	SS	BE	As Drilled	
6.25	D	51.7	44.2		51.7	1.73		0.65	0.66	SS	BE	As Drilled	
6.25	А	44.2		51.2	53.7	3.4		1.18	1.22	SS	BE	As Drilled	
7.40	D	51.9	37.7		51.9	0.51		0.19	0.19	SS	BE	As Drilled	
7.40	А	37.7		51.9	49.9	0.5		0.20	0.20	SS	BE	As Drilled	
7.95	D	51.9	41.6		51.9	0.87		0.32	0.33	SS	BE	As Drilled	
7.95	А	41.6		51.9	52.4	1.64		0.60	0.61	SS	BE	As Drilled	
8.29	D	51.8	35.4		51.8	0.28		0.10	0.11	SS	BE	As Drilled	
8.29	А	35.4		51.8	48.3	0.92		0.39	0.39	SS	BE	As Drilled	
9.16	D	51.6	37.5		51.6	4.76		1.79	1.81	SS	BE	As Drilled	
9.16	А	37.5		51.6	49.6	3.93		1.60	1.59	SS	BE	As Drilled	
10.59	D	51.8	46.1		51.8	4.35		1.62	1.65	SS	BE	As Drilled	
10.59	А	46.1		51.8	55.1	4.63		1.52	1.59	SS	BE	As Drilled	
11.74	D	51.7	40.8		51.7	6.51		2.44	2.47	SS	BE	As Drilled	
11.74	А	40.8		51.7	51.8	8.89		3.31	3.36	SS	BE	As Drilled	
12.60	D	51.8	37.4		51.8	5.79		2.16	2.19	SS	BE	As Drilled	
12.60	А	37.4		51.8	49.7	7.33		2.97	2.96	SS	BE	As Drilled	
13.16	D	51.9	32.8		51.9	7.69		2.85	2.90	SS	BE	As Drilled	
13.16	А	32.8		51.9	46.6	4.16		1.92	1.86	SS	BE	As Drilled	
Comm	ents (if	applic	able):										
			-										
(W) V (M) M (D) E (AD) A	(M) Moist (ST) Siltstone (BE) Bed					ssive Ided rbedded ninated	FAILURE MODE 1 = Fracture through fabric oblique to bedding 2 = Fracture along bedding 3 = Fracture through rock mass 4 = Fracture influenced by pre-existing: (J) Joint plane, (M) Microfracture, (F) Foliation, (V) Vein 5 = Partial fracture or chip (Invalid result)						
TEST TY	PES	<u></u>	ـــــــــــــــــــــــــــــــــــــ	1 . 0 5	D	Time Since	e Sampling	= 0	Days	Sampled	By: JS		
D = Diam	netral (I—W		ЫD	L > 0.5		Storage:		~	,			10040	
A = Axial	×××××	Ξī	<u> </u>	0.6W <	U < W	X CORE	вох 🛛		OVER	Date Sam	ipiea: 24/10	/2019	
l = Irregu	lar Lump	\Box	<u> </u>	_D 0.6W <	D < W	WRAP	PED	OPEN AIR		Tested By	/: JS		
			VV			UNWR		UNKNOWI	N	Date Test	ed: 24/10	/2019	

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-BH11
Job No.:	12515105
Location:	Dulwich Grove Footpath, Duwlich Hill, NS
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.17

Issue No: 1

Date of issue :

Accredited for compliance with ISO / IEC 17025 - Testing Laboratory Accreditation No. 679

JŠ____

Authorised Signatory:

D. Brooke 5/12/19

Test R	esuits	T								1		
–	Test		Dimensio	ons				sults		Samp	le Descriptio	n
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
4.73	D	51.1	41.9		51.1	0.23	2	0.09	0.09	SS	LA	As Drilled
4.73	А	41.9		51.1	52.2	0.85	3	0.31	0.32	SS	LA	As Drilled
5.92	D	52.1	35.0		52.1	3.03	2	1.12	1.14	SS	BE	As Drilled
5.92	А	35.0		52.1	48.2	4.34	3	1.87	1.84	SS	BE	As Drilled
6.83	D	52.0	42.9		52.0	3.24	2	1.20	1.22	SS	BE	As Drilled
6.83	А	42.9		52.0	53.3	3.79	3	1.34	1.37	SS	BE	As Drilled
7.93	D	52.0	40.7		52.0	3.66	2	1.35	1.38	SS	BE	As Drilled
7.93	Α	40.7		52.0	51.9	3.65	3	1.36	1.38	SS	BE	As Drilled
8.94	D	52.0	50.4		52.0	4.4	2	1.62	1.65	SS	BE	As Drilled
8.94	Α	50.4		52.0	57.8	5.8	3	1.74	1.85	SS	BE	As Drilled
9.52	D	51.6	36.9		51.6	2.38	2	0.89	0.91	SS	BE	As Drilled
9.52	А	36.9		51.6	49.2	2.5	3	1.03	1.02	SS	BE	As Drilled
10.20	D	51.2	37.0		51.2	0.56	2	0.21	0.22	SS	BE	As Drilled
10.20	А	37.0		51.2	49.1	0.49	3	0.20	0.20	SS	BE	As Drilled
Comm	ients (if	applic	able):					·				
MOISTURE ROCK TYPE STRUCT (W) Wet (SS) Sandstone (MA) Mai (M) Moist (ST) Siltstone (BE) Bei						assive 1 = Fracture through fabric oblique to bedding dded 2 = Fracture along bedding erbedded 3 = Fracture through rock mass minated 4 = Fracture influenced by pre-existing:						ein
TEST TY D = Diam A = Axial	netral (IW		ÖI⊳	L > 0.5 0.6W <		Storage:	=			Sampled Date Sam	pled: 24/10	/2019
l = Irregu	ılar Lump			_D 0.6W <	D < W					Tested By Date Test		/2019
									-	Date Test	20/10	12013

GHD GEOTECHNICS

Point Load Strength Index - Report

Test Results	
Test Method:	AS4133.4.1
Borehole / Sample No.:	A3-LD_BH01
Job No.:	12515105
Location:	Davis Street, Dulwich Hill, NSW
Project:	The GreenWay Geotech and Contam SI
Client:	Inner West Council

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Report No: SYD1902658.18

Accredited for compliance with ISO / IEC 17025 - Testing

Laboratory Accreditation No. 679

Authorised Signatory:

Date of issue :

NAT/

D. Brooke

5/12/19

1631 N	coulto											
	Test		Dimensio	ons				sults		Samp	le Descriptio	n
Depth (m)	Type (D,A,I)	D (mm)	L (mm)	W (mm)	De (mm)	Load, P (kN)	Failure Mode (1,2,3)	ls (MPa)	ls ₅₀ (MPa)	Rock Type	Structure	Moisture
11.25	D	51.1	33.0		51.1	2.26	3	0.87	0.87	SS	BE	As Drilled
11.25	А	33.0		51.1	46.3	1.57	3	0.73	0.71	SS	BE	As Drilled
12.19	D	51.9	48.5		51.9	2.66	3	0.99	1.00	SS	BE	As Drilled
12.19	A	48.5		51.9	56.6	3.63	3	1.13	1.20	SS	BE	As Drilled
Comm	ents (if	annlia	ablo):									
			-									
(M) N (D) D (AD) A	JRE Vet Aoist Dry As Drilled As Received	ROC (SS (ST (SH (G) (MS) Siltston I) Shale SS) Maggity	andtone	STRUCTF (MA) Mas (BE) Bec (IB) Inte (LA) Lan (CR) Cry	ssive Ided rbedded ninated	1 = 2 = 3 = 4 =	LURE MODE Fracture thro Fracture alon Fracture thro Fracture influ (J) Joint plan Partial fractur	ugh fabric o Ig bedding ugh rock ma Ienced by pi e, (M) Micro	ass re-existing: ofracture, (F)	Foliation, (V) V	ein
TEST TY D = Diam	netral () () () 	ŌI⊳	L > 0.5	D	Time Since Storage:	e Sampling	= 7	Days	Sampled		
A = Axial			. L .	0.6W <	D < W	X CORE	вох 🗴		OVER	Date Sam	npled: 18/10	/2019
I = Irregu	Ilar Lump	\Box		_ _D_0.6W <	D < W	WRAP	PED	OPEN AIR		Tested By	y: JS	
. mogu	Lamp		W			UNWR			N	Date Test	ied: 26/10	/2019

CERTIFICATE OF ANALYSIS 231488

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details	
Your Reference	<u>12515105</u>
Number of Samples	16 SOIL
Date samples received	25/11/2019
Date completed instructions received	25/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	02/12/2019
Date of Issue	12/12/2019
Reissue Details	This report replaces R00 created on 29/11/2019 due to: Sample ID Amended (Client Request)
NATA Accreditation Number 2901.	. This document shall not be reproduced except in full.
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Misc Inorg - Soil						
Our Reference		231488-1	231488-2	231488-3	231488-4	231488-5
Your Reference	UNITS	A2_BH04	A2D_BH06	A2D_BH07	A2D_BH07	A2D_BH08
Depth		0.30-0.50	1.50-1.95	0.50-0.95	2.50-2.95	1.00-1.20
Composite Reference						
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Date analysed	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units	6.8	7.2	8.4	7.8	8.1
Electrical Conductivity 1:5 soil:water	μS/cm	72	29	120	67	54
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	10	24	25
Sulphate, SO4 1:5 soil:water	mg/kg	79	10	30	36	20

Misc Inorg - Soil						
Our Reference		231488-6	231488-7	231488-8	231488-9	231488-10
Your Reference	UNITS	A2D_BH09	A2D_BH09	A2D_LD01	A2D-LD02	A2D_LD03
Depth		1.25-1.40	2.40-2.65	0.50-0.80	0.50-0.95	1.00-2.00
Composite Reference						
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Date analysed	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units	8.3	5.1	6.9	7.3	5.4
Electrical Conductivity 1:5 soil:water	µS/cm	66	31	160	160	89
Chloride, Cl 1:5 soil:water	mg/kg	<10	10	41	31	44
Sulphate, SO4 1:5 soil:water	mg/kg	10	30	50	72	89

Misc Inorg - Soil					_	
Our Reference		231488-11	231488-12	231488-13	231488-14	231488-15
Your Reference	UNITS	A2_TP01	A3_BH01	A3_BH03	A3_BH04	A2D_LD04
Depth		0.30-0.60	1.20-1.30	1.70-1.80	0.50-0.95	
Composite Reference						(1.50-1.95, 2.50- 2.95, 3.5-3.95)
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Date analysed	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units	7.3	5.0	4.7	7.4	7.8
Electrical Conductivity 1:5 soil:water	μS/cm	42	100	61	100	120
Chloride, Cl 1:5 soil:water	mg/kg	10	42	10	<10	10
Sulphate, SO4 1:5 soil:water	mg/kg	10	110	79	71	130

Misc Inorg - Soil		
Our Reference		231488-16
Your Reference	UNITS	A2D_LD04
Depth		
Composite Reference		(4.50-4.95, 5.50- 5.95, 6.50-6.95)
Type of sample		SOIL
Date prepared	-	26/11/2019
Date analysed	-	26/11/2019
pH 1:5 soil:water	pH Units	8.3
Electrical Conductivity 1:5 soil:water	µS/cm	300
Chloride, Cl 1:5 soil:water	mg/kg	25
Sulphate, SO4 1:5 soil:water	mg/kg	410

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231488-4
Date prepared	-			26/11/2019	2	26/11/2019	26/11/2019		26/11/2019	26/11/2019
Date analysed	-			26/11/2019	2	26/11/2019	26/11/2019		26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	2	7.2	7.2	0	102	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	2	29	29	0	108	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	<10	<10	0	104	92
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	10	10	0	109	109

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	13	26/11/2019	26/11/2019			[NT]
Date analysed	-			[NT]	13	26/11/2019	26/11/2019			[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	13	4.7	4.7	0		[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	[NT]	13	61	68	11		[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	13	10	20	67		[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	13	79	84	6	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS 231489

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details	
Your Reference	<u>12515105</u>
Number of Samples	14 Soil
Date samples received	25/11/2019
Date completed instructions received	25/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	02/12/2019				
Date of Issue	02/12/2019				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Misc Inorg - Soil						
Our Reference		231489-1	231489-2	231489-3	231489-4	231489-5
Your Reference	UNITS	A1_BH01	A1_BH02	A1_BH06	A1_BH06	A1_BH07
Depth		2.20-2.30	0.80-0.90	1.50-1.95	3.50-3.95	3.00-3.45
Date Sampled		10/10/2019	10/10/2019	16/10/2019	16/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Date analysed	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units	8.4	8.8	10.9	8.3	8.2
Electrical Conductivity 1:5 soil:water	μS/cm	2,000	1,400	3,900	6,400	6,000
Chloride, Cl 1:5 soil:water	mg/kg	2,800	1,700	5,900	9,000	8,700
Sulphate, SO4 1:5 soil:water	mg/kg	540	480	780	2,900	2,700

Misc Inorg - Soil						
Our Reference		231489-6	231489-7	231489-8	231489-9	231489-10
Your Reference	UNITS	A1_LD03	A1_LD04	A1_LD05	A1_LD06	A1_LD07
Depth		0.50-1.00	1.80-1.90	0.70-1.00	1.10-1.50	0.50-1.00
Date Sampled		08/10/2019	08/10/2019	08/10/2019	08/10/2019	09/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Date analysed	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units	7.8	7.8	7.8	8.1	7.1
Electrical Conductivity 1:5 soil:water	µS/cm	1,600	2,500	2,400	2,000	400
Chloride, Cl 1:5 soil:water	mg/kg	1,300	1,800	67	1,000	340
Sulphate, SO4 1:5 soil:water	mg/kg	2,100	3,500	7,900	2,800	310

Misc Inorg - Soil					
Our Reference		231489-11	231489-12	231489-13	231489-14
Your Reference	UNITS	A1_LD09	A1_LD10	A2_BH02	A2_BH03
Depth		0.30-0.50	1.20-1.50	2.50-2.95	0.70-0.90
Date Sampled		09/10/2019	09/10/2019	18/10/2019	16/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Date analysed	-	26/11/2019	26/11/2019	26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units	8.4	7.2	5.0	5.1
Electrical Conductivity 1:5 soil:water	µS/cm	1,200	350	44	83
Chloride, Cl 1:5 soil:water	mg/kg	850	240	<10	35
Sulphate, SO4 1:5 soil:water	mg/kg	1,200	290	58	91

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231489-8
Date prepared	-			26/11/2019	6	26/11/2019	26/11/2019		26/11/2019	26/11/2019
Date analysed	-			26/11/2019	6	26/11/2019	26/11/2019		26/11/2019	26/11/2019
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	6	7.8	8.0	3	102	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	6	1600	1900	17	106	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	6	1300	1400	7	107	99
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	6	2100	2200	5	112	#

QUALITY CONTROL: Misc Inorg - Soil						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	12	26/11/2019	26/11/2019			[NT]	
Date analysed	-			[NT]	12	26/11/2019	26/11/2019			[NT]	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	12	7.2	7.2	0		[NT]	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	[NT]	12	350	420	18		[NT]	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	12	240	300	22		[NT]	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	12	290	340	16	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

pH/ EC have exceeded the recommended technical holding times, Envirolab Group form 347 "Recommended Preservation and Holding Times" can be provided on request (available on the Envirolab website)

CERTIFICATE OF ANALYSIS 231739

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details	
Your Reference	<u>12515105</u>
Number of Samples	26 Soil
Date samples received	27/11/2019
Date completed instructions received	27/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	04/12/2019				
Date of Issue	12/12/2019				
Reissue Details	This report replaces R00 created on 02/12/2019 due to: Sample ID Amended (Client Request)				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Misc Inorg - Soil						
Our Reference		231739-1	231739-2	231739-3	231739-4	231739-5
Your Reference	UNITS	A3_LD/BH01	A4_BH02	A4_BH04	A4_BH05	A4_BH09
Depth		2.50-2.95	0.70-0.90	2.50-2.95+3.50- 3.95	0.50-0.95+1.50- 1.95	0.50-0.95
Sample ID		-	-	-	A4-BH06 0.5- 0.75m	-
Date Sampled		18/10/2019	22/10/2019	22/10/2019	22/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
pH 1:5 soil:water	pH Units	7.2	6.9	8.2	8.5	4.7
Electrical Conductivity 1:5 soil:water	µS/cm	40	24	220	150	110
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	10	20	10
Sulphate, SO4 1:5 soil:water	mg/kg	36	20	190	100	170
Misc Inorg - Soil						
Our Reference		231739-6	231739-7	231739-8	231739-9	231739-10
Your Reference	UNITS	A4_BH10	A4_BH12	A1_BH07	A1_LD01	A3_HA05
Depth		0.50-0.95+1.50- 1.95	0.50-0.95	6.50-6.70	1.10-1.50	1.3-1.50
Sample ID		-	-	-	-	-
Date Sampled		22/10/2019	22/10/2019	22/10/2019	08/10/2019	31/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
pH 1:5 soil:water	pH Units	7.8	7.2	8.4	9.0	7.3
Electrical Conductivity 1:5 soil:water	µS/cm	58	56	2,200	790	340
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	2,800	890	310
Sulphate, SO4 1:5 soil:water	mg/kg	25	25	710	180	160

Misc Inorg - Soil						
Our Reference		231739-11	231739-12	231739-13	231739-14	231739-15
Your Reference	UNITS	A3_HA05	A3_BH04	A3_BH05	A3_LD02	A3_BH07
Depth		0.30-0.40	2.50-2.95	0.50-0.95+1.50- 1.95	0.50-0.95+1.50- 1.95	1.50-1.70
Sample ID		-	-	-	-	-
Date Sampled		31/10/2019	22/10/2019	11/10/2019	21/10/2019	30/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
pH 1:5 soil:water	pH Units	6.7	4.9	6.9	7.5	5.5
Electrical Conductivity 1:5 soil:water	μS/cm	35	66	65	74	110
Chloride, Cl 1:5 soil:water	mg/kg	10	<10	10	<10	20
Sulphate, SO4 1:5 soil:water	mg/kg	10	94	58	38	160
Misc Inorg - Soil						
Our Reference		231739-16	231739-17	231739-18	231739-19	231739-20
Your Reference	UNITS	A3_BH08	A3_BH10	A3_HA01	A3_HA02	A3_HA04
Depth		2.50-2.95	4.10-4.20	0.50-0.65	0.30-0.50	0.80-0.90
Sample ID		-	-	-	-	-
Date Sampled		17/10/2019	24/10/2019	25/10/2019	21/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
pH 1:5 soil:water	pH Units	4.6	4.8	7.9	8.7	5.4
Electrical Conductivity 1:5 soil:water	μS/cm	180	91	57	190	46
Chloride, Cl 1:5 soil:water	mg/kg	170	<10	23	26	20
Sulphate, SO4 1:5 soil:water	mg/kg	97	130	<10	200	42
Misc Inorg - Soil						
Our Reference		231739-21	231739-22	231739-23	231739-24	231739-25
Your Reference	UNITS	A3_HA06	A3_HA06	A3_HA07	A3_BH06	A4_BH08
Depth		0.30-0.40	1.00-1.15	0.60-0.70	1.50-1.95+2.50- 2.95	0.30-0.40
Sample ID		-	-	-	-	-
Date Sampled		15/10/2019	15/10/2019	15/10/2019	17/10/2019	17/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
pH 1:5 soil:water	pH Units	8.1	8.3	7.3	6.5	7.2
Electrical Conductivity 1:5 soil:water	µS/cm	230	110	39	70	33
Chloride, Cl 1:5 soil:water	mg/kg	120	10	20	20	20
Sulphate, SO4 1:5 soil:water	mg/kg	42	76	10	81	51

Misc Inorg - Soil		
Our Reference		231739-26
Your Reference	UNITS	A3_BH06
Depth		3.5-3.95+4.50- 4.95
Sample ID		-
Date Sampled		17/10/2019
Type of sample		Soil
Date prepared	-	28/11/2019
Date analysed	-	28/11/2019
pH 1:5 soil:water	pH Units	5.5
Electrical Conductivity 1:5 soil:water	µS/cm	200
Chloride, Cl 1:5 soil:water	mg/kg	10
Sulphate, SO4 1:5 soil:water	mg/kg	330

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231739-2
Date prepared	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	29/11/2019
Date analysed	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	29/11/2019
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	7.2	7.3	1	100	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	1	40	41	2	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	<10	<10	0	106	90
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	36	37	3	109	107

QUALITY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	231739-8
Date prepared	-			[NT]	16	28/11/2019	28/11/2019		29/11/2019	29/11/2019
Date analysed	-			[NT]	16	28/11/2019	28/11/2019		29/11/2019	29/11/2019
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	16	4.6	4.6	0	100	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	[NT]	16	180	180	0	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	16	170	150	12	114	92
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	16	97	71	31	120	84

QUALITY	CONTROL	Misc Ino	rg - Soil	Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	231739-25
Date prepared	-			[NT]	24	28/11/2019	28/11/2019			29/11/2019
Date analysed	-			[NT]	24	28/11/2019	28/11/2019			29/11/2019
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	24	6.5	6.2	5		[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	[NT]	24	70	80	13		[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	24	20	22	10		73
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	24	81	89	9	[NT]	122

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH EC have exceeded the recommended technical holding times, Envirolab Group form 347 "Recommended Preservation and Holding Times" can be provided on request (available on the Envirolab website)

CERTIFICATE OF ANALYSIS 233334

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details	
Your Reference	<u>12515105</u>
Number of Samples	2 Soil
Date samples received	17/12/2019
Date completed instructions received	17/12/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	20/12/2019
Date of Issue	20/12/2019
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Misc Inorg - Soil			
Our Reference		233334-1	233334-2
Your Reference	UNITS	A4-TP02	A2-HA02
Depth		0.3-0.5	0.4-0.5
Type of sample		Soil	Soil
Date prepared	-	18/12/2019	18/12/2019
Date analysed	-	18/12/2019	18/12/2019
pH 1:5 soil:water	pH Units	5.6	7.2
Electrical Conductivity 1:5 soil:water	µS/cm	29	54
Chloride, Cl 1:5 soil:water	mg/kg	<10	20
Sulphate, SO4 1:5 soil:water	mg/kg	<10	10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	plicate	Spike Recovery %								
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			18/12/2019	[NT]		[NT]	[NT]	18/12/2019	
Date analysed	-			18/12/2019	[NT]		[NT]	[NT]	18/12/2019	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	95	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	83	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	85	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Appendix E – Historic investigation logs

Engineering Log - Borehole

SHEET 1 OF 1

F	Clien Proje .oca	ect		Sy	dney	olland / Light Rail Inner West Extension I - Dulwich Hill		Lo	roject No. ogged By necked By	230391- FG RR	003-001	
C	Com		ed I	ing Drillii	ng	1.8.12 Northing 6248606.00 Slope 1.8.12 Easting 328468.28 Bearing		0° 	Equipme Ground L	_evel 4	Multidrill 4.261 AHD	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	MATERIAL DESCRIPTION Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	TESTING, S Tests	SAMPLIN Samples	G & OTHER INFORMATIOn Additional Comments (material origin, pocket penetrometer values, investigation observations)	Well Details
		4_	-	。 //		ASPHALT: black // FILL: Gravelly SAND: fine to coarse grained, yellow, brown, subrounded to sub-angular gravel // FILL: Sandy CLAY: low plasticity, brown mottled red, with fine to medium		-		ES	ROAD SURFACE FILL Appears moderately compacted	
				subrounded gravel and crushed sandstone	~PL		SPT 3, 6, 10 N=16	D				
		- ' 							ES			
					FILL: Silty CLAY: grey, brown mottled yellow and red, with coarse grained sand and fine to medium subrounded to sub-angular gravel			SPT 8, 6, 7 N=13	D			
AD/T		2	Z 				<pl< td=""><td></td><td></td><td>ES</td><td></td><td></td></pl<>			ES		
		- - 1 -	3 			FILL: Silty CLAY: medium plasticity, brown mottled yellow, with fine grained sand	<pl< td=""><td></td><td>SPT 3, 5, 5 N=10</td><td>ES D</td><td> pp=170, 220, 270kPa</td><td></td></pl<>		SPT 3, 5, 5 N=10	ES D	pp=170, 220, 270kPa	
	-		_ _ 4		СН	Silty CLAY: high plasticity, dark grey				ES	ALLUVIUM	
		0	-		Сп	Silty CLAY: high plasticity, grey mottled brown	>PL	S				
			- - 	· · · · · · · · · · ·		SANSTONE: pink			SPT 12/100mm N=Refusal		_ BEDROCK	X
		-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	5 			Borehole BH9 Terminated at 4.90 m					Target depth	
F	Rema	arks	- 8 : Cl	H101	25.0	000 Borehole undertaken in the footpath. Inclinometer installe	ed.					
	Vell	Leg	end	1:								

Engineering Log - Borehole

SHEET 1 OF 3

Client Project Location		Syo Lily	dney	olland Light Rail Inner V I - Dulwich Hill					Lo	roject No. ogged By hecked By	230391- FG RR	003-001	
Started I Complete			ng		lorthing Easting	6248558.48 328484.77	Slope Bearing		0° -	Equipme Ground I	Level	12.094 AHD	
DRILLING	G				MATERIAI	DESCRIPTION				TESTING, S	SAMPLIN	G & OTHER INFORMA	TIC
Water RL (m)	Depth (m)	Graphic Log	Classification	(So CO	oil type: pl	otion of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)	
12		\bigotimes		FILL: Gravelly Silty C sub-rounded gravel, v		sticity, grey, brown, med rained sand	ium to coarse				ES	FILL	
				FILL: Silty CLAY: low medium to coarse sul	plasticity, gre p-rounded gra	ey, brown, with coarse g avel (ballast)	rained sand and				ES		
				FILL: Silty CLAY: low coarse grained sand sandstone)	ILL: Silty CLAY: low plasticity, grey, brown mottled orange and red, with barse grained sand and medium to coarse sub-rounded gravel (crushed andstone)					SPT 3, 3, 5 N=8	D	_	
				with coarse grained s crushed shale	and, medium	ey, brown mottled orang sub-rounded gravel, bla	ack ash and	~PL		SPT 2, 2, 3 N=5	ES	Hard to drill, perhaps boulder	
7 7				crushed shale, ironsto	one (sub-ang	ey, brown mottled dark ular coarse gravel) and	grey ash		-	SPT 4, 4, 7 N=11	D		
						olasticity, grey, brown m nd fine sub-angular iror				SPT 4, 4, 6 N=10	D	_	
5_			CI- CH	Silty CLAY: medium t grained sand	o high plastic	ity, grey mottled yellow,	with fine		F to S		ES	ALLUVIUM	
				As above				>PL		SPT 1, 3, 7/110mm N>10	D	pp=70,20, 70kPa	

Engineering Log - Borehole

SHEET 2 OF 3

Client Projec Locatio	t		Syc	dney	lolland / Light Rail In 1 - Dulwich Hi	ner West Exter II	sion			L	roject No. ogged By hecked By	230391- FG RR	003-001	
Started Compl				ng	26.7.12 26.7.12	Northing Easting	6248558.48 328484.77	Slope Bearing		0° -	Equipme Ground		12.094 AHD	
DRILLI	ING					MATERIAL	DESCRIPTION				TESTING,	SAMPLIN	G & OTHER INFORMA	TION
				Classification		(soil type: pla	otion of Soil asticity/grainsize, her components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)	Well Details
	4-+	Ĺ			Continued as C	ored Drill Hole								KA K
1	2	_ 9 _ 10 _ 11 _ 11 _ 12 _ 13 _ 14 _ 15 _ 15 _ 16												
Well L	rks: .ege	end:	101	88.0	000 Borehole	undertaken in	the six foot. Logging	started belo	ow 0.7	7m th	nick ballast la	yer. Inclind	meter installed.	

Engineering Log - Borehole

SHEET 3 OF 3

Ρ	lien roje oca			Syd	nn Holland dney Light Rail Inner West Extension field - Dulwich Hill			L	roject No. ogged By hecked By	/	2303 FG RR	391-003-001	
		ed E plete			26.7.12 Northing 6248558.48 ng 26.7.12 Easting 328484.77		Slope Bearing	90° 	Equip Grou			12.094 AHD	
D	RIL	LING	3		ROCK MASS CHARACT	ERIS	STICS					DISCONTINUITIES	
Method	Water	- RL (m)	Depth (m)	Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components) START CORING AT 8.10m	Weathering	Strength IS ₅₀ *-Axial O-Diametral D-Lump 	IS ₅₀ (MPa) DLA	Defect Spacing (mm)	Core Rec'y (%)	RQD (%)	Description of Defects (defect type, inclination, roughness, thickness, infilling)	Well Details
		3			SANDSTONE: pale white, pink mottled red, fractured, thinly laminated with clay seams SANDSTONE: pale white, pink, yellow, slightly fractured,	DW		0.18 0.3 0.25 0.37		100	56	8.16: Be, 0-5°, p, r, cn 8.22: Be, 0-5°, p, r, cn 8.22: Be, 0-5°, p, r, vn 8.32: Be, 0-5°, p, r, vn 8.33: Jo, 55-60°, p, r, cg 8.39: Jo, 0-10°, p, r, vn 8.44-8.48: Cs 8.63: Jo, 20-30°, p, r, cn 9.04: Be, 0-5°, p, r, vn 9.09-9.10: Ds	
NMLC		2	- - - - - - - - - - - - - - - - - - -		thinly laminated	sw		1.33 1.68 0.19 0.46 1.19		100	100	— 9.95: Jo, 20-30°, p, r, cn — 10.18: Be, 0-5°, p, r, vn — 10.61: Be, 0-5°, p, r, cn — 10.75: Be, 0-5°, p, r, cg	
		-1	12		Borehole BH11 Terminated at 11.15 m Target depth			1.45					

Engineering Log - Borehole

SHEET 1 OF 3

Standard Drilling 11.7.72 Northing 6248396.80 Stope Equipment Multidiil Defilining 11.7.72 Reating 328473.71 Bearing Equipment Multidiil Defilining 11.7.72 Matterial Description Testinol, SAMPLING & OTHER INFOR Defilining 11.827 Matterial Description Solid	
Big of a solution of Solid (Solid processing) Big of	
Up Image: Construction of Solid (Solid Version) Solid Solid Solid Solid (Solid Version) Solid Solid Solid Solid (Solid Version) Solid Solid Solid (Solid Version) Solid Solid Solid (Solid Version) Solid Solid (Solid Version) Solid Solid (Solid Version) <	MATION
Image: Section of the section of t	, ster si
UN Image: Second seco	
Interpretation Interpretatio	
10 <	
10 -1 <	
Image: Second	
Image: Second	
Image: Second	
Image: Determine the set of	
0 Fill:: Sity CLAY: medium to high plasticity, grey, brown motiled yellow, M SPT ES 8	
A FILL: Silly CLAY: medium to high plasticity, grey, brown mottled yellow, with fine sub-angular gravel <u>epr</u> <u>esp</u> <u>ss</u> <u>ss</u>	
0 FILL: Silly CLAY: medium to high plasticity, grey, brown mottled yellow, with fine sub-angular gravel p g p d A 1 -4	
0 FILL: Silly CLAY: medium to high plasticity, grey, brown mottled yellow, with fine sub-angular gravel <u>epr</u> <u>ES</u> <u>b</u> <u>c</u> <u>c</u>	
00 Image: Second state in the second sta	
7 -	
7 -	
7 -	
Image: standard stress in the stress in t	
Image: stand store standstore store s	1 · · 🗆
As above, but black in colour and with strong odour As above, but black in colour and with strong odour As above, but black in colour and with strong odour CI- CH CLAY: medium to high plasticity, grey, brown mottled red, with rootlets CH CLAY: medium to high plasticity, grey, brown mottled red, with rootlets 	
6	
CI- CL- CLAY: medium to high plasticity, grey, brown mottled red, with rootlets CI- CH CH CH CH CLAY: medium to high plasticity, grey, brown mottled red, with rootlets -PL F - St CH CH CH CH CLAY: medium to high plasticity, grey, brown mottled red, with rootlets -PL F - St CH CH CLAY: medium to high plasticity, grey, brown mottled red, with rootlets -PL F - St CH CH CH CH CH CH CH CH CH CH CH CH CH	
CH CH SPT CH STREMELY 	
CH CH SANDSTONE: fine grained, white, extremely weathered, extremely low SPT D WEATHERED ROCK	
CH CH SANDSTONE: fine grained, white, extremely weathered, extremely low SPT D WEATHERED ROCK	E
A SANDSTONE: fine grained, white, extremely weathered, extremely low SPT D EXTREMELY WEATHERED ROCK	
4 SANDSTONE: fine grained, white, extremely weathered, extremely low SPT D EXTREMELY WEATHERED ROCK	
4 SANDSTONE: fine grained, white, extremely weathered, extremely low SPT D EXTREMELY WEATHERED ROCK	
SPI WEATHERED BOCK	
SPI WEATHERED BOCK	
SPI WEATHERED BOCK	
N=Refusal	
Remarks: CH10340.000 Borehole undertaken in the six foot. Logging started below 0.7m thick ballast layer. Piezometer installed.	
Well Legend:	

Engineering Log - Borehole

SHEET 2 OF 3

Project S	ohn Holland ydney Light Rail Inner West Extension ilyfield - Dulwich Hill		Project Logged Checke	dBy F	30391-003-001 G D/RR
Started Drilling Completed Dril		Slope Bearing		Equipment Ground Le	
DRILLING	ROCK MASS CHARACTE	RISTICS			DISCONTINUITIES
Method Water RL (m) Depth (m) Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components)	Duran Strength Is ₅₀ ×·Avial O•Diametral © 0 - Umap © 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	IS ₅₀ Defi (MPa) (mr	cing (m) (m) (m)	Construction of Defects (defect type, inclination, roughness, thickness, infilling)
Remarks: CH10 Well Legend:	START CORING AT 7.90m				5 ∼ 7.95: Jo, 30-35° p. r. en

Engineering Log - Borehole

SHEET 3 OF 3

Ρ	lien roje oca			Syd	nn Holland dney Light Rail Inner West Extension field - Dulwich Hill	Project No. 230391-003-001 Logged By FG Checked By JD/RR								
		ed D plete		-	11.7.12 Northing 6248396.90 ng 11.7.12 Easting 328473.71		Slope Bearing	90° 						
DI	RIL	LING	•		ROCK MASS CHARAC	TERIS	STICS					DISCONTINUITIES	_	
Method	Water	RL (m)	Depth (m)	Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components)	g Weathering	Strength Is ₅₀ X-Axial O-Diametral O-Diametral O-Diametral		Defect Spacing (mm)	Core Rec'y (%)	RQD (%)	Description of Defects (defect type, inclination, roughness, thickness, infilling)	Mall Details	
		3 1 1 1 1 1 1 1	- - - - - - 9		SANDSTONE: pale brown, white, fractured to slightly fractured, with extremely weathered bands (continued)	DW		0 0.66 0.65		100	95	— 8.79: Be, 0°, u, r, cg — 8.90: Be, 0°, p, r, vn		
	100% Water RETURN		10		SANDSTONE: pale brown, white, fractured to slightly fractured, thinly laminated	DW SW		1.36 1.31 1.54 1.61		100	90	9.20: Be, 40°, p, r, cn 9.40: Be, 0°, p, r, cn 9.45: Jo, 30-40°, p, r, cn 9.45: Jo, 30-40°, p, r, cn 9.65: Jo, 30-40°, p, r, cn 9.79: Jo, 25-30°, p, r, cn 10.02: Be, 0-5°, p, r, cn 10.03: Be, 0°, p, r, cn 10.71: Jo, 40°, p, r, cn 10.37: Jo, 40°, p, r, cn 10.52: Jo, 40°, p, r, cn 10.52: Jo, 40°, p, r, cn 10.52: Jo, 404°, p, r, cn 10.52: Jo, 404°, p, r, cn 10.52: Jo, 404°, p, r, cn 10.83: Jo, 45°, p, r, cn 11.12: Jo, 40-45°, p, r, cn		
		-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	12.		Borehole BH12 Terminated at 12.00 m Target depth			1.5						

aurecon

Engineering Log - Borehole

SHEET 1 OF 3

F	ClientJohn HollandProjectSydney Light Rail Inner West ExtensionLocationLilyfield - Dulwich Hill										roject No. ogged By hecked By	230391-0 FG JD/RR	03-001
			Dril ted	ling Drilli	ng	12.7.12Northing12.7.12Easting) 6248304.43 328454.79	Slope Bearing		0° -	Equipme Ground L		1ultidrill 0.311 AHD
D	RIL	LIN	G			MATER	IAL DESCRIPTION				TESTING, S	AMPLING	& OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	(soil type:	cription of Soil plasticity/grainsize, d other components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations
	Not Encountered	10_				FILL: Sandy Silty CLAY: low pl	asticity, brown, with sub-ang	gular fine gravel	м			ES	FILL Appears moderately compacted
	Not Enc	_	+ + + +			FILL: Silty CLAY: low plasticity sandstone	, brown, with fine grained sa	and and crushed			SPT 2, 4, 5 N=9	<u>ES</u> D	
		9_	+ +-1 + +						<pl< td=""><td></td><td></td><td>ES</td><td></td></pl<>			ES	
		_	 2			FILL: Silty Clayey SAND: fine sandstone, shale and rootlets	grained, grey, pale brown, w	ith crushed			SPT 4, 3, 5 N=8	D	-
		8_							D				
AD/T		7_	3 			FILL: Sandy Silty CLAY: mediu mottled red	ım to high plasticity, grey, pa	ale brown			SPT 3, 0, 3/150mm N>3	D	
		6_	 						~PL			ES	-
		-	 5 		СН	Silty CLAY: high plasticity, grey bands or pockets	/ mottled red and yellow, wit	h ironstone			SPT 2, 7, 7 N=14	_	RESIDUAL SOIL Approximate 150mm thick of very soft material
		5_							~PL	St		U	
		4_	 			SANDSTONE: brown, extreme Continued as Cored Drill Hole	ly weathered, extremely low	v strength	-		SPT 10/30mm N=Refusal		WEATHERED ROCK
		- 3_											
F	Rem	ark	s: C	H104	130.0	000 Borehole undertaken	in the six foot. Loggir	ng started belo	ow 0.7	7m th	nick ballast lay	er.	

aurecon

Engineering Log - Borehole

SHEET 2 OF 3

F	Clier Proje _oca			Syc	n Holland Iney Light Rail In field - Dulwich Hi		ension				Project Logged Checke	IBy F	3039 G D/RF		03-001
		ted [plete			12.7.12 ng 12.7.12	Northing Easting	6248304.43 328454.79		lop eai	e 90° 'ing		quipment Ground Le	vel		ultidrill).311 AHD
	DRIL	LINC	3			RC	CK MASS CHARA	ACTERIS	TIC	S					DISCONTINUITIES
Method	Water	RL (m)	Depth (m)	Graphic Log	(rock	Description of type: colour, g ure, minor cor	grain size,		Weathering	Strength IS ₅₀ •-Diametral Lump	IS₅₀ (MPa) ≞ D L A	Defect Spacing (mm)	ore Re	RQD (%)	Description of Defects (defect type, inclination, roughness, thickness, infilling)
	100% Water RETURN		- 2			n and white, sligh	ly fractured, thinly lamin	[~~~~		0.3 0.32 0.06			100	6.30: Jo, 25-30° p, r, cn 6.32: Jo, 25° p, r, on 6.42: Jo, 25° p, r, on 6.46: Jo, 70-75° p, r, cg - 6.81: Jo, 30-35° p, r, cn 7.48: Be, 10-15° p, r, cg 7.48: Be, 10-15° p, s, cn
10.00			8	\geq		(7.74-7.82)			sw		0.45		97	80	└─ 7.57: Be, 0-5°, p, s, cn └─ 7.60: Jo, 45-50°, p, r, vn └─ 7.63: Be, 0°, p, r, vn
	Rem	arks	CF	1104	30.000 Borehole	undertaken i	n the six foot. Logo		_			allast layer		<u> </u>	

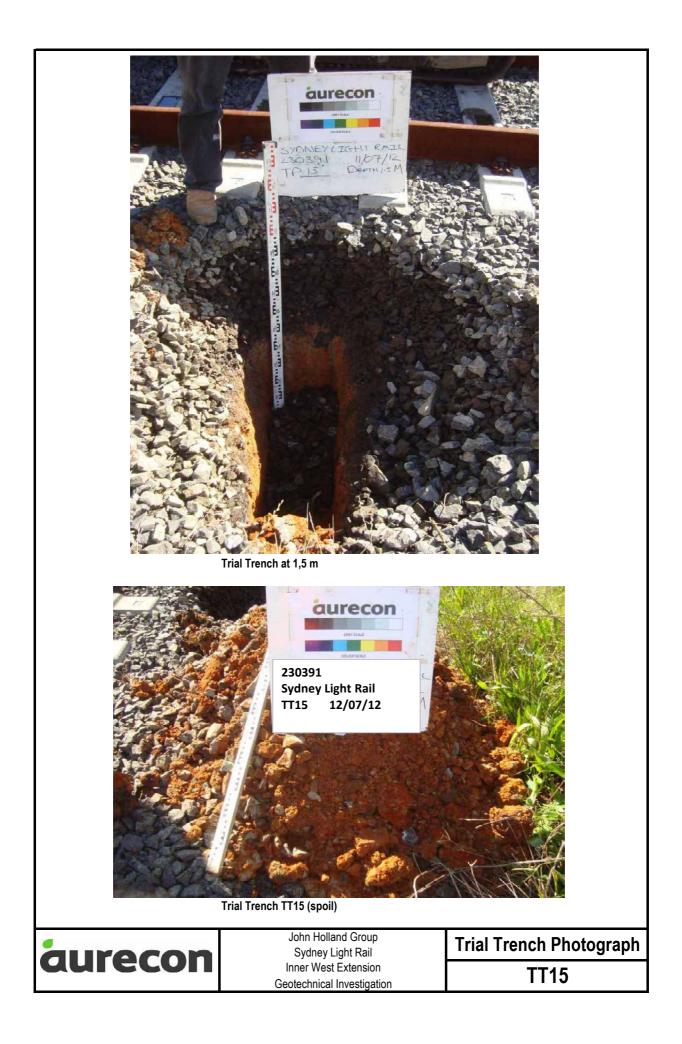
Engineering Log - Borehole

SHEET 3 OF 3

F	Clier Proje			Syd	nn Holland Iney Light Rail Inner West Extension field - Dulwich Hill	Project No. 230391-003-001 Logged By FG Checked By JD/RR							
S	Start	ted	Drilli		12.7.12 Northing 6248304.43	Slop Bea		0°	Ec	quipment round Lev		М	ultidrill).311 AHD
C	RIL	LIN	G		ROCK MASS CHARACTER	ISTI	CS						DISCONTINUITIES
Method	Water	RL (m)	Depth (m)	Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components)	Weathering	Strengt IS ₅₀ X - Axial O Diametr B - Lump C - Lump	al	IS ₅₀ (MPa) D L A 0.61	Defect Spacing (mm)	Core Rec'y (%)	RQD (%)	Description of Defects (defect type, inclination roughness, thickness, infilling)
NMLC	100% Water RETURN				SANDSTONE: pale white, pale brown, fractured to slightly fractured, thinly laminated (continued) Borehole BH13 Terminated at 10.40 m	sw			0.61 1.38 1.53 1.98 1.65		97	80	9.25: Be, 0 ⁻ 3°, p, r, cn 9.25: Be, 0 ⁻ 3°, p, r, cn 9.29: Be, 0°, p, r, cn 9.29: Be, 0°, p, r, cn 9.29: Be, 0°, p, r, cn 9.37: Be, 0°, p, r, cn 9.82: Jo, 10-15°, p, r, cn 10.25: Jo, 10-15°, p, r, cn
F	Rem	-1 -1 -2 -3 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5			30.000 Borehole undertaken in the six foot. Logging sta	arted							
													urecor

Sydney Light Rail Inner West Extension Geotechnical Investigation **TP06**

Engineering Log - Test Pit


SHEET 1 OF 1

Client John Holland Project Sydney Light Rail Inner West Extension Location Lilyfield - Dulwich Hill											L	roject No ogged By hecked I	y Jl	
			Exca ed I			27.7.12 on 27.7.12	Northing Easting	6246943.83 327877.13	Slope Bearing		0° 	•	ipment	
EX	CAV	/ATI	ON				MATERIAI	DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: pl	otion of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values investigation observations)
	Dry	-	1	K	0	SILT: dark brow				_				RESIDUAL SOIL
		20			CI	Silty CLAY: gre	y, with fine to media	ım sand		D	VSt to	, .	В	
		-		H							н			
			1- 1			White to light gr SHALE. Recove	rey extremely weath ered as clayey SIL1	nered thinly laminated cla	ss V/IV			-		BEDROCK
		19 -	- 2										В	
		- - - - - - - - - - - - - - - - - - -				weathered class	s IV/V SHALE. Rec	v brown thinly laminated overed as friable clayey s	SILT					
		17 - - - - - - - - - - - - - - - - -	4			SANDSTONE.	iy weathered tractu	red fine to medium graine	90					Target depth
F														
r			²∙ Cŀ	1120	000.0	000 Trial pit e	xcavated in up	line cutting slope.						

Engineering Log - Test Pit

	Client John Holland Project Sydney Light Rail Inner West Extension Location Lilyfield - Dulwich Hill											Project No. 230391-003-001 Logged By JD Checked By RR						
	Started Excavation11.7.12Northing6248082.27SlopeCompleted Excavation11.7.12Easting328340.45Bearing											Equ	uipment	4-6t Excavator				
EX	CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)				
	Minor seepage at 0.70m bgl	10 9	- - - - - - - - - - - - - - - - - - -		GP GP ML- MH	FILL: Sandy GF sand, [CAPPIN FILL: Clayey SI	RAVEL: medium gr G LAYER] LT: orange brown	ngular, grey, [BALLAST] rained, angular, grey, wit mottled brown, with sand	h fine to coarse	D M to W M		$ \begin{array}{c} 0 \\ 9 \\ 5 \\ 2 \\ 3 \\ 3 \\ 10 \\ 12 \\ 9 \\ 3 \\ 20 \\ \end{array} $	ES B ES B	FILL Appears well compacted.				
	Rem	8 8 7 7 6 6 6 7 7 7 7 7 7 8 9	2 	1106	SM 575.1	very low strengt Test Pit TT15 T	ale grey, with ang h gravel erminated at 1.50	e down line cess	prown mottled ium to coarse of				ES	Target depth				
														aurecon				

Client:

Principal: Project:

SLRE Inner West

Transport NSW

Borehole Location: Lewisham West Stop

Sheet	1 of 1
Office Job No .:	ENAURHOD04175AA
Date started:	28.9.2011
Date completed:	28.9.2011
Logged by:	PD
Checked by:	MD

BH7

Borehole No.

drill r	node	el an	d mo			obe Tr		5100	Easting: slope:	-90°			R.L	Surface:
hole	diam	netei	:		100 m	m	_		Northing bearing:				dat	tum:
dri	drilling information material substance													
method	5 penetration	e innort	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristi colour, secondary and minor component	ics, ts.	moisture condition	consistency/ density index	¹⁰⁰ A pocket ²⁰⁰ A penetro- ³⁰⁰ b meter	
				E+1.3ppm					TOPSOIL: Sandy Gravelly Silt: Grey to brown.		D	F		No odour, no staining.
						-			FILL: Clayey gravelly SAND: Medium to coars grained, grey to brown.	se				
						_			FILL: Silty Gravelly SAND: Medium grained, d grey. Gravel is 1-2mm (diameter), crushed sandstone, highly weathered.	lark				
				E, Dup4+1.3pp	m	0.5			Becomes red brown.					
						0. <u>5</u>		CL	Sandy CLAY. Medium plasticity, yellow to brown Minor sandstone.	wn.		S		
						-								
						_								
				E+1.3ppm		_								
					-	1.0			SANDSTONE Medium grained, grey, highly weathered.			Н		
						<u>o_</u>								
						1.5								Terminated at target depth.
									Borehole BH7 terminated at 1.5m					
						_								
						_								
						2.0				alc - 19	-41			
meth AS AD RR V CT HA DT B V	nod		auger oller/ washi cable nand diatuk olank / bit	tool auger be bit	M C pe	10/1/9		level	notes, samples, tests Uside N Standard penetration test (SPT) N* SPT with solid cone V Vane shear (kPa) P pressuremeter Bs bulk sample	W we Wp pla	cription n unified e y oist et astic limit	classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose
bit s e.g.	hown	by s	TC bi uffix ADT	[water water			E environmental sample R refusal	W _L liq	uid limit			MD medium dense D dense VD very dense

coffey 🔷 e	nvironments
------------	-------------

Client:

Principal: Project:

drill model and mounting:

SLRE Inner West

Geoprobe Truck

Easting:

Transport NSW

Borehole Location: Lewisham West Stop

		Date started:	28.9.2011	
		Date completed:	28.9.2011	
		Logged by:	PD	
		Checked by:	MD	
slope:	-90°	R.L. SI	urface:	

Borehole No.

Office Job No.:

Sheet

BH11

1 of 1

ENAURHOD04175AA

			nou	-		obe II	uon		-	siope: -90				R.L.	. Surface:
hole d					100 m	m		- ula l		bearing:				datu	ım:
method 1	2 penetration	ť	water	notes samples, tests, etc	RL	depth	aphic log	classification symbol	Ibstance material soil type: plasticity or particle ch colour, secondary and minor cr	aracteristics,	moisture condition	consistency/ density index	100 A pocket	a	structure and additional observations
				E+1.1ppm		_			FILL: Gravelly Silty CLAY: Low plast brown. Gravel 1cm-8cm (diameter).	icity, dark	D	L			No odour, no staining
			-	E+1.1ppm		- - 0. <u>5</u> -		SM	Silty SAND: Fine to medium grained orange.	grey to		F			
			-	E+1.2ppm		1. <u>0</u> - - 1. <u>5</u>		CL	Gravelly Sandy CLAY Medium plas orange to brown. Sandstone gravel ' (diameter).	icity, dark mm - 10cm					
				E+1.1ppm		2.0			Borehole BH11 terminated at 1.9m						Terminated at target depth.
						- - 2. <u>5</u> -									
						3. <u>0</u> -									
						3. <u>5</u> - -									
metho AS AD RR W CT HA DT B V T *bit sh		aug roll wa cat hai dia bla V t TC	ger d er/tri shbo ble to ble to nd au tube nk bi bit bit	ol ıger	M C per 1 2 wa	ter 10/1/9	on no resista ranging to refusal 18 water te showr	level	notes, samples, tests U ₅₀ undisturbed sample 50mm dia U ₅₃ undisturbed sample 63mm dia D disturbed sample N standard penetration test (SPT N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	meter meter)) moistu D co M t W v		classifica			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

Client:

Principal: Project:

SLRE Inner West

Transport NSW

Borehole Location: Lewisham West Stop

Borehole No.	BH12
Sheet Office Job No.:	1 of 1 ENAURHOD04175AA
Date started:	28.9.2011
Date completed:	28.9.2011
Logged by:	PD
Checked by:	MD

drill	mode	el ar	id n	nour	nting: C	Geopr	obe Tr	ruck		Easting:	slope:	-90°			R	R.L. Surface:
	diam					100 m	m			Northing	bearing:				d	datum:
dri	Illing	ı in	for	ma	tion			mate		ubstance						
method	Denetration	3	auppoir	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle cl colour, secondary and minor of			moisture condition	consistency/ density index	¹⁰⁰ A pocket ²⁰⁰ A penetro-	1
		3			E+1.2ppm E+1.2ppm E+1.1ppm E+1.1ppm					FILL: Gravelly Sandy CLAY: Mediu grey to brown. Sandstone gravel 1c (diameter) grey and orange.	m plasticity		M	F	20	No odour, no staining.
				-	E+1.3ppm	-			СН	CLAY: High plasticity, orange to gre Borehole BH12 terminated at 3.9m	<u>y.</u>		D			Terminated at target depth.
metil AS AS AS AS CHARR CTARR CTAR CTAR CTAR CTAR CTAR CTAR	hod		aug rolle was cab han diat blar V bi TC	er dr er/tric shbor le too d aug ube nk bit it bit	re ol ger	M C pe 1 wa	ter 10/1/9	on no resista ranging to refusal 8 water æ showr	level	notes, samples, tests U ₅₀ undisturbed sample 50mm di U ₆₃ undisturbed sample 63mm di D disturbed sample N standard penetration test (SF N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	ameter ameter PT)		unified of	classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

Client:

Principal: Project:

SLRE Inner West

Transport NSW

Sheet	1 of 1
Office Job No .:	ENAURHOD04175AA
Date started:	28.9.2011
Date completed:	28.9.2011
Logged by:	PD

BH13

Borehole No.

Borehole Location: Lewisham West Stop MD Checked by: drill model and mounting: Geoprobe Truck Easting: slope: -90' R.L. Surface: hole diameter: 100 mm Northing bearing: datum: drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetratio notes material structure and graphic log samples, moisture condition additional observations method support tests, etc water kPa soil type: plasticity or particle characteristics, depth RI 123 metre colour, secondary and minor components. Concrete Slab 1 1 \bigtriangleup D FILL: Gravelly Sandy CLAY: Medium plasticity, dark grey to brown. Sandstone gravel 1cm-5cm (diameter), white and black ash. D F No odour, no staining E+1.3ppm 0.5 SM Silty SAND: Medium grained, grey to orange, highly E+1.2ppm weathered CL Sandy CLAY: Medium plasticity, dark orange to brown 1.0 E+1.3ppm 1.5 2.0 F Dup6+1.2ppm Terminated at target depth. Borehole BH13 terminated at 2.3m 2.5 3.0 3.5 40 method support notes, samples, tests classification symbols and consistency/density index auger screwing* N nil undisturbed sample 50mm diameter AS M mud soil description VS very soft U₅₀ based on unified classification AD auger drilling* undisturbed sample 63mm diameter soft С casing S U₆₃ RR W CT roller/tricone D disturbed sample system F firm penetration standard penetration test (SPT) St washbore Ν stiff no resistance ranging to cable tool N* SPT - sample recovered moisture VSt very stiff hand auge HA SPT with solid cone hard Nc D dry н water diatube V vane shear (kPa) Μ moist Fb friable

P

Bs

Е

R

pressuremeter

environmental sample

bulk sample

refusal

W

Wp

Ŵ

wet

plastic limit

liquid limit

VL

MD

VD

D

very loose

very dense

medium dense

loose

dense

10/1/98 water level on date shown

water inflow

water outflow

4

GEO 5.3 Issue 3 Rev.2 DT B V T

e.g

blank bit

V bit

TC bit

ADT

*bit shown by suffix

C	C		ſ	ЭУ '		e		101	nments			Ē	Boreho	le No	Э.	BH25		
Е	nv	rir	or	ımei	nta	al L	-0ć	J -	Borehole				Sheet Office J	Job N	No.:	1 of 1 ENAUI	RHOD041	175A/
Clie						ort N							Date st			4.10.20		
Prir	ncipa	:										[Date co	omple	eted:	4.10.20	011	
Pro	ject:			SLR	e Ir	nner	Wes	t				l	_ogged	l by:		PD		
	-	e Loc	catic	on: War a	ath	Mills	5						Checke	-		MD		
						robe Tr			Easting:	slope:	-90°		_			Surface:		
	diam				100 m	۱m	<u> </u>		Northing	bearing	g:				datum	1:		
dri		info	rma	ation	+		mat		substance				×	L L				
method	penetration	support	water	notes samples, tests, etc	RL	depth metres		classification symbol	soil type: plasticity	material or particle character y and minor compone	istics,	moisture condition	consistency/ density index	100 pocket	Pa 🛛		ucture and al observatio	ns
\vdash	123					mouse			TOPSOIL: Clayey SILT			D	S	, ,, , ,		lo odour or st	taining.	
				E, DUP10	-	-		, ,	FILL: Silty CLAY: Low	plasticity, dark browr	٦.		F	1				_
						-			Becoming low to mediu	um plasticity, red.								-
						0.5												_
				E	_	-												-
						_		×										-
						-		×	Becoming sandy, dark	grey to brown.								-
				E	-	1.0		×										_
					-			GC	Gravelly CLAY: High p Gravel 5cm-8cm (diam	lasticity, grey mottled	d red.							-
						-			Glavel Som-Som (diam	eler, reu sanusione	pieces.							-
						1.5												-
						-												
						-												-
																		-
				<u> </u>	_	2.0												
				E	-	-												-
																		-
						-			Becomes gravelly, red	to orange. Gravel re	Ч							-
						2. <u>5</u>			sandstone pieces.	to orange. Graver	u i							_
						-												-
						-												-
						3.0												-
				E	1	-												-
						-												-
							<i>V///</i>	CL	Sandy CLAY:Low plas	sticity, yellow to orang	ge							-
						3. <u>5</u>	<i>V///</i>											
						_	<i>V///</i>								т	erminated at	target depth.	-
		\uparrow				-			Borehole BH25 termina	ated at 3.7m								
						4.0	-											-
metil AS AD RR W CT HA DT B V V	hod	au rol wa ca ha dia bla V	uger d Iller/tri ashbc able to and au atube ank bi bit	ool uger	M C pe 1	upport mud casing enetratio 2 3 4 ater 10/1/9		to r level	U ₆₃ undisturbed sam D disturbed sam N standard penet N* SPT - sample I Nc SPT with solid V vane shear (kF P pressuremeter Bs bulk sample	tration test (SPT) recovered cone Pa)	W we Wp pla	cription n unified e y oist et astic limit	classifica		_	VS S F St VSt H Fb VL L	//density index very soft soft firm stiff very stiff hard friable very loose loose medium dopp	
T *bit s e.g.	shown					water	inflow outflow		E environmental R refusal	sample	W _L liq	juid limit				MD D VD	medium dens dense very dense	e

Form GEO 5.3 Issue 3 Rev.2

BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

Positio Rig Ty			.0 E 6248 h 550 Mo				6 Surface RL: 12.5m appox AF Contractor : RailCorp			from Horiz. : 90° : D. Gordon		Processed : CRS Checked : PA
Date S	Started :	1/9/11			Dat	te Con	npleted: 2/9/11	L	ogge	d by : SHH		Date : 14 11 1
	DRI	LLING					MATERIAL	_				PIEZOMETER
Drilling Mathod	Hole Support	\ Casing Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
		Nil		0.80		CL	BALLAST, dark grey, medium to coarse gravel, small cobble size, angular, basaltic (ballast - fill).	*		r:		End Cap
8			D SPT			CI- CH	CLAY, mottled light and dark grey, orange and black, medium to high plasticity, with fine to medium sub-rounded and angular slag and shale gravel, with fine to coarse grained sand, with silt, trace black ash, trace rootlets (fill).	М	F			Bentonite
V/TC-bit auger	Nil III		3/4/2 N=6 D									
5			SPT 2/4/4 N=8									← 2mm graded sand backfill
			SPT 4/5/4 N=9				3.80m, low plasticity fines, band of black sand, medium grained.					
			SPT 4/3/5 N=8			э.	4.50m, increasing weathered shale gravel content.					

BOREHOLE LOG SHEET WITH STANDPIPE PIEZOMETER

Rig	ition : Type :	: li	ntertec	h 550 Mc		4wd t	ruck	6 Surface RL: 12.5m appox Al Contractor : RailCorp	D	riller	: D. Gordon		Processed : CRS Checked : PAC
Dat	_	DRILL				Dat	te Con	MATERIAL	L	ogge	d by : SHH		
SUALE (M)	-	Hole Support \ Casing		Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	Piezometer Log	Components
				SPT 2/3/5 N=8				From 5.0m, CLAY as previous, glass fragments evident to coarse gravel size and ceramic plate fragments. 5.50m-5.95m, orange and red, with ferriferous indurated / cemented nodules to coarse gravel size.	M	F			— 6m slotted screen and filtersock cover
5		1		D	6.00		- <u>c</u> i -	CLAY, brown to dark brown, medium plasticity, with fine to medium grained sand (topsoil).	м	F			— 50mm PVC casing
	V/TC-bit auger	Nil		SPT 3/6/9 N=15	6.40		СН	CLAY, mottled light grey, yellow and orange, high plasticity, with rootlets, vesicles and associated ferriferous staining (residual).	M	st- VSt			
1				SPT 5/9/13 N=22	7.25		SC	Clayey SAND, light grey with mottled orange and yellow, medium grained, weak ferriferous indurated features red in colour, typically with sub-vertical orientation (residual).	M	MD			
					8.20 8.50			SANDSTONE inferred, light grey orange and red, highly weathered, low strength.			8.20m, increased drilling resistance		 Base of piezo @ 8,4m
				SPT 3 for 0mm HB N=ref	0.00			Start of coring at 8.5 metres. For Cored interval, see Core Log Sheet.			Borehole is dry on completion of augering	5	
								ц.					

	Clier	t:		PY	RMC	омт	T LIG	HT R	AIL COMPANY LINNER WEST EXTENSION					Н	OL	E	No. BH	107		
77	.oca								VICH HILL, NSW			4					SHEE	T 3 O	F 4	
F	Posi	-			_				9.0 N MGA94/ 56 Surface RL: 12.5		ЪЫ	D Angl	_			_	90°	Proce		I: CRS
	Rig 1 Casil			HQ		un o			ing: 4wd truck Contractor : Rail (m) : NMLC (3.6m) Bit : Diamond		ce	10,55,5563,73	internet inter					Date		
e l				1/9				_	completed : 2/9/11 Logged by : S				Lo	gge	d: 1	1-2/0	9/2011			
E L	_	DF	RILLI	NG	_				MATERIAL							JRA	L FRACTURES			
SCALE (m)			eoth (m)	(Core Loss / Bun %)		SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (orig	therin) II	Estimated Strength Is ₍₅₀₎ MPa		- 40 (mn - 100	1)	Visual	Additional I (joints, partings, zones and ve Fracture type, orie infilling or coating roughness, of	seams, ins) entation, , shape,	Piezometer Log	COMPONENTS
- - -9 - - - - - - - - - - - 1	NIMI C corting 4 HO resting to 8 50m			(0)		8.50		SANDSTONE, banded light grey, orange and dark red, medium to coarse grained, thinly bedded, bedding inclination typically sub-horizontal to 20°, dark red ferriferous indicated bands, with les indicated orange bands.	s EW- HW	/						9.42, BP, 0°, FE, PLN 9.76, BP, 10°, CLAY, VR, TI 9.83, BP, 10°, CLAY 9.83, BP, 5°, CLAY, F VR, TI 9.85, BP, 5°, CLAY	PLN,	「日本になる」というないであるののない	Bentonite
d	etai	ls o	f abl	d she brev escri	atio	ons	Ó	GHI	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSV T: 61 2 9462 4700 F: 61 2 946 CONSULTING GEOTECHNICA	2 4710	E	E: atnmail@g				STS	Job N 21	o. -202	258	-34

C	DRE L	_OG	SHE	ET V	VITH	STAN	IDPIF	PE PIEZOMETER		_		_					
CI	ient :	1	Ρ	YRN	NON	IT LIGI	HT R	AIL COMPANY				НОГ	E	No. BH	107		
÷	oject							L INNER WEST EXTENSION				HOL					
5	catio				_			VICH HILL, NSW				2 22 2		1.0000000000000000000000000000000000000	ET 4 0	No. 1 No.	
-	sitio			_			_	9.0 N MGA94/ 56 Surface RL: 12.5m		ЯD	100	le from Hori		90°			I: CRS
2	g Typ Ising			_	ecn		_	ting: 4wd truck Contractor : RailCon (m) : NMLC (3.6m) Bit : Diamond (st		(hor		er : D. Gordo Condition : F			Date		RAC
- I	te St		_		1			Completed : 2/9/11 Logged by : SH		eu)		Logged : 1		9/2011	Date		<u>tulu</u>
	_	_	ING	_			ate e	MATERIAL		_	Duto	-	_	L FRACTURES	3		4
Pr	ogres			-	S		1	Description		Es	stimated	Spacing		Additional			
SCALE (m)	J & Casing	П	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	ାs ଫ	trength (50) MPa	(mm)	Visual	(joints, partings, zones and ve Fracture type, ori infilling or coating roughness, of	ins) entation, , shape,	Piezometer Log	COMPONENTS
-		10	.09			10.09		SANDSTONE, as previous.	HW					2 2 2		\otimes	
-						10.25	X	CORE LOSS 160mm.								\bigotimes	5
- - - - - - - - - - - - - - - - - - -	NMLC coring + HQ casing to 8.50m	12	.00	(8)		11.60		Grading to SANDSTONE, light orange, medium to coarse grained, thinly bedded, bedding inclination typically sub-horizontal to 20°.	MW					10.31, BP, 5°, CN, PI 11 10.33, BP, 5°, CN, PI 11 10.34, BP, 20°, CLAY VR 10.44, BP, 20°, CLAY 10.48, BP, 20°, CLAY 10.48, BP, 20°, CLAY 10.56, BP, 20°, CLAY 10.56, BP, 20°, CLAY 11.05, BP, 15°, CLAY FF 11.05, BP, 15° 11.53, BP, 20°, CLAY RF 12.20, BP, 0°, CLAY, RF 12.20, BP, 0°, CLAY, RF 12.20, BP, 0°, CLAY, RF 12.20, BP, 0°, CLAY, RF 12.55, BP, 20°, CLAY 12.55, BP, 20°, CLAY 12.55, BP, 20°, CLAY 13.18, BP, 0°, 5°, CLA VR 13.18, BP, 0°, 5°, CLAY 13.18, BP, 10°, CLAY 13.18, BP, 10°, CLAY 13.18, BP, 10°, CLAY 13.18, BP, 15°-20°, C 13.86, BP, 15°-20°, C 13.86, BP, 15°-20°, C 13.98, BP, 15°-20°, C 14.00, DP, 15°-20°, C 14.00, DP, 15°-20°, C 14.64, BP, 30°, CLAY, 14.94, BP, 0°, CLAY, 14.94, BP, 0°, CLAY,	AY, IR, RF LIN, RF RF RF, PLN, PLN, PLN, PLN, PLN, IN, RF UN, RF UN, RF UN, RF LAY LAY LAY LAY LAY LAY		Gravel fill
-15		15	00			15.00		End of borehole at 15.00 metres.						RF			
1.1223	e sta							GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2	064	Aust	ralia			Job N	0.	κ.	
	tails o basis						HI	T: 61 2 9462 4700 F: 61 2 9462 4 CONSULTING GEOTECHNICAL E	710	E: a	atnmail@g		TS	21	-202	258	-34

20110

0

Geotechnical Borehole Investigations scale | as shown | date | 13 October 2011

GHD GEOTECHNICS

	ject :							EXTENSION HOLE N		~	
	ation			ELD TO D					-	SHEI	ET 1 OF 4
_	sition :			3.0 E 6248 ch 550 Mo				6 Surface RL: 9.6m appox AHD Angle from Horiz. : 90° Contractor : RailCoro Driller : D. Gordon		_	Processed : MK Checked : PAC
	Type o Star	<u> </u>	B1/8/11		bunting:	 25/5/2012/18 	0-14-02114	Contractor : RailCorp Driller : D. Gordon npleted : 31/8/11 Logged by : SHH			Date : 14/11/1
Jai					1	Da	e con	MATERIAL	_	-	Date . 19 11
Т		DRILL	ING		res			Description	п		Comments/
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Observations
								BALLAST, dark grey, medium to coarse gravel to small cobble size, angular, basaltic (ballast - fill).		-	Back-packing to stabilise ballast to 0.8m
		-		D	0.80		CI- CH	Sandy CLAY, mottled grey, orange and light yellow brown, medium to high plasticity, medium grained sand (fill).	M- VM	S-F	0.80-1.4m, capping layer?
					1.40	¥¥X	- <u>c</u> i-	CLAY, brown/grey, medium plasticity, with fine grained	М	S-F	1.40-1.55m, organio
					1.55	<i>H</i>	СН	sand and silt, trace charcoal fragments (alluvium /	SM	St	odour 1.5-1.95, SPT
	V/TC-bit auger	Nil		SPT 3/4/7 N=11				CLAY, light brown and grey with mottled red, high plasticity, trace red weakly ferric indurated nodules (residual). 2.2m, grading to red / dark red, trace grey streaks and mottling, ferric indurated bands.	SM	St- VSt	material split into two samples
	V/TC-			SPT 5/10/15 N=25	3.20						
				D	0.20		SC	Clayey SAND / Sandy CLAY, mottled red and grey, medium grained, medium plasticity fines (residual).	M- VM	MD	
				SPT				3.5m, as above, grading to light grey, trace orange/yellow mottling.			
				4/5/7 N=12		X		3.85m - 3.95m, grey clay band.			3.80m, root 5mm diameter
				SPT 4/8/15 N=23	4.20	LXI.		SANDSTONE, light grey, trace orange staining, medium grained, appears massive, extremely weathered, extremely low strength, trace roots up to 5mm diameter.			
L											
00	stand	lard s	heets		HD	GHE	GE	OTECHNICS Street, Artarmon NSW 2064 Australia	J	ob N	lo.

Po	sition :						., NSW A94/ 56	Surface RL: 9.6m appox AHD Angle from Horiz.: 90°			Processed :
	g Type			h 550 Mo	unting			Contractor : RailCorp Driller : D. Gordon			Checked :
	te Star	_	_	_		Da	te Com	pleted : 31/8/11 Logged by : SHH			Date : 14
		DRILL	ING			1		MATERIAL	1		
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Commen Observati
-	t V/TC-bit		¥					SANDSTONE, as previous. 5.5m, becoming extremely low to very low strength.		-	
	V-bit		*	SPT 15 for	5.60			Start of coring at 5.6 metres.			5.60m, V-bit au refusal
							×				
8 - - - - -9 -				22			х.				
- - - - 10											

Pro	ent : oject							AIL COMPANY _ INNER WEST EXTENSION			Н	OLE	N	о.	BH	108
	catio							VICH HILL, NSW						_	SHEE	ET 3 OF 4
Po	sitio	n :	i i	3284	18.0	E 624	48214	I.0 N MGA94/ 56 Surface RL: 9.6m appoxHD	(Angle from H		: 90°			Processed : MK
	у Тур			Inter	tech	4 T 4 T 1 2 T	A.A. 20020	ing: 4wd truck Contractor : RailCorp		_	Driller : D. G					Checked : PAC
	sing		<u> </u>	HQ				(m): NMLC (3.6m) Bit : Diamond (stepfaced)	ļ.	_	Bit Condition	1251	×			Date : 14 11 11
Da	te Sta		_		11	D	ate C	ompleted: 31/8/11 Logged by: SHH	_	_	Date Logged	: 31/	-	-	-	1.
			LIN	G	-		· · · ·	MATERIAL		-	100 V21 - 107 - 121	914		TAV	URAL	FRACTURES
Pro	gres	S		(%	STS	sez		Description			Estimated Strength	Spa		× .		Additional Data
SCALE (m)	Drilling & Casing	Water	Drill Depth (m)	(Core Loss / Run	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	Ē	Is ₍₅₀₎ MPa	m)		Visual	Fractu	, partings, seams, zones ar veins) re type, orientation, infilling ng, shape, roughness, other
-6	casing to 5.6m		7.30	(Ո)		5.60		SANDSTONE, interbedded light grey and orange/red, medium grained, thinly bedded, bedding inclination is typically sub-horizontal to 15°, ferriferous indurated bands.	EW- HW						6.55, BP	. 0°. CN, PLN, RF . 0°. CN, PLN, RF
-8 -9	NMLC coring + Polymer added + HQ cas			(0)		8.00		SANDSTONE, light grey with dark laminations, medium to coarse grained, thickly bedded, bedding inclination is sub-horizontal to 20°.	EW EW SW							, 10°, PLN, RF , 0°, CLAY, PLN, RF
										-						0
	e sta ails					r	HI	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Aus						-	lob N	
					tions			T: 61 2 9462 4700 F: 61 2 9462 4710 E: CONSULTING GEOTECHNICAL ENGINE	atnn	na		CICTO			21	-20258-34

	DRE	-	_	_	VON	TUO				-		_				
	ient ojeci							AIL COMPANY _ INNER WEST EXTENSION				H	OLE	EN	э.	BH108
1.11	catio							/ICH HILL, NSW								SHEET 4 OF 4
-	sitic				9			I.O N MGA94/ 56 Surface RL: 9.6m appoxHD			Angl	e from I	loriz	: 90°		Processed : MK
	g Ty	_		_			_	ing: 4wd truck Contractor : RailCorp		_		er:D.G				Checked : PAC
-	sing			HQ				(m): NMLC (3.6m) Bit : Diamond (stepfaced)		_		condition		0		and the second s
-			ed : :		11			completed : 31/8/11 Logged by : SHH		_		Logged	94.940.151.182	51.04 	11	Date : 14 11 11
F	004055548		LLIN	10.510.405				MATERIAL		-		0000			_	URAL FRACTURES
Pre	ogre	-			S			Description		Т	Esti	mated	Spa	cing		Additional Data
		-		(Core Loss / Run %)	TESTS	Depth / (RL) metres		ROCK TYPE, colour, grain size, structure			Stre	ength		im)		(joints, partings, seams, zones and
î	Casing		(m	Ru/	& TE	me	-	(texture, mineral composition, hardness,			IS(50	MPa		S.		veins)
SCALE (m)	Ű		ţt.	SS	S S	RL	Log	alteration, cementation, etc. as applicable) and	ing	8						Fracture type, orientation, infilling or coating, shape, roughness, other.
SAL	, gu	5	Dep	eLc	PLE	h/	ohic	SOIL TYPE, moisture, colour,	the	0	1.03	10 3 1.0				
S(Drilling &	Water	Drill Depth (m)	Cor	SAMPLES	Dep	Graphic Log	consistency, structure, minor components (origin)	Weathering	ľ		NH NH NH	000	- 300	Visual	
	-	>		-	0)			SANDSTONE, as previous.	>	4		<u>≥⊥></u> ш	44	-0-	1	
								SANDSTONE, as previous.				D				
			10.28													
-																
-	5.6m							243								
-11	0.5															÷
	ng t															
	casi															
	ğ															
	Polymer added + HQ casing to														-	11.44, DF, 20°, CLAY, PLN, RF
	ded								-							
-	r ad								SW							
-	me			(0)												
-	loc													-		
-12	+															-
-	coring														-	12.09, BP, 5°, CN, PLN, RF 12.12, BP, 5°, CN, PLN, RF
	000															
	NMLC															
	Z															
-																
-															-	12.65, BP, 20°, CLAY, PLN, RF
-																2
-																
- 13																
	_		13.30			13.30										
-		I						End of borehole at 13.3 metres. Standpipe piezometer installed.								
-								ewinapipe preconterer installed.								
-								-								
-																· · ·
-14																
.																
-																
-																
-																A
-								10 X								
-																
								9								
-15																
- 15 ^L		-				1 -			_	_					T	leb Ne
1000			lard s			or		GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Aus	stralia	а					1	Job No.
			abbr F dos			5	GHI	T: 61 2 9462 4700 F: 61 2 9462 4710 E:	atnn	ma				_		21-20258-34
OL L	Jasis	5 01	fdes	cnp	uons	> I		CONSULTING GEOTECHNICAL ENGINEE	RS	Α	ND	GEOLC	GIST	S		

Sheet: BH108

BH108

13 October 2011

date

as shown

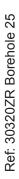
scale

GHD GEOTECHNICS

7 I Lawbord Ctv

Cli	ent :	I		ONT LIGH				HOLE N	0.	Bŀ	1112
	oject :							EXTENSION			ET 1 OF 1
-	sition :							6 Surface RL: 4.5m appox AHD Angle from Horiz.: 90°	_	JUL	Processed : HW
_	Type		Easy P				_	ngContractor : RailCorp Driller : P. Gall			Checked : PAC
11.044.05	1.100.000	1.X	17/10/1				15152-00-000	pleted : 17/10/11 Logged by : SHH			Date : 14 11 1
		DRILL	ING					MATERIAL			,
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations
			Nil		0.20		SC	Clayey SAND, dark brown, medium grained, with rootlets and fine angular gravel (fill / topsoil).	SM	L	
				D			CI- CH	CLAY, red brown, medium to high plasticity, with fine to medium gravel (ironstone and rall ballast), trace shale gravel, possible cobble sized material (fill).	SM	F	0.50m, fill material appears well compacted, difficul
				D	0.60		СН	CLAY, red with brown and grey laminations, high plasticity (residual).	SM	St	drilling
	nm)			n	1.30		СН	CLAY, red with grey mottling and laminations, high plasticity, weak ferruginous cemented clasts (residual).	SM	St	
	V/TC-bit auger (110mm)	IIN			2.00		СН	Grading to CLAY, light orange with grey laminations and mottling, high plasticity, weak ferruginous cementations (residual).	SM		2.0m, poor return c cuttings, water added to improve recovery
				D	3.00		CI-	Grading to CLAY, grey with light orange staining, medium to high	SM		2.8m, increasing drilling resistance, slow progress
							СН	plasticity, with fine to medium grained sand (residual).			4.0m, machine refusal on very stiff
				D	4.00	///		End of borehole at 4.0 metres. Dry on completion.			material
et	ails of	abbr	sheets eviatio criptio	ons 🧲	HD	57 He T: 61	2 946	OTECHNICS Street, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N 2'	lo. 1-20258-34

Proj	ect :	5	SYDNE	Y LIGHT F	RAIL IN	NER V	VESTI	EXTENSION HOLE N	0.	D	1115
	ation			LD TO DU						SHE	ET 1 OF 1
Posi	ition :	3	328455	.0 E 6248	401.0	N MG	494/ 56	6 Surface RL: 4.9m appox AHD Angle from Horiz. : 90°			Processed : HW
	Туре	<u>n _ La</u>	Easy Pr		unting:			ngcContractor: RailCorp Driller: P. Gall			Checked : PAC
Date	e Star	ted: 1	7/10/1	1		Dat	e Com	pleted : 17/10/11 Logged by : SHH	_		Date: 14/11/11
		DRILL	ING		res			Description	uq		Comments/
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Observations
			Nil	18	0.40			SAND with clay / clayey SAND, brown, fine to medium grained sand, trace rootlets (fill / topsoil).	SM	L	Water added to improve return of cuttings
				D				Sandy CLAY / GRAVEL / COBBLES mixture, dark grey and black, low plasticity clay, fine grained sand, with fine to medium sub-rounded railway ballast gravel, trace brick and glass fragments to fine gravel size ballast cobbles to 100mm size, ash gravel (fill).	SM	VSt	From 0.50m, increased drilling resiatance, fill material appears well compacted
6	(D	1.00		SC	Clayey SAND, dark brown, fine to medium grained, with fine to coarse, sub-angular gravel including brick fragments and brick bats, occasional iron nais, trace ceramic plate fragments (fill).	SM	MD	
8	V/TC-bit auger (110mm)	Nil		D	2.00		СН	Clayey SAND & COBBLES, light brown and light orange sandstone cobbles, dark brown sand, fine to medium grained, sandstone rock pieces are highly weathered and low strength, trace fine gravels (fill).	SM	MD	
				D	3.20						
				D			CI	CLAY, light grey and light orange laminations, medium plasticity (residual).	SM	St	
					4.00			End of borehole at 4.0 metres. Dry on completion.			
			heets		HD			OTECHNICS Street, Artarmon NSW 2064 Australia	J	ob N	lo.

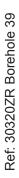

BOREHOLE LOG

Borehole No. 25 1 / 2

Ρ	-	ect:	PROF	POSE	DG		NAY (
		No: 3	0320ZR		518	EET, S		ER HILL TO TAVERNERS HII thod: SPIRAL AUGER			face:	
		e: 5/7/1					inc			atum:		0.0 11
Ρ	lan	nt Type	: JK308	3			Lo	gged/Checked By: M.E./P.R.				
Groundwater Record	SA SA	MPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			N = 4 2,2,2		- - - 1-			FILL: Silty sandy clay, low plasticity, grey brown, fine to medium grained sand, trace of fine to medium grained ironstone and sandstone gravel, brick and concrete fragments.	MC>PL			APPEARS POORLY COMPACTED
I COMPLETION I OF CORPLETION OF AUGERING			N = 2 0,1,1	2-			CL	SILTY SANDY CLAY: low plasticity, brown, fine to medium grained sand, trace of fine to medium grained ironstone and sandstone gravel.	MC>PL	S-F	30 60 60	ALLUVIAL
					3-	· / <u>/ / / / / / / / / / / / / / / / / /</u>		SANDSTONE: fine to medium grained, light brown and brown.	SW	M-H		MODERATE TO HIGH 'TC'
				- - 0 -	- - 4 — -	-						- - - - - - - -
				-1 -1-	- 5- -	-						- - - - - - - - -
				-2-	- 6 -	-						- - - - - - - -
				-3-	-							-

CORED BOREHOLE LOG

		ent:			WEST COUNCIL							
		ject:			SED GREENWAY CYCLEW	ΔV						
		ation						2VII		ы		RAIL STATION, LEICHHARDT
										, I IIL		
				320ZR	Core Size:		-					. Surface: ~3.9 m
[Dat	e: 5/7	/17		Inclination:	VER	TICA	Ĺ				um: AHD
F	Plai	nt Typ	be:	JK308	Bearing: N	/Α					Log	ged/Checked By: M.E./P.R.
		()		g	CORE DESCRIPTION	6			DINT I TREN	IGTH	DEFECT	DEFECT DETAILS
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	EL-0.03	INDE I _s (50 - ^{0,0} - ^{0,0}		SPACING	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
		-			START CORING AT 2.60m							- - - - -
_				_	SANDSTONE: fine to medium grained, light brown and brown, bedded at 15-25°.	DW	Н					-
y uarge		1-	3.	-			L - M					- (2.99m) CS, 15°, 10 mm.t
loped p				-	CORE LOSS 0.13m SANDSTONE: fine to medium grained,	SW	М			·		
al, Deve				_	light brown and brown, bedded at 0-15°. SANDSTONE: fine to medium grained,	FR	Н					(3.28m) CS, 0°, 2 mm.t (3.30m) CS, 0°, 5 mm.t
< < < LinawingFile>> < < <	RETURN		4· 5·		light brown, bedded at 0-15°.					*		- (4.05m) XWS, 15°, 30 mm.t (4.45m) CS, 10°, 5 mm.t
JAL LIB CURRENT - V& UVIGLE LOG J & A CURED BUREHULE - MASTER 30.2202K SUMMER FILLIOFJ		-2 -2 - - -3 - - - - - - - - - - - - -	6 · 7 · 8 ·		END OF BOREHOLE AT 5.60 m							


BOREHOLE LOG

Borehole No. 39 1 / 2

Pr	ien oje ocat			OSE	DG	REEN	WAY (CYCLEWAY ER HILL TO TAVERNERS HI	LL LIGH	IT RAI	LSTAT	TION, LEICHHARDT
Da	ate:	6/7/	30320ZR 17 e: JK205					thod: SPIRAL AUGER gged/Checked By: M.E./P.R.		.L. Sur atum:	face: AHD	~4.9 m
Groundwater Record	SAM N20	PLES 80 SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGERING			N = 4 5,2,2		-		-	CONCRETE: 110mm.t FILL: Silty sandy gravel, fine to coarse grained igneous, dark grey, fine to coarse grained sand, trace of medium to coarse grained sandstone gravel, root fibres and fibrous cement.	M			NO OBSERVED REINFORCEMENT APPEARS POORLY COMPACTED
			<u>,,,,</u>	4	1		CL	SILTY CLAY: low plasticity, grey and grey brown, with fine to medium grained sand, trace of root fibres.	MC>PL	St VSt	110 180 130	ALLUVIAL
ON CO			N = 7 2,3,4	- 3-	2						370 320 320	- - - - - - -
			N = 8 2,3,5	2-	- - 3-			SILTY CLAY: medium plasticity, grey mottled brown and red brown, trace of fine to coarse grained ironstone gravel.		St - VSt	170 210	-
				1-	- - 4						180	- - - - - - -
			N=SPT 4/ 120mm REFUSAL	-	-			SILTY SANDY CLAY: low to medium plasticity, light grey and light brown, fine to medium grained sand. SANDSTONE: fine to coarse grained, light grey.	DW	M	260 220 140	MODERATE 'TC' BIT
				- 0	5			REFER TO CORED BOREHOLE LOG				-
				-1	- 6 -							- - - - - - -
COP				-2-	_							-

CORED BOREHOLE LOG

0	Clie	nt:		INNER	WEST COUNCIL							
F	Proj	ject:		PROPO	DSED GREENWAY CYCLEW	AY						
L	.oc	ation	:	WEST	ON STREET, SUMMER HILL	тот	AVE	RNE	RS	HIL	L LIGHT	RAIL STATION, LEICHHARDT
	ob	No.:	30	320ZR	Core Size:	NML	С				R.L.	Surface: ~4.9 m
1	Date	e: 6/7	/17		Inclination:	VER	TICA	L			Datu	m: AHD
F	Plar	nt Typ	e:	JK205	Bearing: N	/A					Log	ged/Checked By: M.E./P.R.
		()		b	CORE DESCRIPTION	6		ST	INT L	GTH	DEFECT	DEFECT DETAILS
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength		INDE I₅(50))	SPACING	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
		-		- - - -	START CORING AT 4.72m							- - - - - -
eloped by Dalgel		0-	5-	-	CORE LOSS 0.09m SANDSTONE: fine to coarse grained, light brown and light grey, with VH strength iron indurated bands, trace of fine to medium grained gravel sized	DW	М					(4.84m) CS, 0°, 60 mm.t
100%	ETURN	-1	6-		inclusions, bedded at 0-20°.	SW	-					(5.31m) XWS, 15°, 10 mm.t
13.21 1100	Ŷ	-		-	SANDSTONE: fine to medium grained, light grey, bedded at 0-15°.	FR	-					(6.35m) Be, 15°, P, R, CLAY 1mm.t (6.55m) XWS, 0°, 20 mm.t
107/00		-2-										– – —— (6.83m) XWS, 0°, 15 mm.t
07 <<====		-	7-									— (7.11m) XWS, 0°, 15 mm.t
ระบาสพเทยเ		-								 		- (7.45m) CS, 0°, 10 mm.t -
	-	-3-	8-		END OF BOREHOLE AT 7.81 m		Н		- P 	× 		
רום_נטגרבאו - איטטיטים רטש א א טטאברו טרב - אישט ובא אטאנעא אוואודא דוו		-4	9 -									
				-								- - - - - -
1 - VOUVOLE EVS < <		-5	10-									- - - - - - -
5		-6 RIGHT		- - - -								- - - -

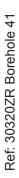
BOREHOLE LOG

Borehole No. 40 1 / 2

	oje ocat	tion:						CYCLEWAY ER HILL TO TAVERNERS H	IILL LIGH	IT RAI	L STA	TION, LEICHHARDT
Jo	b N	lo.: 30)320ZR				Me	thod: SPIRAL AUGER	R	.L. Su	face:	~7.4 m
		7/7/17								atum:	AHD	
PI	ant	Type:	JK205		1		Lo	gged/Checked By: M.E./P.R				
Record	SAM	PLES 80 SO	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
RING						Δ. Δ. Δ		CONCRETE: 170mm.t				- 12,20 & 8mm DIA. REINFORCEMENT, 60,70
COMPLETION OF AUGERING				7-			-	VOID: 300mm.t				& 120mm TOP COVER
CO OF.				-				FILL: Silty clay, low to medium plasticity, grey, with fine to coarse grained shale and igneous gravel, trace of fine to coarse grained sand and crushed concrete.	MC <pl< td=""><td></td><td></td><td>APPEARS POORLY TO MODERATLEY COMPACTED</td></pl<>			APPEARS POORLY TO MODERATLEY COMPACTED
			N = 15 8,8,7	6- - -								-
				5-	2							
OF CORING			N = 7 4,3,4	- - 4 — -	3-							
					4-		CL	SILTY SANDY CLAY: low plasticity, brown and grey, fine to medium grained sand.	MC>PL	F		- ALLUVIAL
			N = 2 0,0,2	-							80 70 60	- - - - -
				2-			CL	as above, but with fine to coarse grained sandstone and ironstone gravel.				-
				-	-		CL	SILTY SANDY CLAY: low plasticity, light grey and brown, fine to coarse grained sand.				-
			N = 21 10,9,12	- 1-	6	Y <u>/X/</u> /		sand. SANDSTONE: fine to medium grained, light grey, with L strength bands.	XW	EL	60 60 >600 >600 >600	-
	+			-	-			REFER TO CORED BOREHOLE LOG	DW	M.		MODERATE 'TC' BIT

CORED BOREHOLE LOG

		nt: ject:			WEST COUNCIL DSED GREENWAY CYCLEW	AY				
	-	ation					AVEF	RNERS HIL	L LIGHT	RAIL STATION, LEICHHARDT
J	lob	No.:	303	320ZR	Core Size:	NML	С		R.L.	Surface: ~7.4 m
	Date	e: 7/7	/17		Inclination:	VER	TICA	L	Datu	m: AHD
F	Plar	nt Typ	be:	JK205	Bearing: N/	Ά			Log	ged/Checked By: M.E./P.R.
					CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	INDEX I _s (50)	DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
		- 1-	· · ·		START CORING AT 6.55m					- - - -
oped by Dalgel		-	7 -		SANDSTONE: fine to medium grained, light brown and light grey, with iron indurated bands. SANDSTONE : fine to coarse grained, light brown, trace of fine to medium grained alluvial gravel, bedded at 0-20°.	DW SW	M			- - - - - - - -
13.21 Floured by give Floressonal, Developed by Darge	KETURN	0	8-				н			(7.29m) XWS, 5°, 50 mm.t - - - - - - - - - - - - -
1 17.01 1.107.00.007 1.001.01		-2-	9-		SANDSTONE: fine to medium grained, light grey and grey, bedded at 0-5°.		M			
		-		-	END OF BOREHOLE AT 9.66 m					-
		-	10 -	-						-
		-								-
120200		-3		-						-
				-						-
			11 -	-						-
				-						
		-4								- -
				-						-
				-						
W.GLD			12-							► - -
1.0 - 1		-5-		-						-
רום. הערגני איי אייטיניבר ב- אייטיניבר אייטיניבר אייטיבר אייטיבר אייטיבר אייטיבר אייטיבר אייטיבר אייטיבר ג'ייג										-
										- - -
		l <u>I</u> RIGHT				I	I			1

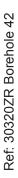

BOREHOLE LOG

Borehole No. 41 1 / 2

		ient: oject:	INNEF PROP					CYCLEWAY				
	Lo	cation	: WEST	ON S	STR	EET, S	UMMI	ER HILL TO TAVERNERS HI	LL LIGH	T RAI	L STAT	TION, LEICHHARDT
,	Jo	b No.:	30320ZR				Me	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~6.5 m
		ite: 7/7							Da	atum:	AHD	
	Pla	ant Typ)e: JK205				Lo	gged/Checked By: M.E./P.R.				
Groundwater	Record	SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
	OF CORING		N = 16 5,8,8 N = 23 10,12,11 N = 7 2,4,3	6	1		-	ASPHALTIC CONCRETE: 80mm.t FILL: Silty sandy gravel, fine to medium grained, dark grey, fine to medium grained sand. FILL: Silty clay, low plasticity, grey and brown, with fine to medium grained sand and fine to coarse grained shale gravel, trace of glass fragments and root fibres.	MC <pl< th=""><th></th><th></th><th>APPEARS POORLY TO MODERATELY COMPACTED</th></pl<>			APPEARS POORLY TO MODERATELY COMPACTED
			N > 1 0,0,1/ 100mm REFUSAL	3 - - 2 - - - - - - - - - - - - - -	4		CL SC	SILTY SANDY CLAY: low plasticity, grey and brown, fine to medium grained sand, trace of fine grained ironstone gravel. CLAYEY SAND: fine to coarse grained, brown, with silt fines. SANDSTONE: fine to coarse grained, brown. REFER TO CORED BOREHOLE LOG	MC <pl MC>PL W DW</pl 	VSt F VL M	220 210 270 50 50	ALLUVIAL
		/RIGHT										=

CORED BOREHOLE LOG

F	Pro	-	t: ct: tion:		PROPO	WEST COUNCIL DSED GREENWAY CYCLEW DN STREET, SUMMER HILL		AVE	RN	ER	S HIL	L LIG	HT F	RAIL STATION, LEICHHARDT
J	lol	b N	lo.:	303	320ZR	Core Size:	NML	2				F	R.L. :	Surface: ~6.5 m
	Dat	te:	7/7/	/17		Inclination:	VER		۱L			[Datu	m: AHD
F	Pla	Int	Тур	e:	JK205	Bearing: N	/A					L	_ogg	ed/Checked By: M.E./P.R.
	Т					CORE DESCRIPTION					LOAD			DEFECT DETAILS
Water		Barrel LIT	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength		IND I _s (5		DEFE SPAC (mn	iNG n)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
Lage			2-	5-		START CORING AT 5.04m								- - - - - - - - - -
Frouced by gint Frolessional, Developed by			- 1	6-		SANDSTONE: fine to coarse grained, brown and light brown, trace of fine grained gravel size inclusions, bedded at 0-10°.	DW	М						(5.64m) J, 40°, P, R, IS (6.19m) XWS, 0°, 20 mm.t
	RETURN		0-	7 -			SW	Н						(6.80m) CS, 5°, 15 mm.t
<pre>>>DI GM</pre>	\vdash		-1			CORE LOSS 0.14m SANDSTONE: fine to medium grained,	DW	M	H					– – ––– (7.50m) XWS, 0°, 40 mm.t
DIEK JUJZK JUMMEK HILL.GFJ			- - -2-	8-		light grey and grey, bedded at 5-20°.	FR	Н	l i					
JA_LIB_CURRENT - V8:UUIGLB LOG J & N CUREU BUREHULE - MASTER			-3 - -3 - - -4 - - -	9-		END OF BOREHOLE AT 8.84 m								


BOREHOLE LOG

Borehole No. 42 1 / 2

-						GREENWAY CYCLEWAY TREET, SUMMER HILL TO TAVERNERS HILL LIGHT RAIL STATION, LEICHHARI Method: SPIRAL AUGER R.L. Surface: ~6.0 m									
D	ate:	10/7	7/17						Da	atum:	AHD				
P	ant	Туре	e: JK205	5			Logged/Checked By: M.E./P.R.								
Groundwater Record	SAM N20	PLES 80 SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks			
COMPLETION OF AUGERING			N = 11 3,4,7		- - - 1-		<u> </u>	ASPHALTIC CONCRETE: 80mm.t FILL: Silty sandy gravel, fine to medium grained igneous, dark grey, fine to coarse grained sand. FILL: Silty clay, low plasticity, grey and brown, with fine to coarse grained shale and igneous gravel, trace of fine to coarse grained sand.	M MC <pl< td=""><td></td><td></td><td>APPPEARS MODERATELY COMPACTED</td></pl<>			APPPEARS MODERATELY COMPACTED			
			N = 13 6,7,6	4				FILL: Clayey gravel, fine to coarse grained shale and igneous, grey and dark grey.	D			- - - - - - - - -			
			N = 8 3,3,5	- 3	3-			FILL: Silty sandy clay, low plasticity, brown, fine to medium grained sand, trace of medium to coarse grained sandstone and ironstone gravel and brick fragments.	MC <pl< td=""><td></td><td></td><td>-</td></pl<>			-			
OF CO OF CO					CL SILTY C brown, t sand.	SILTY CLAY: low plasticity, grey and brown, trace of fine to medium grained sand.	MC>PL	St		ALLUVIAL					
			N > 5 1,1,4/ 70mm REFUSAL	1 1 0 	- 			SANDSTONE: fine to medium grained, light grey and light brown. REFER TO CORED BOREHOLE LOG	DW	M	130 160 110	MODERATE TC' BIT RESISTANCE			

CORED BOREHOLE LOG

	Pr	-	nt: ect: ntion:		PROPO	WEST COUNCIL DSED GREENWAY CYCLEW DN STREET, SUMMER HILL		AVEF	RNI	ERS	HIL	LL	.IG	SH.	T F	RAIL STATION, LEICHHARDT			
F	Jo	b l	No.:	303	320ZR	Core Size: NMLC									R.L. Surface: ~6.0 m				
	Da	ate	: 10/	7/17	,	Inclination: VERTICAL									itu	m: AHD			
	PI	an	t Тур	e:	JK205									Logged/Checked By: M.E./P.R.					
┢						CORE DESCRIPTION				DINT LO						DEFECT DETAILS			
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength			X	S	PA((m	ECT CIN(m) ଝ ଚ୍ଚ	G	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General			
Daigei			- - -			START CORING AT 5.05m													
luced by gin i Professional, Developed by Daiger				6-		SANDSTONE: fine to coarse grained, light brown, with iron indurated bands, bedded at 10-25°.	DW	M								(5.58m) Be, 25°, P, R, IS 			
2017 13:21 Produced by	100% RETURN		-	-			SW	M - H								(6.60m) J, 65°, Un, R, IS			
11.02/80/62 <<			-1 -	7-						 						(6.94m) XWS, 0°, 70 mm.t 			
< SelliawingFile>> 			-	-		SANDSTONE: fine to medium grained, light grey, bedded at 5-20°.	FR	FR								(7.34m) XWS, 10°, 5 mm.t (7.34m) XWS, 10°, 5 mm.t (7.34m) XWS, 10°, 5 mm.t			
-L.GPJ			-2-	- - - 8-												- - - -			
			-			END OF BOREHOLE AT 8.16 m									+				
13ZUZR			-	-												-			
			-		-											-			
			-3-	- 9-												-			
			-	-	-											-			
			-	-												-			
S ∠ v			-		-											-			
E Log			-4	10												-			
0.UU.GL																-			
			-													-			
LIB_CURKENI - V8.00.GLB L00			-											ii		-			
śĽ			GHT		-									ii					

BOREHOLE LOG

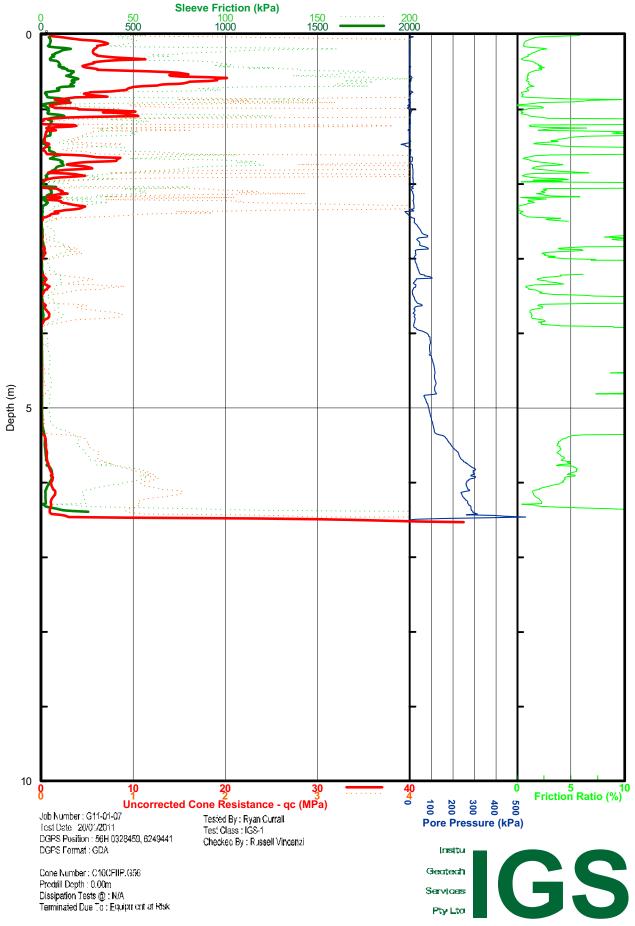
Borehole No. 1 1/2

Project: PRC			IER WEST COUNCIL OPOSED NEW NETBALL COURTS AND AMENITIES BUILDING CHARD MURDEN RESERVE, HAWTHRONE PARADE, HABERFIELD, NSW								
	No. 313				Meth	od: SPIRAL AUGER JK300	R.L. Surface: N/A				
Date	: 22/3/ [·]	18			Logg	ged/Checked by: C.A./F.V.		D	atum:		
Groundwater Record	ES U50 DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
			0			FILL: Silty sand, fine to medium grained, brown, trace of coarse grained cobbles, and root fibres.				GRASS COVER	
		N = 6 2,3,3	- - - 1-		CI	Silty CLAY: medium plasticity, dark green grey, with fine to medium grained sand.	w>PL	St		ALLUVIAL	
ON OMPLET ION	-	N = 0 0,0,0	2-	a Pariser	GP CI	Sandy GRAVEL: medium to coarse grained, grey brown, sub rounded sandstone. / Silty CLAY: medium plasticity, dark green grey, trace of shell fragments.	W - w>PL	(L) VS		NO SAMPLE - RECOVERED FR SPT SUNK UNDER ITS OWN WEIGHT	
		N = 0 0,0,0								NO SAMPLE RECOVERED FR SPT	
		N = 0 0,0,0	4 - - - 5 -							NO SAMPLE RECOVERED FR SPT	
		N = 0 0,0,0	- - 6 - -						-	NO SAMPLE RECOVERED FR SPT	

BOREHOLE LOG

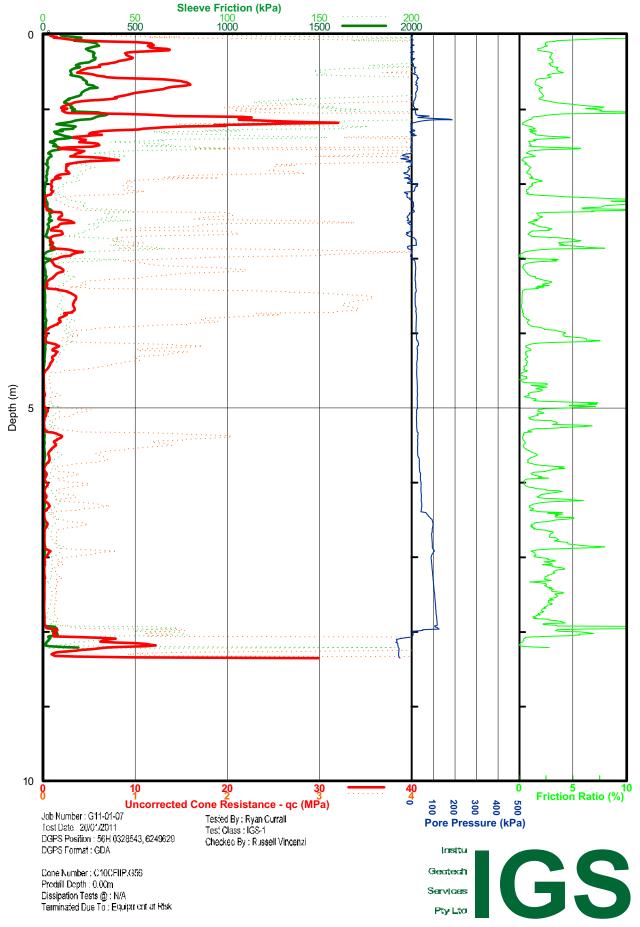
Borehole No. 1 2/2

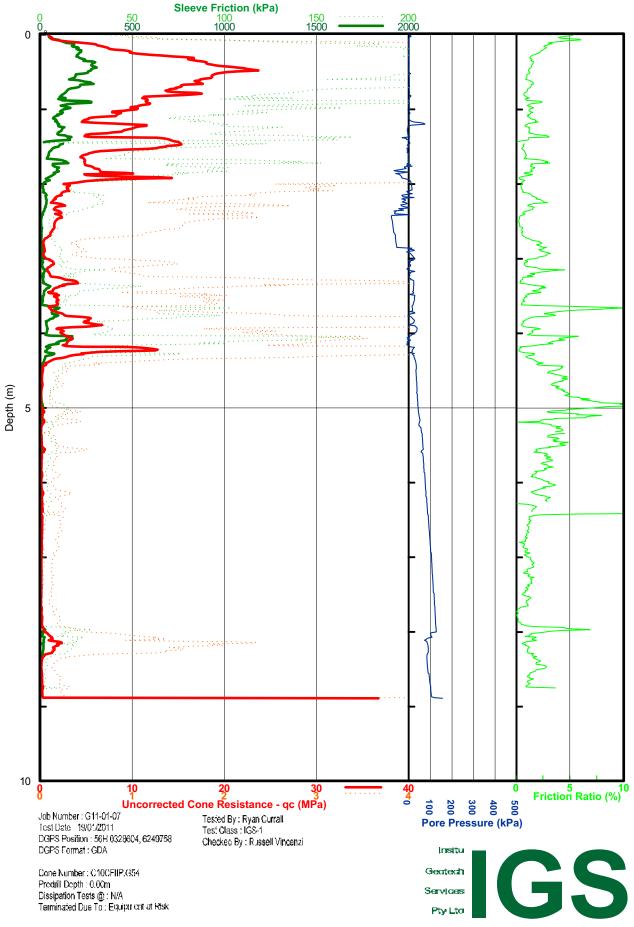
	Client:		INNEF	R WE	ST CC	UNCI	L						
	Proje	ect:	PROP	OSEI	D NEV	V NET	BALL COURTS AND AMENIT	IES BUI	LDING	3			
	Loca	tion:	RICH/	ARD N	IURD	EN RE	SERVE, HAWTHRONE PARA	ADE, HABERFIELD, NSW					
ľ		No. 313 : 22/3/1				Meth	od: SPIRAL AUGER JK300	R.L. Surface: N/A Datum:					
				Logged/Checked by: C.A./F.V.									
-	Groundwater Record	ES U50 DS DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
				9			Silty CLAY: medium plasticity, dark green grey, trace of shell fragments.	w>PL	VS		ALLUVIAL		
				- - - 12 - - - - - -		-	SANDSTONE: fine to coarse grained, orange brown and light grey, iron indurated.	DW	VL-L		VERY LOW 'TC' BIT RESISTANCE WITH LOW BANDS		
┠				13	::::		END OF BOREHOLE AT 13.0m				HIGH RESISTANCE		
COPYRIGHT				- - - 14							-		


BOREHOLE LOG

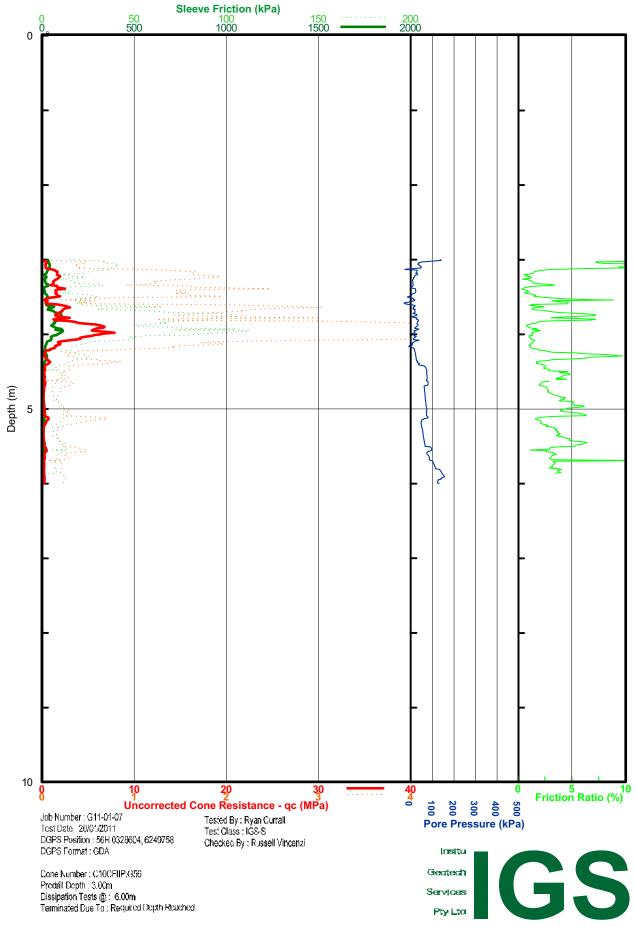
Borehole No. 2 1/1

Job N Date:						od: SPIRAL AUGER JK300	R.L. Surface: N/A Datum:				
	(0)				Logo	ged/Checked by: C.A./F.V.					
Groundwater Record	U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
			0	\bigotimes		FILL: Silty clayey sand, fine to medium grained, brown.	М		-	GRASS COVER	
		N = SPT 14/120mm				FILL: Gravelly sand, fine to coarse grained, orange brown and light grey.	-		-	APPEARS MODERATELY COMPACTED	
•		REFUSAL	1 -			FILL: Gravelly sand, fine to coarse grained, brown, light grey and dark	-			-	
ON OMPLET-						grey, medium to coarse grained, sub rounded sandstone gravel, with clay, and sandstone cobbles.	W		-		
ION		N = 18 4,5,13	-	\bigotimes					-		
			2 -			as above, but with bands of clay.				_ POSSIBLY ALLUVI	
			3 -							_	
			•								
			4 -						-	-	
		N = SPT 13/150mm	-	\bigotimes					-		
		REFUSAL			-	PROBABLE BOULDER OF SANDSTONE: medium to coarse [\grained, light grey.	М	(H)		SOLID CONE ATTEMPTED AT 4.65m, REFUSAL	
			-			END OF BOREHOLE AT 5.0m			-	HIGH 'TC' BIT RESISTANCE	
				-						POSSIBLY BEDROCK 'TC' BIT REFUSAL	
			6 -							-	
			6 - - - -	-					-	-	


RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

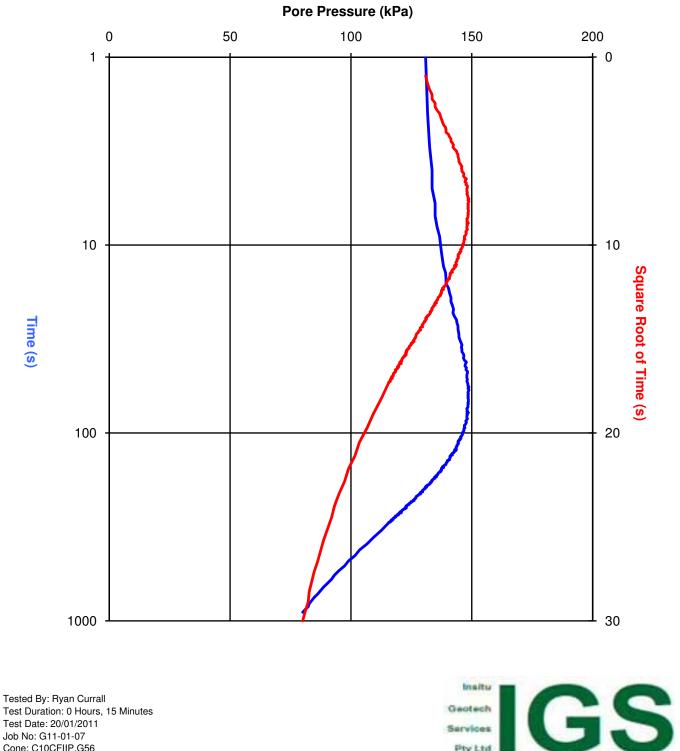

RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

CPT-07


RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

CPT-10

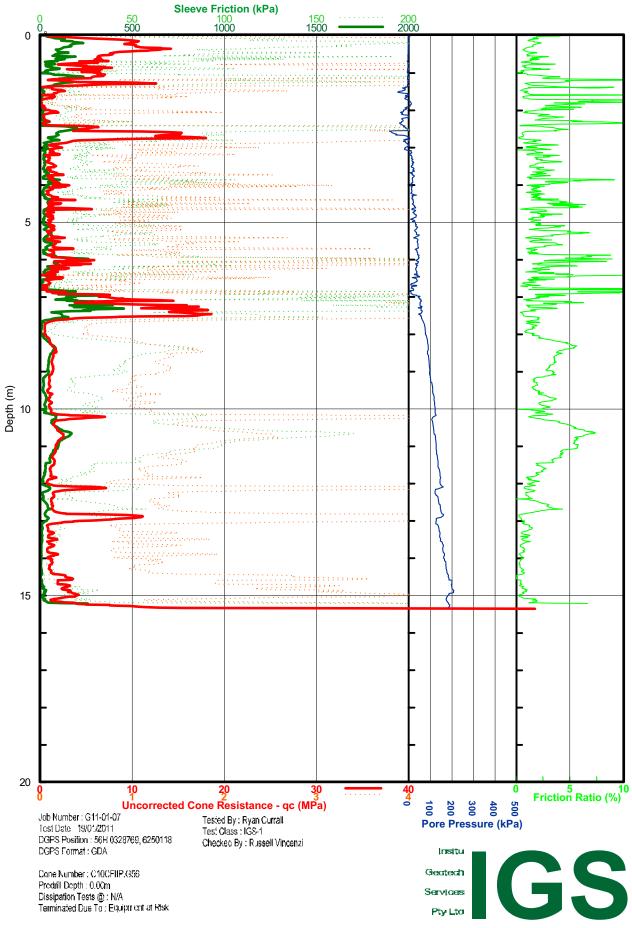
RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW


CPT-10a

PORE PRESSURE DISSIPATION TEST RESULT

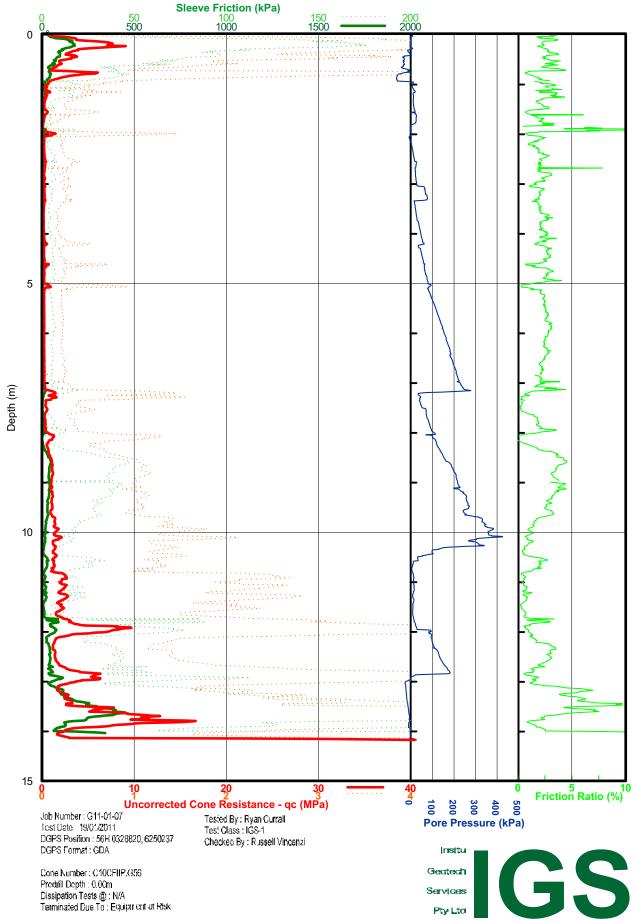
RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

CPT-10a Depth: 6m

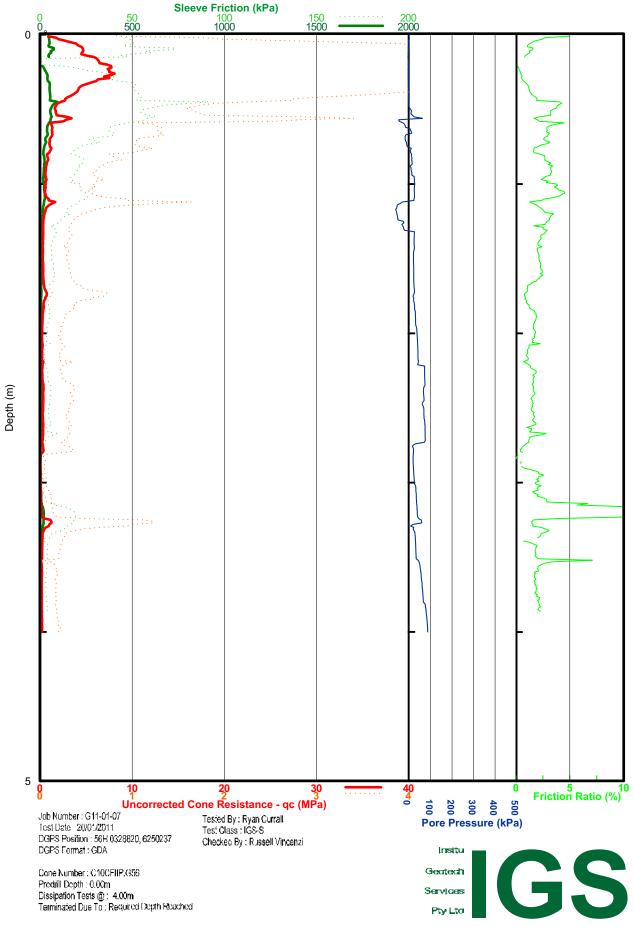


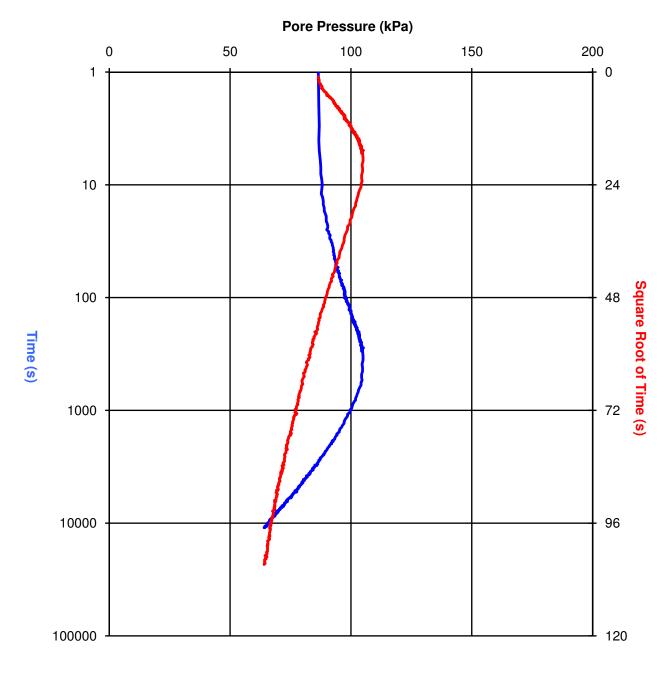
Pty Ltd

Job No: G11-01-07 Cone: C10CFIIP.G56


RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

CPT-14

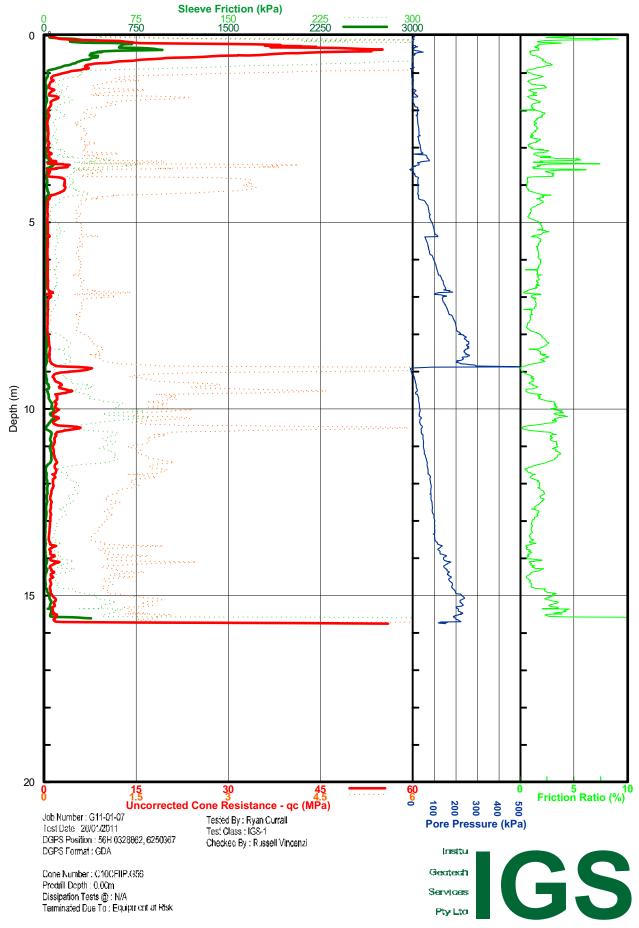

RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW


RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

CPT-17a

PORE PRESSURE DISSIPATION TEST RESULT

RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW CPT-17a Depth: 4m



Tested By: Ryan Currall Test Duration: 3 Hours, 2 Minutes Test Date: 20/01/2011 Job No: G11-01-07 Cone: C10CFIIP.G56

RTA NSW Greenway Shared Pathway - G4202 Haberfield NSW

CPT-19

۶.

Υ.

P

₽.

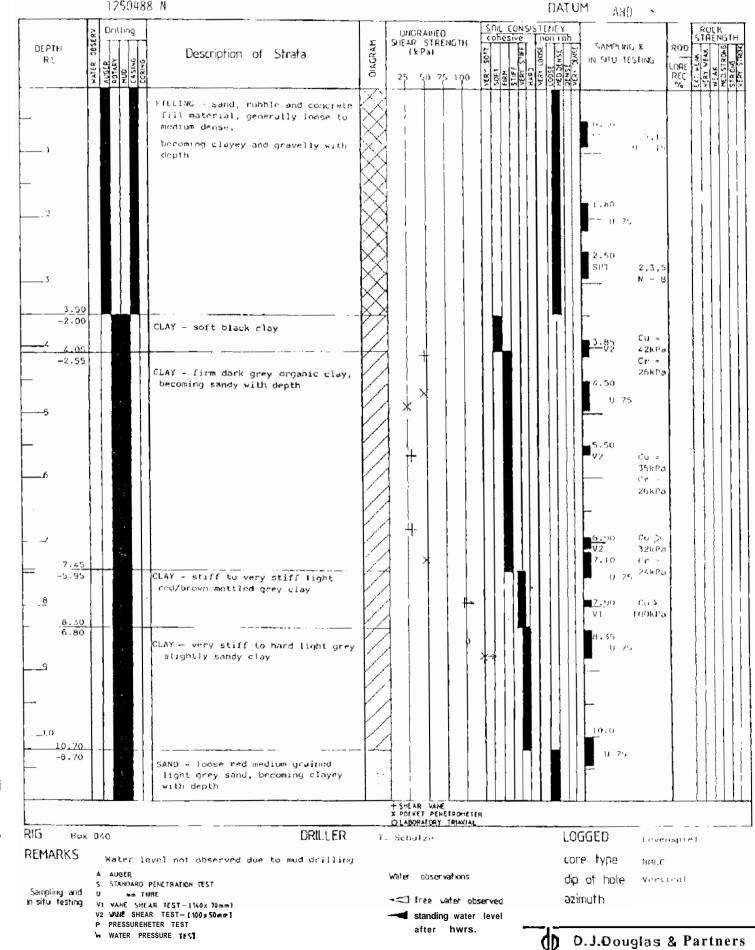
CLIEN3 DEPARTMENT OF MAIN ROADS

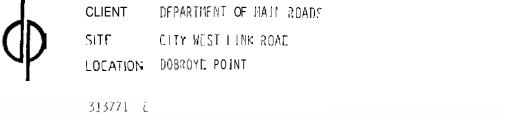
CITY WEST LINK ROAD

LOCATION DOBROYD POINT

313771 E

SITE


1259488 N


BORE No 4 PAGE 1 OF 2

DATE 11/2/87

CONTRACT No. \$\$1/10,097

SURFACE LEVEL1.5 M

ł

ŗ

í

÷

ţ

١

201

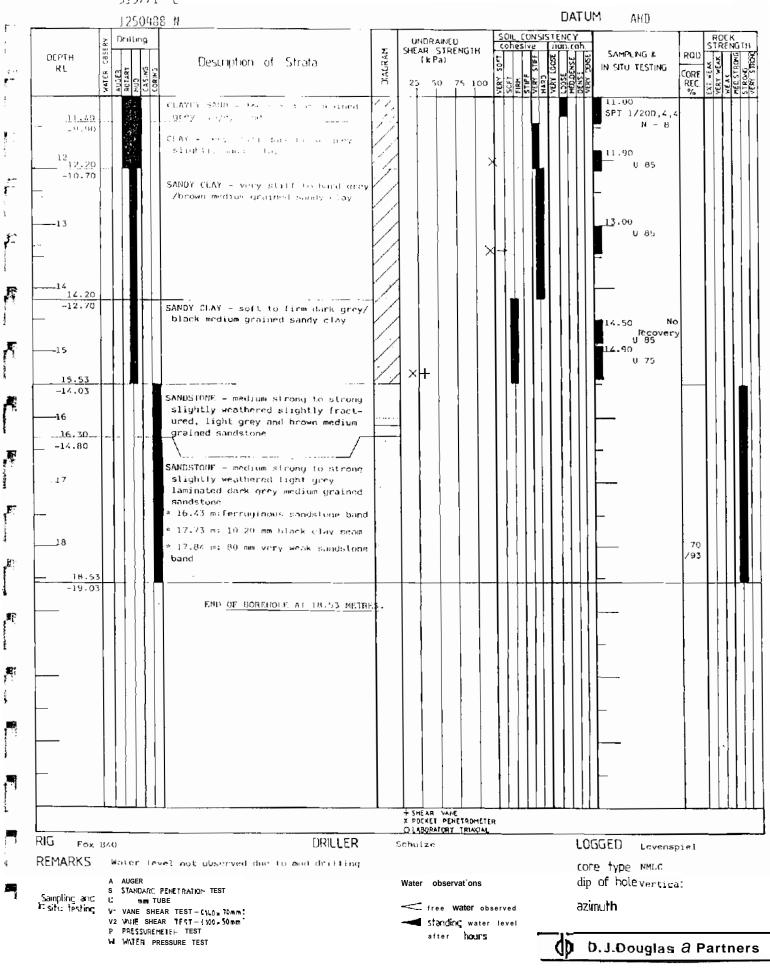
Į

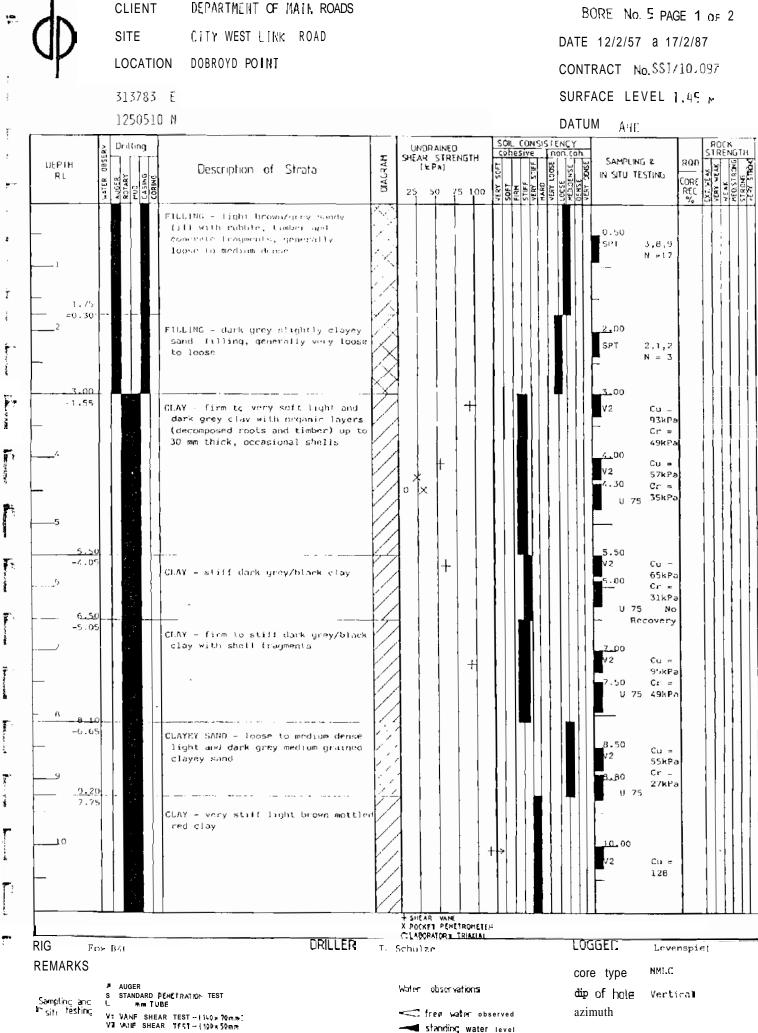
1

ł

į

ŝ


ICH BURE neruni


BORE No. PAGE 2 OF 2

DATE11/2/87

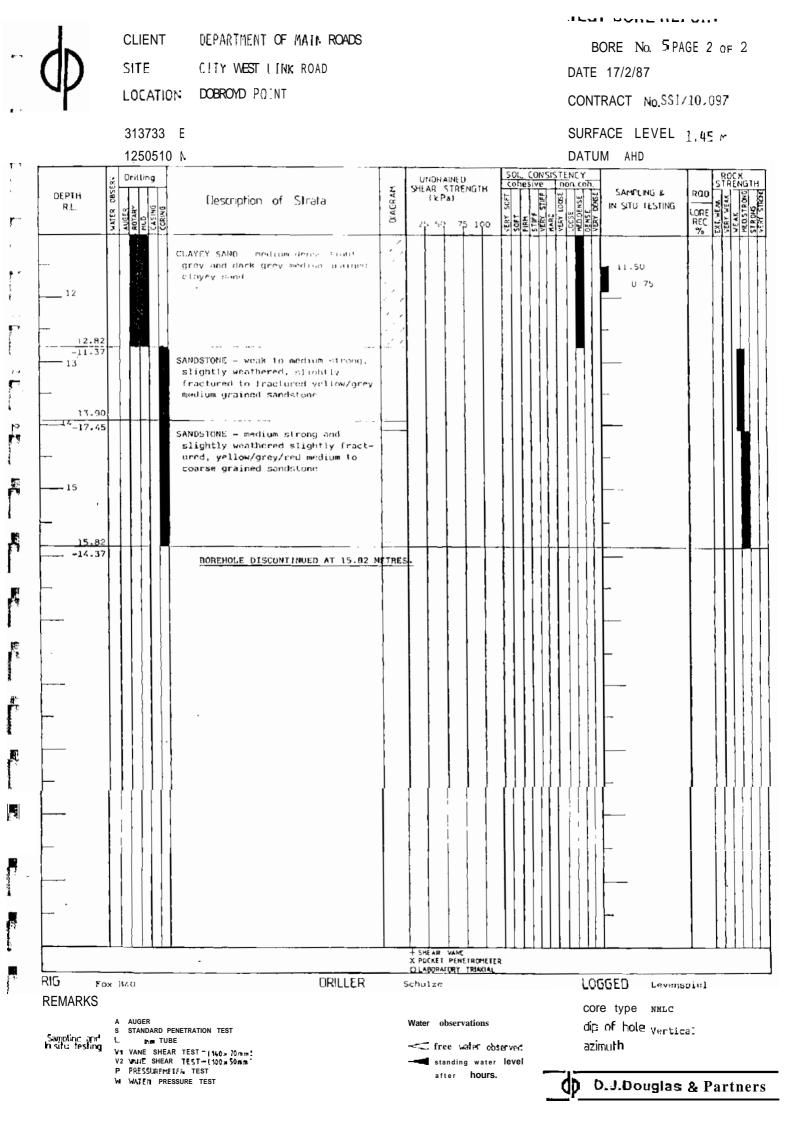
CONTRACT No.SSI/10,097

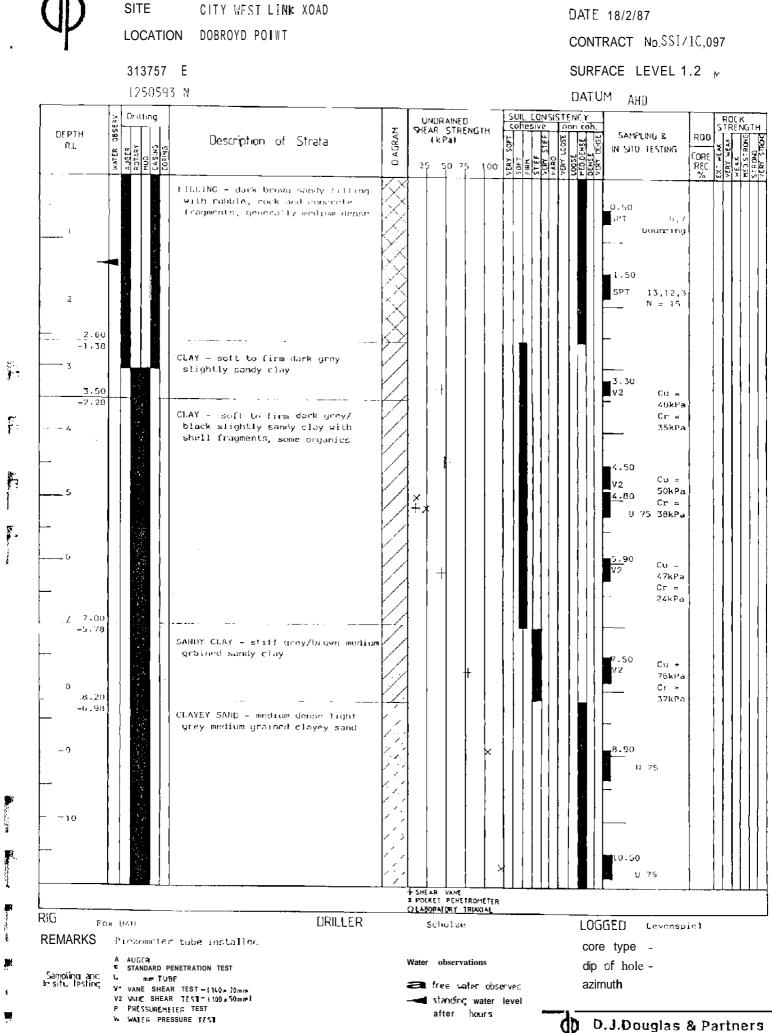
SURFACE LEVEL 1.5 M

Р	PRESSU	REMETER	TEST
<u>~</u>	WATER	PRESSURE	TEST

ŝ

ł


Ŷ,


1

🖬 standing water level after hours.

D.J.Douglas & Partners (D)

ICAL DUKE REPURI

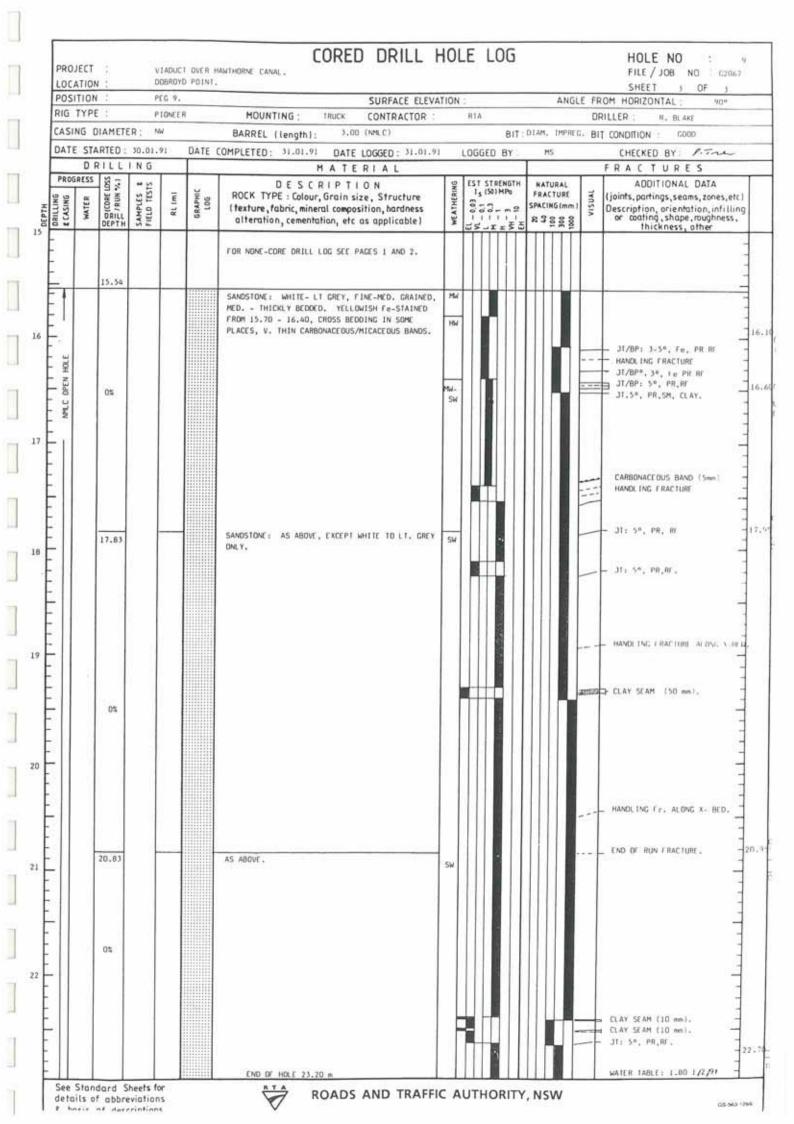
CLIENT DEPARTMENT OF MAIN ROADS

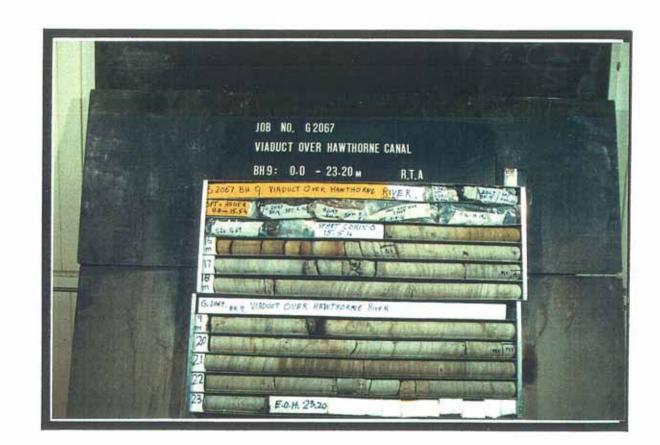
CITY WEST LINK XOAD

į

Ĩ

ł


IEST BURE REPORT


BORE No. 6 PAGE 1 OF 2

								TES	T BORE R	EPORT		
	CLIENT							E	BORE No. සි	PAGE 2 of	= 2	
UD I	SITE	CITY WEST LINK ROAD						DATE	18/2/87			
T	LOCATIO	ON DOBROYE POINT						CON	FRACT No.5	ST/10,097		
	313757							SURI	FACE LEVE	L1.2 m		
ſ <u>-</u>	1250593	3 N		r			·_ _ • • •		JM AHD			
DEPTH R.L	AMICK 00254	Description of Strata	01AGRAM	UNORA SHEAR S (&P)	TRENGTH		2,115	VENT LJOSE LLEGSE MED.OEYSE MED.OEYSE DENSE VENV MARE	SAMPLING B IN SITU TESTIN		VEAK HEOSTRONS ON STRONS	
<u> </u>		SANDY CLAY - very still to band light grey medium grouned sandy glay				×-+			12.00			
-10.90		SANDSTONE - weak to medium strong yellow brown medium grained sondstone							U 75			
-11.04		BOREHOLE DISCONTINUED AT 13.10 ME	IRES.									
-									-			
-												
-									- <u> </u>			
									·			
-									- 			
				- SHEAR V								
RIG Fox	840	DRILLER		X POLKET P	ENETRONETI RY TRIACIAL	ER		1.00		vensniel		
Sampling and	91020meter A AUGER S STANDARD P U Ben TUE	• tube installed	,	Water ob:	servations vəter ol	bserved		LOGGED ^{Levenspiel} core type - dip of hole - azimuth				
۱ ا	VI VARE SHEAT P PRESSUREME W WATER PRE	R TEST-1100x50mm1 Elex TES1		stan	ding wate er hours	r level	 - -).J.Dougla	s & Part	ner	

	ATION		POBROYD	POINT.			-	CONTRACTOR DE POLITICA.	-		SHEET I OF
	TYPE		IONEER		M	OUNTIN	(G :	TRUCK CONTRACTOR RTA			INGLE FROM VERTICAL: 0"
DAT	TE STA	RTED	: 30.1	.91 D	ATE C	OMPLET	ED ;		RS		HECKED BY . 1.7~~
		DRI	LLIN	G				MATERIAL			
A CASING	DRILLING FLUID TYPE & LOSS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES, TESTS, ETC	RL(m)	GRAPHIC LOG	CLASSIFICATION 5YMB0L	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary & Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & other observations
		r						GRAVELY CLAY: D. BROWN, LOW PLASTICITY, FINE-MLD. GRAINED GRAVEL, 2 CONCRETE BOULDERS (200 + 50mm) AT TOP	M	5	ERL.
		1.08 E		SP1 3,1,1 N=2 1.53				GRAVELY CLAY: D. BROWN, LOW-MED. PLASTICITY, FINE GRAINED GRAVEL, SEIGHTLY SANDY FINE GRAINED SAND.	м	5-V5	SPT RECOVERY 20 cm.
DPEN HOLE			,				CL -	CLAY: D. GRAY, MED-HIGH PLASTICITY, SLIGHTLY SANDY FINE SAND.			ALLUVIAL.
SPIRAL AUCER, OPE		2.58	*	SP1 0,1,3 N=3			а сн	SILTY CLAY: D. GREY, MED-HIGH PLASTICITY, FINE-MED, GRAVEL, ORGANIC,		VS	2.40 WL (LOW TIDE TIME). SPT RECOV. 10.0 cm
. 8		£		3.03							
		4.08 E	2	SPT 4,4,1 N±5 4.53			СН - ОН	CLAY: BLACK, HIGH PLAST., SHELLS, FEW FINE-MED, GRAVEL* (YELLOWISH GREY SANDSTONE) THROUGHOUT, SOME FINE-MED, GRAINED SAND, ORGANIC * (SOME OF THE GRAVEL MAY BE FROM CAVING).	a.	vs- s	PP 30-60 kPa (BOTIOM OF SPI) IU SPI RECOV, 45.cm
											CAVING 0.50 m, CASING: 0.0 - 6 10 m.
ER -		E		6.74							CASE DROPPED IN 10 6.60 m. DURIN WASHING THE HOLE.
BORING ROCK ROLLER				SPT 0.0.0 #:0 7.19				SILTY - SANDY CLAY: D. GREY, HIGH PLAST., FINE GRAINED SAND, SHELLY, WHITE SILTY - SIZE MATERIAL AT BOTTOM 7.40		V5	 SPT TUBE PUSHED IN BY WEICHT O HUMPER. SPT RECOV. 55 cm.
MASH B		E- F					1	CLAY: PALE RED & D. GREY, HIGH PLAST (INSPECTED FROM RETURNING MUD)			

POSITI	ON	: -	PEG 9		-		-	SURFACE ELEVATION :		AI	SHEET 2 DF
RIG T		3 - I	PIONEE			UNTIN		TRUCK CONTRACTOR RTA			RILLER : R. BLAKE
DATE	STA	1.000			ATE CO	MPLET	ED;	1.01.91 DATE LOGGED: 31.01.91 LOGGED BY: M	15	CH	IECKED BY
1	_	DRIL	LIN	G		1		MATERIAL			
A CASING A CASING	TYPE & LOSS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES, TESTS, ETC	RLim)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary & Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & other observations
		1						CLAY: LT REQ. HIGH PLAST.			
-	1.24	F		SPT 3,5,6 N=11 8.69				CLAYT GREY, HICH PLAST., UNIFORM.	H.	51	PP. 150-210 kPa (on SPI SAMPL) SPI RECOV. 45 cm.
		-									5. 5.
- 9	.74			SPT 3,8,14 N±22 10.19			sc	CLAYEY SAND: D. GREY, LOW, PLAST., FINE-MED. GRAINED SAND.	w	HD	SPT RECOVERY 45.0 cm.
21146- 4004 40144	.24			SP1 W.O.R. 11.69			CL	SILTY CLAY: D. GREY, MED. PLAST., SLIGHTLY SANDY, FINE GRAINED SAND.	ч	S	SPT RECOVERY 45.0 CM PP: 70- 100 kPm.
Wash Base	.74			591 3,4,6 N=10 13,19			Сн- ОН	CLAY: D. GREY - BLACK, YELLOWISH Fe - STAINED IN PARTS. HIGH PLAST., ORGANIC	w	ST	PP: 150 - 220 kPa
	.24			591 3,4,4 N18 14,69				CLAYEY SAND: D. GREY, FINE-MED. GRAINED, SAND, LOW PLASTICITY.	w	т.	SPT RFCDV, 45 μm. (PP M) - 60 kPo
- 15.	.54							15.54 END OF NON-CORE DRILLING. FOR CORF-DRILL LOG SEE PAGE 3.			

	TYPE	: 	TONEER	0120	MO		ine 2	SURFACE ELEVATION :	-		NGLE FROM VERTICAL: 0°
DAT						MPLET		TRAILER CONTRACTOR : RTA 12/2/91 DATE LOGGED: 11/2/91 LOGGED BY : JP	_		RILLER : C.P.
-		1000	LLING								HECKED BY 1.700
-		UKI	-		-		-	MATERIAL			
A CASING	DRILLING FLUD TYPE & LOSS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES, IESTS, ETC	RL[m]	GRAPHIC LOG	CLASSIFICATION	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary & Minor Components	MDISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & other observation
-44						***		TOP SOIL: CLAY, DARK BROWN. 0.20m	Ð		rhu.
		r				0000	CL.	GRAVELLY D AY: DARK BRDWN,	м		
						_			"		
		1				114		0.60m 0.70m SANDSIDNE PILCES.			
		L		- 9							
								CRAVELLY CLAY: DARK BROWN.			
						-		T LARS L			
			Less.			ПП	-	1.30m SILTY SANDY CLAY: DARK CREY, H. PLASTICITY,			
			W.L.				CH	HIGH ORGANIC DOUR.	w		
			1.60m					An unit of the Charles Control of		2	
4			11.2.9	6						vs	
				100							
				2.13m SP1							
I.				0,0,1						VS	SPI RECOVERY: 450 mm
CASTNG				N=1						10000	. WT OF RODS AND SPT HAMMER.
CAS				2.58m							
. s						1111					
AUCE	1										
V-BIT AUCER										1 1	
->	N/A										
	100										
111				- I							
11				5.13m						_	
				SPT 0,2,1			CH			s	SP1 RECOVERY = 200 mm
				N=3							RUN NW CASING TO 5.00 m
t	T		t h	5.58m							
_											
		E									
BI1	TURN										
F INCER	분										
	WEB										
ASH BORE	POC										
HSAM	1000										
1											
- []											
11			201								

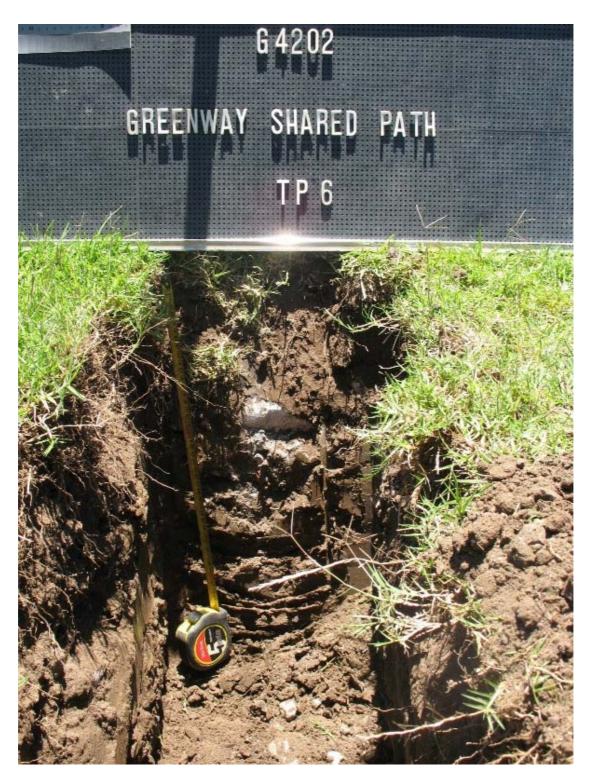
DRILLING MATERIAL UNITY NO USED TO BE Soil Type, Colour, Plasticity or Particle Characteristic STRUCTURE	-	ATION	4						SURFACE ELEVATION :		A	SHEET 2 OF NGLE FROM VERTICAL: 0*
DRILLING MATERIAL USUAL STRUCTURE Soil Type, Colour, Plasticity or Particle Characteristic Structure Soil Type, Colour, Plasticity or Particle Characteristic Structure USUAL Structure Structure Soil Type, Colour, Plasticity or Particle Characteristic Structure USUAL Structure Structure Structure Structure Structure Structure Structure Structure USUAL Structure Structure USUAL Structure Structure USUAL Structure Structure USUAL Structure Structure										_		
9000000000000000000000000000000000000	DAT	E STA	110100	1000 Barris		ATE CO	MPLE	TED: 1		_	C	HECKED BY P.J.
E 8.34a 5PT 0,0,0* CH SILTY SANDY CLAY: AS PREVIOUS. V V5 SPT ACCOUCRY = 300 mm * kt 0* ROOS AND HAMMER. E 8.79m I	_	_	DRI		د							
E 8.34a 0,0,0* SILTY SANDY CLAY: AS PREVIOUS. V SPT ACCOUCRY = 300 mm + kt 0* ROOS AND HAMMER. K 8.79m V SPT ACCOUCRY = 300 mm + kt 0* ROOS AND HAMMER. V 1 90132 GAVOU AND 1,1,0 11.60m 11.60m SET ACCOUCRY = 300 mm, - kt 0* ROOS AND HAMMER. SPT ACCOUCRY = 300 mm, - kt 0* ROOS AND HAMMER.	DRILLING	DRILLING FUID TYPE & LOSS	DRILLING PEHETRATION	GROUND WATER	SAMPLES, TESTS, ETC	RL(m)	GRAPHIC LOG	CLASSIFICATION	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary & Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & other observatio
300 301 11.34m			E		SP1 0,0,0* Ne0			CH	SILIY SANDY CLAY: AS PREVIOUS.	v	¥5	
	BORE	POLYMER			SPT 1,1,0 N=1							SP1 RECOVERY = 300mm.
									* SEE CORED DRILL HOLE SHEET FOR INFORMATION,			

	POSIT							SURFACE ELEVAT	ION	1	ANG	E FF	SHEET 3 OF ROM HORIZONTAL : 900
- 14	RIG T		11111111	PIONEE		2	HOUNTING : TRAILER	CONTRACTOR :		RTA		0	RILLER : CP
				ER: No				AND 3.00M	_	BIT	STEPFACED	BI	T CONDITION : GOOD
F	JAIL		RIED :	11/2/9	4	DATE		LOGGED : 11/2/91		LOGGED BY :	JP		CHECKED BY: 1.T.
	PROGR				<u> </u>		DESCRIPTI	RIAL	0	EST STRENGTH	NATURAL	-	FRACTURES ADDITIONAL DATA
DRILLING	E CASING	WATER	I WINN WILL	SAMPLES E FIELD TESTS	RL (m)	GRAPHIC LOG	ROCK TYPE : Colour, Grain s (texture, fabric, mineral compo alteration, cementation, etc	ize, Structure sition, hardness	WEATHERING	15 (50) MPa 8 50	FRACTURE	VISUAL	(joints, partings, seams, zones, e Description, orientation, infil or cating, shape, roughnes: thickness, other
							 SEE NON-CORE DRILL HOLE SHEETS FOR INFORMATION. 						
		•		Is(50) Is(50)			START CORING AT 13.20m L26m SANDSTONE: LIGHT GREY. SANDSTONE: YELLOW BROWN. FINE CROSS BEDDED.		-				JT 20° CLAY PR RF
MALE CORING	IDDE DRI VHER BETTION			ls(50) (s(50)		3.3.3.3.3.3 ····	14.90m SANDSTONE: LIGHT PINK RED, LIG YELLOW BROWN. FINE GRAINED, CROSS BED	10 MEDIUM	NOX			=	BP O° CN PR RF BP 20° CLAY PR RF Fe IRONSTONE SEAM when DRILLING INDUCED BREAK. DRILLING INDUCED BREAK. BP 15° CN PR RF.

	ITION					SURFACE ELEVAT	LION	10 a	ANG	IF FF	SHEET 4 OF 4 ROM HORIZONTAL : 90°
RIG	TYP	E :	PIONEER	P 160	1	MOUNTING : TRAILER CONTRACTOR :	1014	RTA	And		RILLER : CP
CAS	ING 0	DIAMET	ER: NW	1		BARREL (length): 1.50m AND 3.00m		BIT	STEPFACED	1.5	T CONDITION : COOD
DAT			11/2/9	1	DATE	COMPLETED: 12/2/91 DATE LOGGED: 11/2 & 12	/2/9		JP		CHECKED BY: 1. Tour
-	_		ING	_		MATERIAL					FRACTURES
-	GRESS	9.5	515	-	¥	DESCRIPTION	SING	EST STRENGTH	NATURAL FRACTURE	-	ADDITIONAL DATA
DRILLING	WATER	DEPTH	47 44	RL (m)	GRAPHIC LOG	ROCK TYPE : Colour, Grain size, Structure (fexture, fabric, mineral composition, hardness alferation, cementation, etc as applicable)	WEATHERING	R	SPACING(mm)	VISUAL	(joints, partings, seams, zones, etc Description, orientation, infillir or coating, shape, roughness, thickness, other
11	11		1s(50)			16.18m SANDSTONE: AS PREVIOUS.					
F I		1				SANDSTONE: LIGHT BROWN AND LIGHT GREY, FINE TO	M			-	1
F			1.1003			MCDIUM GRAINED.	10			-	DRULLING INDUCED BR AFT.
E.			Is(50)			16.76m	SW				
E1						SANDSTONE: LIGHT GREY, FINE TO HEDIUM GRAINED.				-	. J
÷-'	22					CROSS BEDOCD.					
F	RE TURN										
CORING	POL YMER										-
C COS	POLY		Is(50)							-	- SM CLAY 2Dmm - SM CLAY 25 mm
NHE	100%										and an and a second
F,	Ĩ										DRILLING INDUCED BREAKS.
FII			ls(50)								
Ell		18.27#		1						AS	SM SANDY CLAY JOhn
-		18.37#		- 3							DRILLING INDUCED BREAKS.
FII			6								-
EII										-	DRILLING INDUCED BREAK.
Fil	1	19.00	(50)			19.00m					
F		it i				BORE HOLE DISCONTINUED AT19.00 m					
E						and the organization arraying a					
E I		9 9									
- 1		1.1	- 1			ANGLES QUDTED ARE APPROXIMATE.					
E .		1.1	- 1				1				
E											1
-											
E											
E I											3
ΕI							- 1		11111		
-										- 1	
_									111111		2
											-
										-1	-
-											
											-
-											-
											-
											-
-											-
											1
-											-
											-
											-
											-
											1

POSITIO							SURFACE ELEVATION :		A	NGLE FROM VERTICAL:
RIG TY					INTIN	_	TRAILER CONTRACTOR : RTA			RILLER : C P
DATE S	1022007	Conversion We		ATE CON	1PLET	ED :	31/1/91 DATE LOGGED: 30/1/91 LOGGED BY: 3	p	C	HECKED BY 1.700
	DRI	LLIN	5	_			MATERIAL			
DRILLING PRILLING	DRILLING PENETRATION	GROUND WATER	SAMPLES, TESTS, ETC	RL (m)	GRAPHIC LDG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Ptasticity or Particle Characteristic Secondary & Minor Components	MOISTURE	CONSISTENCY RELATIVE DEMSITY	STRUCTURE & other observation
	E						GRAVELLY ELAY: DARK BROWN.	M	м	FRL.
			0.70m SPT							- SPT RECOVERY = 200 mm
-		W.L. 1.20m	6,7,4 Nz11 1.15m				S			
EII							1.50m			(*)
						СН	SJLTY CLAY: DARK GREY/BLACK. HIGH PLASTICITY. HIGH ORCANIC ODOUR.	W		
			2.20m SPT 0,1,1 N=2						s	SPI RECOVERY = 450 mm.
AUGER			2.65m							
CASING V-BIT			3.70m SPT							
WK CAS			0,1,1 N=2 4.15m							SPT RECOVERY = 450 mm.
									5	
			5.20m			Сн	SILTY CLAY: AS PREVIOUS BECOMING SHELLY.			SPT RECOVERY = 450 mm.
			5PT 1,1,2 N=3 5.65m				14 COLUMN STORY			
	¢									
			6.70m SPT 0.1.1							SP1 RECOULEY : IL MM.
┋╫᠇			N=2 7.15m				7.8			RUN NW LATING 10 7.50.
<u>-</u> - + +	-		0,1,1 N=2							

-	TION	1	IONEER		м	OUNTI	NG :	SURFACE ELEVATION : .			SHEET 2 OF NGLE FROM VERTICAL : D*		
-			= 30/1		1.0.0			IRAILER CONTRACTOR : RIA 1/1/91 DATE LOGGED : 31/1/91 LOGGED BY : JP	-		HECKED BY		
		DRI	LLIN			Τ		MATERIAL					
DRILLING A CASING	DRILLING FLIID TYPE & LDSS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES, TESTS, ETC	RLIM)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary & Minor Components	MOISTURE	CONSISTENCY RELATIVE DEHSITY	STRUCTURE & other observation		
		C		8.35m SP1 5,4,2 Nx6		,	СН	SILTY CLAY: DARK GREY/BLACK, HIGH PLASTICITY. TRACE SHELLS.	м	5	SPT RECOVERY = 250mm.		
				8.80m		2					+		
ER BIT	YPER RETURN			9.85m SPT 0,0,1 N=1 10.30m			cı	SANDY SILTY CLAY: DARK GREY/BLACK. LDM-MEDIUM PLASTICITY. FINE TO MEDIUM GRAINED SAND. SOME SHELLS THROUGHOUT.	-	5	SPT RECOVERY = 450 mm		
	100% POLYM	ε	¢			11.35m SP1			SM	STLTY SAND: CREY.			
	MASH			1,3,4 N=7 11.80m				FINE TO MEDIUM GRAINED.		4	SPI RECOVERY & 450 mm		
					8	11		2.85m					
				12.85m				END OF MON CORE DRILLING AT 12.85m. FOR INFORMATION SEE CORED DRILL HOLE SHEETS.					


POSITI	_				SURFACE ELEVA	TION		ANG	E FO	SHEET 3 OF 4 ROM HORIZONTAL : 90"
RIG T		-	PIONEE	R P160	MOUNTING : TRAILER CONTRACTOR :		TA	And		RILLER : C.P.
		IETER :	NH		BARREL (length): 1.50m AND 3.00m		BIT	STI'PI'ACED	81	T CONDITION : CODO
		0: 30/1		DATE	COMPLETED: 31/1/91 DATE LOGGED: 1/2/91	- ji	LOGGED BY:	36		CHECKED BY: P-2.00
PROGRE		LING		-	MATERIAL				_	FRACTURES
	WATER GICORE LO	SAMPLES E	RL (m)	GRAPHIC	DESCRIPTION ROCK TYPE: Colour, Grain size, Structure (fexture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	WEATHERING		NATURAL FRACTURE SPACING(mm)	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, e Description, orientation, infill or coating, shape, roughness thickness, other
					• FOR INFORMATION SEE NON CORE DRILL HOLE SHEETS.					
AML C CORING 1005 POL WER RE LURN		im Is(50) Is(50) Is(50) Is(50)		1	4.74m SANDSTONE: REDDISH PINK, FINE TO MEDIUM GRAINED, CROSS BEDDED, T	4W W 0 W				BP 15° CN PR BF BP 5° CN PR BF JI 20° CLAY PR BF BP 10° CLAY PR BF BP 25° CLAY PR BF BP 20° CLAY PR BF BP 20° CLAY PR BF BP 20° CLAY PR BF

POSI	-	1.5	-	_		SURFACE ELEVAT	TION	1 -	ANGL	E FR	SHEET 4 OF 4 ROM HORIZONTAL : 90°
RIG			PIDNEER			MOUNTING : TRAILER CONTRACTOR :		RIA			RILLER : C.P.
-	_	IAMET		NW	20220	BARREL (length): 1.50m AND 3.00m		BIT :	STEPFACED	BI	T CONDITION : GOOD
UATE	_	RIED	30/1/91	-	DATE	COMPLETED: 31/1/91 DATE LOGGED: 1/2/91	- 1	OGGED BY:	J.P.		CHECKED BY: 1. TAL
PROG	RESS			1 1		MATERIAL				_	FRACTURES
DRILLING	WATER	NUN KUN KUN	SAMPLES &	RL (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	WEATHERING	EST STRENGTH 15 (50) MP6	NATURAL FRACTURE SPACING(mm) 유 국 을 은 응	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, et Description, orientation, infillin or coating, shape, roughness, thickness, other
		<u>16.30</u> m	ls(50) Is(50)			SANDSTONE: LIGHT GREY, FINE TO MEDIUM GRAINED. CRDSS BEDDED.	MW TO SW SW				- 6P 20" CN PR RI
	100% POLYNER RETURN		In (50)							8	BP 5° CLAY INFILILD 2mm PR R SH CLAY 7 mm GROUND SUBFACE ORIGIN UNCERT BP:5* X PR RF BP 10*] BP 10*] SM X 2mm JT POSSIBLY DRILLING INDUCED.
-		19.18 0	16(50)			19.18m BORE HOLE DISCONTINUED AT 19.18m.					
						• ANGLES QUDIED ARE APPROXIMATE.					

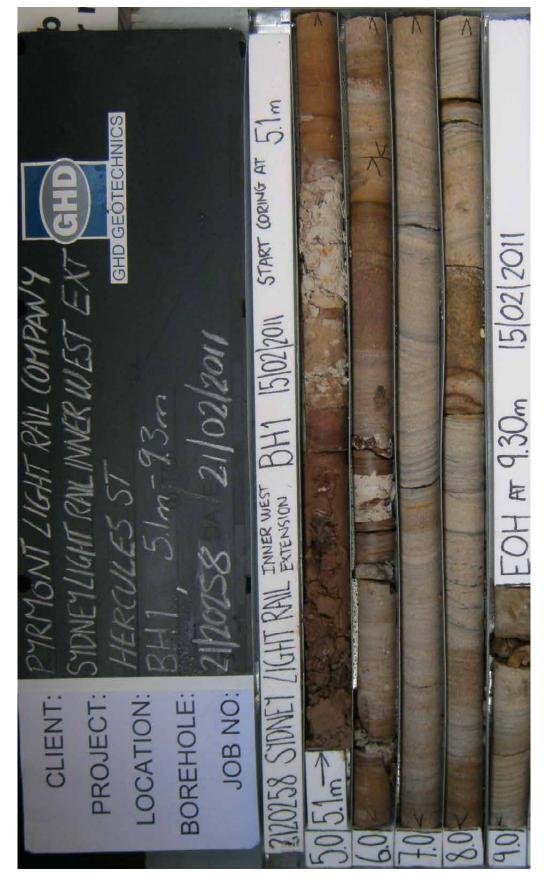
PROJECT : GREENW		HABERFIELD	VATION - GEOLOGICA	AL LOG			PIT NC FILE / JO SHEET :	B NO : G4202
LOCATION : RICHARD POSITION : E: 328542			SURFACE ELEV	ATION · 1 600) (AH			-
EQUIPMENT TYPE : H			METHOD : 300r		. (7.11	0)		
DATE EXCAVATED : 2			LOGGED BY : E	BA			СН	ECKED BY : JW
EXCAVATION DIMENSI	ONS : 1.00 m LONG	0.30 m WIDE	MATI					
DRILLING	<u>به</u>		MAT	ERIAL		2	ó	
VE E PENETRATION H SUPPORT GROUND WATER LEVELS	CARPHIC TESTS DEPTH (m) GRAPHIC LOG LOG	SAMBOL	MATERIAL DESCRIPTION oil Type, Colour, Plasticity or Particle Character Secondary and Minor Components	ristic	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY 100	200 HAND 300 D PENETRO- 400 METER	STRUCTURE & Other Observations
N 0.067		0.06m SILTY S/ CLAY AM and ban sand. Cl sand. With gra asphalt u 0.50m EXCAVA	AND /SAND WITH SILT: 60mm. ID SAND: Variable clay, silt and sand content for ds of silty clay, clay, sandy clay, silty sand, silty ays low and low to medium plasticity. Fine and vel and cobble size fragments, predominantly sa p to coarse gravel size. Trace bricks, glass, terr TION TP6 TERMINATED AT 0.50 m P readings in clay lumps and pit side walls 0.06 t	clay with fine I medium grained andstone . Trace racotta tiles.	M			FILL 0.08: HP Samp =300 330 kPa - - - -
	- - 1.0 - - - - - - - - - - - - - - - - - -							- - - - -
19 8.2 853 Datgel CPT Tool gINT Add-In	2.0-							- - - - - - - - - - - - - -
H I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td>2.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.5							
ARED 1								-
	3.5							
METHOD N Natural Exposure E Existing Excavation BH Backhoe Bucket B Bulldozer Blade R Ripper SUPPORT T Timbering	YES PENETRATION ^y <u>w u u z</u> wu u z → WATER WATER 10 Oct., 73 W Level on Date water inflow water outflow		SAMPLES & FIELD TESTS U50 - U51 - D - Disturbed Sample B - Dukt Disturbed Sample MC - Moisture Content HP - Hand Penetrometer (UCS kPa) VS - Vane Shear; P-Peak, R-Remouded (uncorrected kPa) PBT - Plate Bearing Test	CLASSIFICATI SOIL DES Based o Classifica MOISTURE D - Dry M - Moist W - Wet	SCRIP on Unif	TION ïed		ASISTENCY/ ATIVE DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Very Stiff - Hard - Very Loose - Loose - Loose - Medium Dense - Dense - Very Dense
See Explanatory Notes fo details of abbreviations & basis of descriptions.	F	ROADS A	ND TRAFFIC AUTHOR	RITY, NS	W			

File: G4202 TP6 1 OF 1

Test Pit 6 (tape extended to 500mmm)

PROJECT : GRE		ED PATH HABEF	EXCAVATION - GEOLOGICAL LOG				D : TP16 DB NO : G4202 : 1 OF 1
LOCATION : RICH				00 (41		OTTEE !	
POSITION : E: 32 EQUIPMENT TYPE			MGA94) SURFACE ELEVATION : 1. METHOD : 300mm BUCKE		1D)		
		J				CL	HECKED BY : JW
EXCAVATION DIME		0 m I ONG 0 20	LOGGED BY : BA			UF	
EXCAVATION DIME DRILLI			MATERIAL				
		z	WATERIAL		>	Å	
VE PENETRATION H SUPPORT GROUND WATER LEVELS	SAMPLES & FIELD TESTS	GRAPHIC LOG classification symbol	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	100 200 HAND 300 D FENETRO- 400 METER	STRUCTURE & Other Observations
	0.0-		M OAND	_ D - N		400 200	FILL
Not Encountered	D -		SAND: with silt, 30mm. SILTY SAND AND GRAVELLY SAND: variable clay, silt, sand and grave forming bands of gravelly clayey sand, sandy clayey gravel and silty san Interspersed with bands of asphalt. Bands thickness variable between 0.07m and 0.15m. Mixture of all of above with trace of glass, terracotta pipe. Trace/with				FILL
	0.50m	0.50n					
	3.5						
PHOTOGRAPH NOTES			NO				
NOTES METHOD N Natural Exposur E Existing Excava BH Backhoe Bucket B Bulldozer Blade R Ripper SUPPORT T Timbering	e tion WATER	No Resistant	ice SAMPLES & FIELD TESTS CLASSIFIC SOIL 50 mm diameter Class D - Disturbed Sample B - Bulk Disturbed Sample MC - Moisture Content D - Dry HP - Hand Penetrometer (UCS kPa) M - Mo	DESCRIP ed on Uni fication S E	TION ified		- Soft - Firm - Stiff t - Very Stiff - Hard - Very Loose - Loose - Medium Dense - Dense
See Explanatory Not details of abbreviatio & basis of descriptior	es for ns		ADS AND TRAFFIC AUTHORITY, N	SW			RT

File: G4202	TP16	1	OF	1
-------------	------	---	----	---


Test Pit 16 (tape extended to 500mmm)

Pro	ent: ject:	S	YDNEY			IER W	EST E	HOLE N	o . E			ET 1 OF 3
Poe Rig	ation ition : Type e Star	3	27968.(C) E 6246	742.0 N	MG/ Rubb	\94 56)er Tra	O DULWICH HILL Surface RL: 26.8m AHD Angle from Horiz. C:k Contractor : Terratest Driller : S.Pritchard upleted : 15/2/11 Logged by : SHH				Processed : GBM Checked : 25 Date :
		DRILLI						MATERIAL				
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength		Moisture Condition	Consistency / Density Index	Comments/ Observations
			Nil	D	0.06 (26.74)		-	ASPHALTIC CONCRETE (60mm). GRAVEL, grey/brown, gravel is medium to coarse sub-angular igneous and angular sandstone with medium grained sand, trace day. Includes cobble sized brick fragm and rubble to 150 mm size (fill).		- SM		Coordinates and leve inferred from H&F project survey SPT affected by
1				SPT 5/25/9 N=34 D	1.00 (25.80)			Between 0.7 to 0.8m, coarse sub-angular igneous gravel.				gravel and cobbles
				SPT 2/2/1 N=3	(25.80)		SC/ CL	Clayey SAND / Sandy CLAY and bands of ORGANIC CLA grey brown, low plasticity. Variable zones of medium plast clay, organic clay with plant matter and rootlets, and sandstone-derived clayey sand, trace charcoal fragments (fill).	YY, icity	М	(S- F)	
1	TC-bit Auger (Ø125mm)	Nii		D SPT 3/3/2 N=5							(F)	Organic clay has weak - medium odo
3	TC-bit /			D SPT 2/1/2							(S)	2.7m: Variable drillir resistance
4				N=3 D	4.00 (22.80)		CL	Sandy CLAY, grey with orange and yellow mottling, low		VM	F	
				SPT 2/1/7 N=8	4.50 (22.30)	:/// ///// ///////////////////////////		SANDSTONE, light red with thin brown and white bands, to medium grained, extremely weathered, extremely low strength, bands of high plasticity brown clay.		M- VM	-	4.55m and 4.7m: local increased drilling resistance - stronger bands?
			heets f		HD	57 He	erbert \$	OTECHNICS Street, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com		J	ob N	lo. 21-20258

	lient:						N N DZ				
2	nent: roject:			NT LIGHT Y LIGHT R				KTENSION HOLE NO.	BH	1	
	ocation :							O DULWICH HILL		SHEE	T 2 OF 3
i 📃	osition :							Surface RL: 26.8m AHD Angle from Horiz.: 90°			Processed : GBM
-	ig Type :		(C		ounting:			k Contractor : Terratest Driller : S.Pritchard			Checked : 28-
Di	ate Starf	ed : 1	5/2/11		1	Da	te Com	pleted : 15/2/11 Logged by : SHH			Date :
		DRILL	ING					MATERIAL			
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colaur, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Maisture Condition	Consistency / Density Index	Comments/ Observations
		lin		SPT	5 10			Sandy CLAY, as previous.		-	
- - - - - - - - - - - - - - - - - - -				20 for 100mm N=ref	5.10			Start of coring at 5.1 metres. For Cored interval, see Core Log Sheet.			- - - - - - - - - - - - - - - - - - -
- - 8 - - - -											- - - - - - - - - - - - -
-9 -9 - - - - - -1(ΟΤΕΩΗΝΙΩS		ob N	-
de	ee stan etails of basis o	abbr	eviatio	ons 🧲	HD	57 H T: 6	erbert S 1 2 946	DTECHNICS street, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J		。 21-20258

-		-	3 SHE	ET						_		-		_	
1.000	ient							IL COMPANY			HOL	EN	lo.	Bŀ	11
10000	ojeci					Television of the		INNER WEST EXTENSION NE, LILYFIELD TO DULWICH HILL							SHEET 3 OF 3
-	sitio							.0 N MGA94 56 Surface RL: 26.8m	AHD	2	Angle from I	loriz	• 90°		Processed : GBM
	g Ty	_		XC	00.0			ing: Rubber Track Contractor : Terratest	74 16	-	Driller : S.Pr			-	Checked :
	-	1.000	a.: H	W			_	(m): 1.5m & 3m Bit : Diamond (stepfaced))		Bit Condition	1: Fa	air		Date :
Da	nte S	tart	ed : 1	5/2/	11		_	completed : 15/2/11 Logged by : SHH			Date Logged	: 15	/2/11		
		DRI	LLING	3				MATERIAL					N	ATL	URAL FRACTURES
SCALE (m) 34	& Casing	-	th (m)	(Core Loss / Run %)	ES & TESTS	Depth / (RL) metres	Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and	ing	>	Estimated Strength Is ₍₅₀₎ MPa		icing 1m)		. Additional Data (joints, partings, seams, zones and veins) Fracture type, orientation, infilling or coating, shape, roughness, other.
SCAL	Drilling 8	Water	Drill Depth (m)	(Core Lo	SAMPLES	-	Graphic Log	SOIL TYPE, moisture, colour, consistency, structure, minor components (origin) Start of coring at 5.1 metres. For Non Cored interval, see Borehole Log	Weathering	ELoon	1000 1000 1000 1000 1000 1000 1000 100	+ 20	1000	Visual	
	NMLC coring + HW casing to 5.1m	0% Loss	6.35	(0)		<u>9.30</u> (17.50)		Sheet. SANDSTONE, pale brown with orange and red bands, fine grained, thickly bedded with laminated cross bedding, bands of ferruginous induration.	EW HW						5.65 BP, HZ, FE, IR, RF, TI 5.88 BP, HZ, FE, IR, RF, TI 5.88 BP, HZ, FE, PLN, RF, CL 6.06 JT, 70°, FE, IR, VR, OP 6.1-6.12 SM, HZ, CLAY, UN, RF, TI 6.31-6.34, SM, 0-5°, CLAY, UN, RF, TI 6.39 BP, HZ, FE, UN, RF, OP, UN, RF, TI 6.49 JT, 45°, FE, IR, VR, TI 6.47 JT, 454 SM, 0-45°, CLAY, IR, RF, TI 6.58 BP, HZ, CLAY, UN, RF, TI 6.58 BP, HZ, CLAY, UN, RF, TI 7.19 BP, 25°, CN, UN, RF, TI (Drill Break?) 7.44 BP, 18°, CN, IR, VR, TI (Drill Break?) 8.52, BP, HZ, FE, UN, VR, OP 8.7 BP, 5°, CN, UN, VR, TI (Drill Break?) 8.86 & 8.89, BP 0-5°, FE, UN, VR, OP
			ard s				âHI	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Au	ustralia	a				J	lob No.
			des					T: 61 2 9462 4700 F: 61 2 9462 4710 E CONSULTING GEOTECHNICAL ENGINE				ISTS			21-20258

Pro	ent: ject:	S	SYDNEY		ALL INF	IER W	EST E	KTENSION	HOLE No			
os	ation	Э	27914.9	E 62468	830.4 N	MGA	\94 56	O DULWICH HILL Surface RL: 29.6m	AHD Angle from Horiz. : 9	10°	SHEI	T 1 OF 4 Processed : RY
-	Туре		Seoprobe	e Mo	unting:			Contractor : Terratest	Driller : Jason Peisley	/		Checked 25
Jar	e Stari					Dat	e com	pleted : 8/3/11	Logged by : HDS			Date :
			ING					MATERI				
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, minor com ROCK TYPE, colo	cription colour, structure, ponents (origin), and ur, grain size, structure, ing, strength	Maisture Condition	Consistency / Density Index	Comments/ Observations
	Diatube 200mm Ø		Nil	D			SP	gravel, angular, a few voids i reinforcement mesh 10mm t		- SM	- (MD)	Coordinates and leve inferred from H&F project survey
	Diat			D SPT 6/9/9 N=18	0.60 (29.00)		Cl	Sandy CLAY, brown and ora fine-grained sand, trace char (fill).	nge brown, medium plasticity, coal and root fibres, MC< <pl< td=""><td>SM</td><td>(St)</td><td></td></pl<>	SM	(St)	
ı				D_	1.00 (28.60)	KXXA	SP	SAND, brown, fine and medi	um grained, trace clay (fill).	D	(L)	
	TC-bit auger	Nil		SPT 2/4/6 N=10	1,15 (28.45)		CI	CLAY, grey mottled orange-t fine grained sand and gravel	prown, medium plasticity, trace MC< <pl (residual).<="" td=""><td>D</td><td>St</td><td>1.15, completely weathered shale</td></pl>	D	St	1.15, completely weathered shale
b				D SPT 5/6/7 N=13	2.07 (27.53)		SC	Clayey SAND, orange-brown grained sand, low plasticity c laminated, remnant structure (residual).	lay, thinly laminated to a, trace ironstone nodules	SM	MD	2.07, completely weathered sandston
3					2.50 (27.10) 2.60			SANDSTONE, yellow-brown highly weathered, low streng Start of coring at 2.6 metres. For Cored interval, see Core	th.			2.5, slow progress
			sheets fe	or	HD	57 He	erbert S	OTECHNICS Street, Artarmon NSW 2064 / 2 4700 F: 61 2 9462 4710	Australia	J	ob N	lo.

CORE LOG S	SHEET		and the second	1				
Client :			AIL COMPANY		HOLE	No. I	BH3	
Project : Location :			INNER WEST EXTENSION					ET 2 OF 4
Position :		a construction of the days	0.4 N MGA94 56 Surface RL: 29.6m	AHD	Angle from He	oriz. : 90°	OTIL	Processed : RY
Rig Type :	Geoprobe	Talls - Manager - Balance	ting: Track Contractor : Terratest		Driller : Jason			Checked :
Casing Dia.	: HQ	Barrel	I (m): 3.60m Bit : Semiround		Bit Condition	: Fair		Date :
Date Started	1:8/3/11	Date (Completed : 8/3/11 Logged by : HDS		Date Logged :	8/3/11		
DRILL	ING		MATERIAL			N	ATURAL	FRACTURES
SCALE (m) Drilling & Casing Water	Urill Uepth (m) (Core Loss / Run %) SAMPLES & TESTS	Depth / (RL) metres Graphic Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	Estimated Strength Is ₍₅₀₎ MPa	Spacing (mm) 0000 0000 0000	Fractu	Additional Data , partings, seams, zones and veins) re type, orientation, infilling or ng, shape, roughness, other.
-1			Start of coring at 2.6 metres. For Non Cored interval, see Borehole Log					
4 · · · · · · · · · · · · · · · · · · ·	.04	2.89 2.89 (26.71) 4.30 (25.30) 5.00	Sheet. CORE LOSS 290mm thick. Interbedded SANDSTONE and SILTSTONE (60:40), light grey and orange-brown, thinly laminated to very thinly bedded sandstone, cross-bedded, fine and medium grained, occasional iron-cemented zones (Mittagong Formation). SANDSTONE, light grey-brown, orange-brown and red, fine grained, thinly laminated to laminated, with thin silty flecks, partly iron-cemented (Mittagong Formation).	HW EW			CL 3.04, B 3.07, B 3.07, B 3.07, B 3.07, B 3.07, B 3.07, B 3.08, C 3.09, B 3.19, B 3.28, S RF, CL 3.14, B CL 3.57, B 3.69,	T, 70°, CLAY/roots (1mm), F, CL P, 3°, CLAY VE, PLN, RF, M, 0°, CLAY VE, PLN, RF, P, 5°, CLAY (1mm), PLN, P, 7°, CLAY/EW, PLN, RF, T, 70°, CLAY/EW, PLN,
See standar details of ab & basis of d	obreviation	GH	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Au T: 61 2 9462 4700 F: 61 2 9462 4710 E CONSULTING GEOTECHNICAL ENGINE	: atnr	nail@ghd.com	STS	Job N	^{lo.} 21-20258

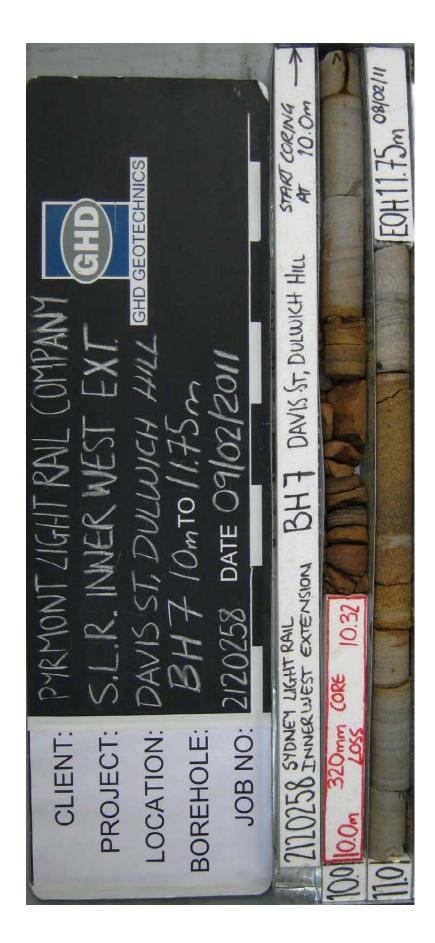
asing Dia. : asing Dia. : ate Started : DRILLIN ogress Util Debt (m) Duil Debt (m)	Geopr HQ : 8/3/11 NG (% S	obe	Mount Barrel Date C	.4 N MGA94 56 Surface RL: 29.6m ing: Track Contractor : Terratest (m): 3.60m Bit : Semiround completed : 8/3/11 Logged by : HDS MATERIAL Description ROCK TYPE, colour, grain size, structure	AHD	Angle from I Driller : Jaso Bit Conditio Date Logged	n Peisley n : Fair I : 8/3/11		Processed : RY Checked : B Date :
DRILLIN ogress	: 8/3/11 NG	5	Date C	(m): 3.60m Bit : Semiround completed : 8/3/11 Logged by : HDS MATERIAL Description ROCK TYPE, colour, grain size, structure		Bit Conditio	n:Fair I:8/3/11		Date :
DRILLIN Ogress Buiss Sui	: 8/3/11 NG	5	Date C	Completed : 8/3/11 Logged by : HDS MATERIAL Description ROCK TYPE, colour, grain size, structure			I: 8/3/11		
DRILLIN ogress ge Casing oth (m)	NG	5	1	MATERIAL Description ROCK TYPE, colour, grain size, structure	1	33			
& Casing seaulo		APLES & TESTS th / (RL) metres	Bo	Description ROCK TYPE, colour, grain size, structure	1				FRACTURES
& Casing pth (m)	(Core Loss / Run %	APLES & TEST th / (RL) metres	bo	ROCK TYPE, colour, grain size, structure		Estimated	Spacing		Additional Data
		SAN	Graphic Log	(texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	Strength Is ₍₅₀₎ MPa	(mm)	Fractu	s, partings, seams, zones a veins) ire type, orientation, infilling ng, shape, roughness, othe
to 2.7m	(0)	7.1	6	SANDSTONE, light grey with red-brown iron-cemented bands and zones, fine to coarse grained, cross-bedded in parts, very thinly bedded at 5-15° (Hawkesbury Sandstone). Below 6,60m, laminated and cross-bedded at 15-25°. Between 7.14 to 7.16m, iron-cemented. CORE LOSS, 80mm thick.	MW			4.41, 4.44, 4.46, 4.45, 4.46, 4.46, 4.47, 4.46, 4.47, 4.46, 4.47, 4.46, 4.47, 4.46, 4.47, 4.47, 4.47, 4.47, 4.48, 4.47, 4.47, 4.48, 4.47, 4.48, 4.47, 4.48, 4.47, 4.48, 4.48, 4.47, 4.48, 4.48, 4.47, 4.48, 4.49,4	SM, 15°, CLAY VE, PLN, RF 3P, 0°, CN, PLN, RF, CL 3P, 0°, CN, PLN, RF, CL 3P, 3°, CN, PLN, RF, CL 3P, 10°, CLAY/EW, PLN,
NMLC coring + HQ casing 0% Loss	(3)	(22.3	r D	SANDSTONE, as above. Below 9.52m, thinly bedded at 20-25°.	MW			7.42, 1 7.42, 1 7.49, 1 7.49, 1 7.53, 1 7.64, 1 7.86, 1 8.23, 1 8.33, 1 8.51, 1 8.66, 1 8.67, 1 9.02, 1 9.03, 1 9.33, 5 9.48, 1 9.48, 1 RF, CI 9.48, 1 9.48, 1 RF, CI	3P, 10°, CN, PLN, RF, CL 3P, 20°, FE, PLN, RF, CL 3P, 20°, FE, PLN, RF, CL 3P, 20°, FE, PLN, RF, CL 3P, 20°, FE/CLAY (1mm), PLN, 3P, 20°, FE/CLAY (1mm), YF, CL 3P, 5°, CN, PLN, RF, CL 3P, 70°, FE/CLAY (1mm), YF, CL 3P, 27°, CN, PLN, RF, CL 3P, 20°, FE/CLAY (1mm), YF, CL 3P, 27°, FE (1mm), PLN, NF, CL 3P, 20°, FE (1mm), PLN, NF, CL

CC	DRE L	.00	SHE	ET							
	ent :							IL COMPANY HOLE N	0	RH	13
	oject							INNER WEST EXTENSION	0.		SHEET 4 OF 4
	catio			_	_			NE, LILYFIELD TO DULWICH HILL 4 N MGA94 56 Surface RL: 29.6m AHD Angle from Horiz.	. 000	_	Processed : RY
	sition	1000			- Arcostores	1		4 N MGA94 56 Surface RL: 29.6m AHD Angle from Horiz. ng: Track Contractor : Terratest Driller : Jason Peis	1.1000	-	Checked :
_	g Typ sing	_	_	Geop	TODE			(m): 3.60m Bit : Semiround Bit Condition : Fa		_	Date :
-	te Sta	_			1			ompleted : 8/3/11 Logged by : HDS Date Logged : 8/3			Build I
	-	-	LING	_				MATERIAL		ATI	JRAL FRACTURES
Pro	gres	-			S			Description Estimated Space	-	1	Additional Data
SCALE (m)	g & Casing	Water	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	m)	Visual	(joints, partings, seams, zones and veins) Fracture type, orientation, infilling o coating, shape, roughness, other.
		-1	0.05		3	(19.55)		- SANDSTONE, as previous		-	
			1		1	All		End of Borehole at 10.05 metres.			
-11											
12											
				2							
·13											
14			× 4		×					1. No 1.	
						4 DE 1	2				
de	e sta tails pasis	of	abbr	evia	tion	s (<u>a</u> HI	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Australia T: 61 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS			lob No. 21-20258

	ject :							XTENSION	HOLE No.			
	ation :				,			O DULWICH HILL Surface RL: 24.3m	AHD Angle from Horiz. : 90		SHE	ET 1 OF 3 Processed : RY
	Type :		MDT 57		unting:			Contractor : Terratest	Driller : Pat Tapper			Checked : 25
-	e Starf		9/3/11					npleted: 9/3/11	Logged by : HDS			Date :
		DRILL	.ING					MATERIAL				
(m)	Drilling Method	Hole Support \ Casing		Samples & Tests	Depth / (RL) metres	c Log	USC Symbol	SOIL TYPE, ci minor compo	r iption plaur, structure, nents (origin), nd	re Condition	Consistency / Density Index	Comments/ Observations
SCALE (m)	Drilling	Hole S \ Casir	Z Water	Sampl		X Scraphic Log	nsc s		, grain size, structure, g, strength nd medium grained trace silt	D Moisture	(T) Consis	Coordinates and level
					0.25			(fill).	-			inferred from H&F project survey
1				D SPT 2/4/6 N=10				SAND, grey, fine and medium gravel, angular, trace clay and		SM	(L) (MD)	0.25, hole cave-in during initial auger drilling.
				SPT	1.10 (23.20)			GRAVEL (Siltstone and Sands and orange-brown, Sandstone iron-stained, indurated and hig thinly laminated, friable, extrem low strength (fill).	is fine and medium grained, hly weathered, Siltstone is	SM	(MD)	1.1, reworked material, possibly drainage layer.
2				7/8/12 N=20 D	1.77 (22.53)			Gravelly CLAY, orange-brown gravel, rounded and sub-round trace charcoal and fine roots (f Below 2.0m, becoming mottled gravel, with sand.	led, with fine grained sand, ill).	M	(VSI) (H)	
	TC-bit auger	Ni		SPT 9/10/10 N=20	2.29 (22.01)		CL	CLAY, yellow-brown, low plast	city, trace sand (colluvium).	M	VSt	
3				D	2.80 (21.50)		СН	CLAY, mottled red and grey-br grained sand, trace gravel, MC	own, high plasticity, with fine > <pl (residual).<="" td=""><td>SM</td><td>Н</td><td>_</td></pl>	SM	Н	_
				SPT 7/13/23 N=36	3.15 (21.15)		СН	CLAY, red, high plasticity, with and ferriferous induration (resi	fine angular ironstone gravel dual)	SM	Н	
•				D SPT 17/12/8 N=20	4.16 (20.14)		СН	Medium sized Gravel at interfa CLAY, grey and yellow-brown, MC <pl (residual).<="" td=""><td>*</td><td>M</td><td>VSt</td><td>4.15, abundant medium gravel at interface with clay.</td></pl>	*	M	VSt	4.15, abundant medium gravel at interface with clay.
5 See	estan	dard s	sheets		HD	GHI	DGE	OTECHNICS Street, Artarmon NSW 2064 Au			ob N	lo.

	OREHO			NT LIGHT	RAIL C	OMPA	NY				
- 1	roject :	S	SYDNE'	Y LIGHT R		IER W	'EST E	TENSION HOLE NO.			
di l	ocation osition :							O DULWICH HILL Surface RL: 24.3m AHD Angle from Horiz.: 90°		SHEE	T 2 OF 3 Processed : RY
2	ig Type		/DT 57		unting:			Contractor : Terratest Driller : Pal Tapper			Checked :
D	ate Star	ted : 9	/3/11			Dat	le Com	pleted : 9/3/11 Logged by : HDS			Date :
		DRILL	ING					MATERIAL	,	,	
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations
- - -	auger			SPT 3/5/10 N=15	5.13 (19.17) 5.50 (18.80)		CL	CLAY, as previous. Between 5.0 to 5.13m, increased gravel percentage. Sandy CLAY, grey, occasional yellow-brown mottling, low plasticity, fine grained sand, MC>PL (residual).	M	VSt St- VSt	E.E. clau constration
- - - -6	TC-bit auger	Nil		D SPT				SANDSTONE, grey and yellow-brown, fine and medium grained, extremely weathered, extremely low strength.			5.5, slow penetration with TC-bit auger.
- - - - - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7				20 for 75mm N=rcf	<u> </u>	<u></u>		Start of coring at 6.1 metres. For Cored interval, see Core Log Sheet.			
- - - 8 - 8 - - -											
- -9 - - - - - - - - - - - - - - - - -											
S d	ee stan etails o basis o	fabbr	eviatio	ons 🧲	HD	57 H T: 61	erbert 5 1 2 946	OTECHNICS Street, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	^{lo.} 21-20258

		SHE		charles la							-	-	
Client :							JL COMPANY		HO	LE No	E	ЗH	16
Project :													SHEET 3 OF 3
Location Position	-	1412					NE, LILYFIELD TO DULWICH HILL	ALID	Angle from	llouin . (0.0	-	Processed : RY
Rig Type	_			5750			.6 N MGA94 56 Surface RL: 24.3m ing: 6x6 Ute Contractor : Terratest	AHD	Driller : Pa		0	-	Checked : 28-
Casing D	-		_	5750		_	(m): 1.50m Bit : 4-Step Surface Set	-	Bit Conditi		1	-	Date :
Date Star	-	-		1			completed : 9/3/11 Logged by : HDS	-	Date Logg	LUNT ANY ANY ANY	-		Date .
		ING				alec	MATERIAL	-	Date Logg		-	A TI	JRAL FRACTURES
Progress		ING		(0)		-	Description	1	Estimated	Spacin	_		Additional Data
Drilling & Casing		Urill Uepth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering		(mm		Visual	(joints, partings, seams, zones an veins) Fracture type, orientation, infilling coating, shape, roughness, other
6					<u>6.10</u> (18.20)		Start of coring at 6.1 metres. For Non Cored interval, see Borehole Log Sheet. SANDSTONE, orange-brown and grey, fine	EW					
د متابع + HQ casing to 6.1m 1000 [مود (ممانیسور)	7	.35_	(0)		6.33 (17.95) (17.95)		and medium grained, laminated and dayey. CORE LOSS 20mm thick. SANDSTONE, light grey and orange-brown, thickly bedded with thinly spaced cross-bedding at 20°, fine and medium grained, occasional iron-cemented zones.	HW			-	-	 6.35-6.37, SM, 0°, CLAY/rock fragments, PLN, RF, CL 6.42, BP, 3°, CLAY/FE, PLN, RF, CL 6.44, SM, 0°, CLAY/FW (30mm), PLN, RF, OP 6.84, BP, 10°, CN, PLN, RF, CL 6.99, JT, 40°, FE, PLN/UN, RF, OP 7.04, JT, 50°, CLAY/FE (3mm), PLN, RF, OP 7.04, BP, 12°, CLAY/FE (3mm), PLN, RF, OP 7.36, BP, 16°, FE, PLN, RF, OP
NMLC coring + HQ		82	(0)		<u>8.82</u> (15.48)		Below 7.67m, becoming fine to coarse grained and with thinly spaced cross-beds at 10°. Between 8.11 to 8.50m, with thin, dark grey silty drapes and lenses.	HW				1 1	 7.62, BP, 20*, FE, PLN, RF, OP 7.63, BP, 20*, FE, PLN, RF, OP 7.65, BP, 20*, FE, PLN, RF, OP 7.85, JT, 45*, CLAY/FE (10mm), PLN, RF, OP 8.11, BP, 3*, CLAY/FE, PLN, RF, CL 8.50, SM, 20*, CLAY (20mm), PLN, R54, BP, 10*, CLAY (20mm), PLN, R54, BP, 10*, CLAY (3mm), PLN, TI 8.65, JT, 33*, CLAY VE/FE, PLN, RF, CL 8.77, BP, 5*, CN, PLN, RF, CL
9 10 See stan details o						GHI	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Au T: 61 2 9462 4700 F: 61 2 9462 4710 E:					J	ob No. 21-20258



BOREHOLE LOG SHEET Client : PYRMONT LIGHT RAIL COMPANY Project : SYDNEY LIGHT RAIL INNER WEST								EXTENSION HOLE No. BH7			
Poe Rig		3 : C ted : 8	27981.) Geoprab 2/2/11	0 E 6247	481.0 N	MG/ Rubb	\94 56 ber Trad	DULWICH HILL Surface RL: 23.7m AHD Angle from k Contractor : Terratest Driller : Pal pleted : 8/2/11 Logged by :	Horiz. : 90° Singh	HEET 1 OF 4 Processed : RY Checked : Date :	
i			ing					MATERIAL] [
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structur weathering, strength	, b Moisture Condition	Comments/ Observations	
	TC-bit Auger (Ø125mm) Nil		Nil	D SPT 5/6/12 N=18	0.06 (23.64)		SP	ASPHALTIC CONCRETE (pavement). Gravelly SAND, grey, fine to coarse grained, fine to angular gravel, trace silt (road base).	י) ס medium (י	- Coordinates and lev (D) inferred from H&F project survey	
					0.50 (23.20)		SM	Silty SAND, brown, medium to coarse angular grai (fill).	ned sand ບ (N	וטא)	
2			D SPT 6/5/6 N=11	(22.70)		SC	Clayey SAND, mottled light brown, red and black, r grained, with extremely weathered coarse angular gravel, (fill appears to be mainly sandstone derived	sandstone	1.00, increased drilling resistance		
3		Ri		D 5/5/6 N=11	2.50 (21.20)		- 61 -	Grading to: CLAY, mottled light and dark brown and red, low to plasticity, with fine grained sand with extremely we sandstone and shale fill bands, MC <pl (fill).<="" td=""><td>o medium M (alhered</td><td>)</td></pl>	o medium M (alhered)	
1		SPT 6/9/11 N=20	D SPT 6/9/11 N=20					(VSI)	(St)		
5 L See	stan	dard s	heets			GHI	D GE	DTECHNICS	Jo	b No.	
det		fabbr	eviatio	ns 🧲	HD	57 He T: 61	erbert 5 1 2 946	treet, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com	1	21-20258	

Clie Pro	ject :			NT LIGHT Y LIGHT F				XTENSION	HOLE No.	BH	7	
	, ation							O DULWICH HILL			SHE	ET 2 OF 4
	ition :							Surface RL: 23.7m	AHD Angle from Horiz. : 90°			Processed : RY
-	Type e Star		Geopro	be Mo	unting:			ck Contractor : Terratest pleted : 8/2/11	Driller : Pal Singh Logged by : SHH			Checked : 25- Date :
Jai						Da	le our					Date .
			.ing					MATER			1	-
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE minor con ROCK TYPE, col	scription ; colour, structure, nponents (origin), and our, grain size, structure, ering, strength	Maisture Condition	Consistency / Density Index	Comments/ Observations
õ				SPT 7/7/10 N=17 D SPT 5/5/6 N=11	6.35 (17.35)		CI	high plasticity clay bands.	pletely weathered shale bands/	M	(St) (St)	5.0 to 6.0m, variable drilling resistance
7				D	6.70 (17.00)	1. 1	CI- CH	(allůvium).	o coarse grained, trace rootlets I with orange, medium to high Itlets (residual).	SM	MD VSt	
	TC-bit Auger (Ø125mm)	Nil		SPT 5/8/11 N=19								
3				SPT 11/20/19 N=39				Below 8.0m, as previous wi	th bands of ferriferous induration e clasts.	VM	н	
)				SPT 9/6/8 N=14	9.15 (14.55)			SANDSTONE, grey, mediu strength, extremely weather	m grained, extremely low to low red.			
			sheets		10.00	GHI 57 He	erbert S	Start of coring at 10 metres	e Log Sheet.	J	ob N	No. 21-20258

C	ORE I	-00	SHE	EET	_			- A	_	_		_	_	11		
	ient :							IL COMPANY			НОІ	EI	No.	RH	17	
	oject							INNER WEST EXTENSION			HOL	- Las I	VU.	DI		
-	catio	-		_				NE, LILYFIELD TO DULWICH HILL			_	_			SHEE	T 3 OF 3
in the second	sitio	and an						.0 N MGA94 56 Surface RL: 23.7m	AHD	_	Angle from					Processed : RY
	g Typ			Geop	robe	1.4.5		ing: Rubber Track Contractor : Terratest		_	Driller : Pa			_		Checked : 25
-	sing							(m): 3.0m Bit : Diamond Step Face	-	-	Bit Conditi				-	Date :
Da	te St				1		ate C	completed : 8/2/11 Logged by : SHH			Date Logge					-DAOTUDEO
D	-			ř.			1	MATERIAL		Т	Estimated	-			1	FRACTURES Additional Data
SCALE (m)	Drilling & Casing	Water	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and Solit_TYPE, molsture, colour, Start of coring atucture minor components (origin) For Non Cored interval, see Borehole Log Sheet. CORE LOSS 320mm thick.	Weathering	EL		(acing mm)	Visual	(joints, Fractur	partings, seams, zones and veins) e type, orientation, infilling or g, shape, roughness, other.
-11	NMLC coring + HQ casing to 10.0m	T 0% Loss	1.75	(18)	36	10.32		CORE LOSS 320mm thick. SANDSTONE, light grey with light brown/ orange ferriferous stained bands, fine to coarse grained, sub-horizontally bedded. Between 10.32m to 10.7m, trace carbonaceous laminations.	HW SW SW						PLN, Ri 10.41 & PLN, VI 10.44, 1 IR, RF, 10.50-1 10.63, J 10.94-1 VR, OP 11.28, J 11.34, J	10.47, 10.50, JT, 15°, FE, OP 0.58, JT, 45-90°, RF, TI BP, 0°, X, UN, RF, TI JT, 30°, FE, RF, OP 1.09, JT, 80-90°, FE, IR,
-12									20							
14			4										ν. 			
·15		Ц			1					1						
Se	e sta	and	ard s	sheet	ts fo	or	_	GHD GEOTECHNICS	11 11.					J	lob N	0.
de	tails	of	abbr	eviat	tion	s (ΗI	57 Herbert Street, Artarmon NSW 2064 Au T: 61 2 9462 4700 F: 61 2 9462 4710 E:	stralia	a ne	ail@ahd.com				-	4 00050
4	basis	s of	des	cript	ions		\sim	CONSULTING GEOTECHNICAL ENGINEE							6	21-20258

	ent: ject:		PYRMON SYDNEY					XTENSION	HOLE No.	BH	114	
	ation :	-						O DULWICH HILL			SHE	ET 1 OF 5
	ition :								AHD Angle from Horiz. : 90	0		Processed : RY
-	Type :		Geoprobe	Mo	unting:			Contractor : Terratest	Driller : Jason Peisley			Checked : 25
Dat	e Start	ed : 1	10/3/11			Dat	e Con	pleted: 11/3/11	Logged by : HDS			Date :
		ORILL	ING					MATERIAL				
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Descr SOIL TYPE, co minor compor ar ROCK TYPE, colour, weathering	lour, structure, ients (origin), d grain size, structure,	Maisture Condition	Consistency / Density Index	Comments/ Observations
				D				SAND, grey, fine and medium ((fill).	rained, trace silt and gravel	SM	(MD)	Coordinates and leve inferred from H&F
	Air Lance				0.30 (14.90)			Sandy CLAY, grey-brown and o fine grained sand, with fine and MC< <pl (fill).<="" td=""><td>range-brown, low plasticity, medium gravel, trace ash,</td><td>SM</td><td>(H)</td><td>project survey Grass cover at surface. 0.3, with pockets of sand and gravel.</td></pl>	range-brown, low plasticity, medium gravel, trace ash,	SM	(H)	project survey Grass cover at surface. 0.3, with pockets of sand and gravel.
1								At 1.0m, slag cobble.				
2				SPT 6/6/7 N=13 D							(SI)	
		ž				\otimes		At 2.50m, pockets of Clayey SA	ND with gravel, grey.			
				SPT		\otimes		2.65 to 2.80m, weathered sittst	me gravel, thinly laminated			
				5/8/6 N=14	2.78 (12.42)	\bigotimes		low strength.			(1.15)	-
3	TC-bit auger							Clayey SAND, grey, orange and grained, with ash, slag and coa	I black, fine and medium (fill).		(MD)	3.0, difficulty keepin hole open.
				SPT 4/6/5	3.78			3.57 to 3.78m, with sandstone gravel.	and shale fragments and			
1				N=11	(11.42)			CLAY, orange, brown and grey and gravel, trace charcoal (fill).	medium plasticity, trace sand	M	VSt	
					4.20	XX		Clayey SAND, brown, fine and	medium grained trace gravel	SM	1	
				D SPT 4/4/4				 (fill). 4.58 to 4.68m, clayey SAND will coal, fine and medium gravel. 4.78m, tree root, 10mm diamet 4.79 to 4.88m, grey, brown and and sandstone fragments. 	th gravel, trace charcoal and er.	M		
				N=8 ×	4.88 (10.32)			Clayey GRAVEL / Sandy CLAY	, grey, orange and red, fine to	M(MDAVS	st)
5 -					·							
			sheets for eviation		HD	57 He	erbert §	OTECHNICS Street, Artarmon NSW 2064 Au 2 4700 F: 61 2 9462 4710 E:	stralia	J	ob N	NO.

	ent: oject:			NT LIGHT Y LIGHT R				KTENSION HOLE NO.			
Pos Rig	ation : sition : Type : te Starf			4 E 6248		MG/ Track	\94 56 ‹	O DULWICH HILL AHD Angle from Horiz.: 90° Surface RL: 15.2m AHD Angle from Horiz.: 90° Contractor: Terratest Driller: Jason Peisley upleted: 11/3/11 Logged by: HDS		SHE	T 2 OF 5 Processed : RY Checked : Date :
		DRIL	ling					MATERIAL			
SCALE (m)	Drilling Method	Hole Support \ Casina	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Maisture Condition	Consistency / Density Index	Comments/ Observations
6				D SPT 6/6/5 N=11 X	5.20			coarse gravel, with coarse gravel comprised of ripped shale / siltstone, fine and medium grained sand, low plasticity clay, trace coal, glass and charcoal (fill).	M(P	MDAVE	st)
				D	(9.00)			Clayey SAND, brown and grey, fine and medium grained, low plasticity clay, trace slag and charcoal (fill).	SM	(L)	
7	auger			4/6/2 N=8	6.70 (8.50)			GRAVEL, grey, medium to coarse gravel, comprising ripped siltstone, thinly laminated, clay content increasing with depth (fill).	D	(L)	
8	TC-bit auger	Ĩ		D	8.11			8.0 to 8.11m, dark grey to black, fine and medium grained, trace coal.	M		
9				SPT 2/2/3 N=5	(8.99) (7.01)			CLAY, grey and orange, high plasticity, with sandy pockets, \MC>PL (fill). / GRAVEL, grey and orange-brown, medium to coarse derived from ripped siltstone (fill).	VM SM	<u>^</u>	
				D	9.10 (6.10)			Sandy CLAY, dark grey, medium plasticity, fine grained sand, with fine and medium gravel, trace slag (fill).	M	(F)	9.5, very easy auger
10			11/3/11	SPT 2/1/2 N=3	9.66 (5.54)		CL	CLAY/SILT, dark brown, low plasticity, trace sand, charcoal and gravel, MC <pl (alluvium).<="" td=""><td>VM</td><td>S-F</td><td>penetration.</td></pl>	VM	S-F	penetration.
det	tails of	abb	sheets reviatio scriptio	ns 🧲	HD	57 He T: 61	erbert S I 2 946	OTECHNICS Street, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 21-20258

Client: Project:				RAIL COMF		HOLE No.	BH	14	
ocation Position Rig Type	: F : (ROZELL	.E GOODS 4 E 62482	LINE, LILY	FIELD T GA94 56	O DULWICH HILL Surface RL: 15.2m Contractor : Terratest Driller : Jason Peisley		SHEI	T 3 OF 5 Processed : RY Checked : 25
ate Star				-		pleted : 11/3/11 Logged by : HDS			Date :
	DRILL	ING				MATERIAL			
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations
1			D SPT 2/2/3 N=5 U50	11.90		CLAY/SILT, as previous. 11.28m, sandy lens, 10mm thick. 11.33m, with organic matter.	M	S-F	Vane shear strength (peak) = 64kPa
5 TC-bit auger	ĨŇ		D SPT 3/4/5 N=9 D	(3.30) 12.20 (3.00)	SW CL	SAND, light brown, fine and medium grained (alluvium). CLAY, mottled brown, grey and orange-brown, low plasticity, trace sand and fine roots (alluvium). 12.63 to 12.72m, gravel band, red-brown.	M	MD St	Vane shear strength (residual) = 20kPa Vane shear strength (peak) = 66kPa Vane shear strength (residual) = 23kPa
4			SPT 8 tor 100mm HB N=ref	13.55 (1.65) 13.75 (1.45)	СН	Gravelly CLAY, red-brown and grey, high plasticity, fine and medium gravel, sub-rounded to angular, trace roots (alluvium). SANDSTONE, orange-brown and grey, fine and medium grained, highly weathered, extremely low to very low strength with clayey bands, excavated as sand, trace clay.	M	S-F	13.5m, SPT likely gravel affected.

	OREHO					0	AD7				
2	lient: voject:			NT LIGHT 1 LIGHT F				TENSION HOLE NO.	BH	14	
- 1	ocation							DULWICH HILL		SHEE	T 4 OF 5
d in the second	osition							Surface RL: 15.2m AHD Angle from Horiz. : 90°			Processed : RY
-	ig Type		Geoprob	e Mo	ounting:			Contractor : Terratest Driller : Jason Peisley			Checked : 🄊
	ate Star	rted:1	0/3/11		1	Dat	te Comj	bleted : 11/3/11 Logged by : HDS			Date :
		DRILL	.ING					MATERIAL			
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colaur, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Maisture Condition	Consistency / Density Index	Comments/ Observations
p - <t< th=""><th></th><th>Ĩ</th><th></th><th></th><th>15.10</th><th></th><th></th><th>SANDSTONE, as previous. Start of coring at 15.1 metres. For Cored interval, see Core Log Sheet.</th><th>M</th><th></th><th>15.1, difficult drilling using TC-bit auger.</th></t<>		Ĩ			15.10			SANDSTONE, as previous. Start of coring at 15.1 metres. For Cored interval, see Core Log Sheet.	M		15.1, difficult drilling using TC-bit auger.
- - - - - - - - - -	8										
-1 -1 -1 -											-
d	0 iee star letails o l basis (of abbr	eviatio	ns 🧲	HD	57 He T: 61	erbert S I 2 9462	DTECHNICS treet, Artarmon NSW 2064 Australia 2 4700 F: 61 2 9462 4710 E: atnmail@ghd.com G GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 21-20258

Pro	ent : oject	:	5	SYDM	NEY	LIGHT	RAIL	IL COMPANY INNER WEST EXTENSION			HOL	E No.	BF	114 SHEET 5 OF 5
-	catio			1	28-112		Carriero Carro	NE, LILYFIELD TO DULWICH HILL				I		
0.1.03	sitio	005-110						7 N MGA94 56 Surface RL: 15.2m	AHD		Angle from H			Processed : RY
	Typ		a.: H	Geop	rope	1.1.1.		ing: Track Contractor : Terratest (m): 3.60m Bit : Semiround			Driller : Jaso Bit Condition			Checked :
20.027	-		11.20	1126251								0.00 1 5 (5)5.01		Date :
Da			ed : 1		11		ate C	ompleted : 11/3/11 Logged by : HDS		1	Date Logged			
	155		LINC	2	287			MATERIAL		١.				URAL FRACTURES
SUALE (m)	Drilling & Casing	Water	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	0.03	Estimated Strength Is ₍₅₀₎ MPa	Spacing (mm)	Visual	Additional Data (joints, partings, seams, zones a veins) Fracture type, orientation, Infilling coating, shape, roughness, othe
	Ď	ŝ	Ď	C)	Sf	ă	Q	Start of coring at 15.1 metres. For Non Cored interval, see Borehole Log	3	Ш	⊰⊐≊∓ <u>२</u> स	84585	ž	
16	NMLC coring, HQ casing to 15.1m	100% LOSS 0%100% 0% Loss	15.80	(0)		<u>15.10</u> (0.10)		Sheet. SANDSTONE, light grey, fine to coarse grained, thinly bedded with cross-bedded laminations at 15°-20°. Between 15.30 to 15.92m, medium bedded. Between 15.67 to 15.72m, very thin coal / organic inclusions (<1mm thick). Between 15.92 to 17.57m, thickly bedded with cross-bedded laminations at 5°-10°, becoming 0°-5° below 17.51m.	Fr					15.19, SM, 5°, CLAY (5mm), PLN RF, OP 15.25, BP, 3°, CN, PLN, RF, CL 15.75, BP, 10°, CN, PLN, RF, OP 16.30, BP, 15°, CN, PLN, RF, CL
18		. 1	8.25			17.58 (17.58) (-2.40) <u>18.25</u> (-3.05)		Between 17.51 to 17.58m, siltstone band. CORE LOSS 20mm thick. SANDSTONE, as previous. Below 17.60m, thickly bedded with cross-bedded laminations at 20°-25°. End of Borehole at 18.25 metres.	Fr					17.58, SM, 5°, CLAY (6mm), PLN RF, CL 17.81, BP, 28°, CN, PLN, RF, CL 18.09, BP, 24°, CLAY VE, PLN, RF, CL
19	141		*					Hole backfilled with cuttings mixed with dry cement and bagged sand.						
20-	_													
			ard s	her	te f			GHD GEOTECHNICS		-			1	Job No.
10	- 510	an IU		Statistics)	tion		âHI		stralia				1	and the second

roj	ent: ject:	S	SYDNE		AIL INN	IER W	EST E	KTENSION HOLE N	o. E			ET 1 OF 3
os	ation : ition : Type :	3		0 E 6248	504.0 N	MGA	\94 56	O DULWICH HILL Surface RL: 7.4m AHD Angle from Horiz. Contractor : Terratest Driller : S.Pritchar			SHE	Processed : GBM Checked : 78-
			7/2/11					pleted : 17/2/11 Logged by : SHH				Date :
		DRILL	.ING					MATERIAL				
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength		Maisture Condition	Consistency / Density Index	Comments/ Observations
				D			SC	Clayey SAND and COBBLES, brown, medium grained sa with crushed sandstone and brick rubble (fill).	nd	D	-	Coordinates and lev inferred from H&F project survey
	(D SPT 1/1/1 N=2	1.00 (6.40)		- <u>s</u> c	Clayey SAND and COBBLES, as above, with zones of cla and charcoal fragments, trace plastic tape (fill).	iy — —	M	(L)	
1	TC-bit Auger (Ø125mm)	Nil		D SPT 3/2/3 N=5	1.80 (5.60)		СН	CLAY, light brown with red mottling, medium to high plasticity, zones of sandy clay, with medium grained san trace extremely weathered sandstone gravel, iron stained some iron indurated nodules (fill ? - possible disturbed colluvium).	d,	M	(S - F)	Clay appears near plastic limit
				SPT 1/1/2 N=3 D =	2.70 (4.70)		сн	Grading to Sandy CLAY, light brown with minor orange streaks, med plasticity, medium grained sand, with bands of high streng black/blue ferriferous induration (fill).	jum gth	M- √M	(S- F)	
				SPT 1/1/3 N=4	3.20 (4.20)	XXX		SANDSTONE, light brown with orange and light brown mottling, medium grained, extremely weathered, extremel low strength.	y			3.5m, increased drilling resistance - low to medium strength? 4.0m, TC-bit auger refusal
			-4		+.00	i		Start of coring at 4 metres. For Cored interval, see Core Log Sheet.				
			sheets		HD	GHI 57 He	D GE	OTECHNICS Street, Artarmon NSW 2064 Australia		J	ob N	l

	URE	LOC	g shi	EEI	_	_	_		_	-		_		
	lient		8	PYRI	MON	T LIGH	IT RA	IL COMPANY			HOI	E No.	RH	115
1.0	rojec							INNER WEST EXTENSION			HUL			
-	ocati				636 B			NE, LILYFIELD TO DULWICH HILL	25.95	_	2 2 2		-	SHEET 2 OF 3
-	ositic	000000			73.0			.0 N MGA94 56 Surface RL: 7.4m	AHD		Angle from I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Processed : GBM
_	ig Ty			XC				ing: Rubber Track Contractor : Terratest	5	_	Driller : S.Pr	17.927127 HC 80147		Checked :
	asing							(m): 1.5m Bit : Diamond (stepfaced)		-	Bit Condition	College Decrements		Date :
	ate S				11		ate C	completed : 17/2/11 Logged by : SHH	-	_	Date Logged			
- D-	-		LLIN	1	10			MATERIAL	Ť.	т	Fatimated			JRAL FRACTURES
SCALE (m)	Drilling & Casing	T	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	Ĩ	Estimated Strength Is ₍₅₀₎ MPa	Spacing (mm) 000 000 000 000 000 000 000 000 000	Visual	Additional Data (joints, partings, seams, zones and veins) Fracture type, orientation, infilling or coating, shape, roughness, other.
1														
-2														
- - - - - - - -			4			<u>4.00</u> (3.40)		Start of coring at 4 metres. For Non Cored interval, see Borehole Log Sheet. SANDSTONE, orange and red, medium to coarse grained, thickly bedded with thinly spaced cross-beds dipping ~20°.						4.10 BP, 20°, FE, PLN, VR, TI
5		90% Loss	1	(0)	24			spaced cross-beds dipping ~20°, Below 4.9m, colour varying to off-white with red and orange zones.	MW	/	•			4.20 & 4.21, BP's x 2, HZ, CN, UN, VR, TI 4.22 BP, 20°, CN, PLN, RF, TI 4.22 BP, 20°, roots, PLN, RF, OP 4.3 BP, 20°, FE, PLN, RF, TI 4.92 BP, HZ, FE, PLN, VR, CL
S	ee st	and	lard (shee	te fe	r	-	GHD GEOTECHNICS		1			J	lob No.
1253	ee st etails						H	57 Herbert Street, Artarmon NSW 2064 Au	stralia	а	states as a			
	basi							T: 61 2 9462 4700 F: 61 2 9462 4710 E: CONSULTING GEOTECHNICAL ENGINEE	: atnr	ma	ail@ghd.com	IOTO		21-20258
~	~031			- ipi				CONSULTING GEOTECHNICAL ENGINEE	KO /	AD	IND GEOLOG	010	1	

2	CORE	LO	G SHE	ET	_	_	-		- 200	-	_		
F	Clien			Viller Chiral		Nº ADRIGUEIO.		IL COMPANY		HOL	E No. E	RH15	
- 1	roje									INCL			ET 3 OF 3
	.ocat	_			_			NE, LILYFIELD TO DULWICH HILL				SHE	
	Positi	_		3284 XC	73.0	_	_		AHD	Angle from			Processed : GBM Checked : 28-
1	Rig T		a.: I					ing: Rubber Track Contractor : Terratest (m) : 1.5m Bit : Diamond (stepfaced)		Driller : S.P. Bit Conditio	Contraction of the second s	_	Date :
1		-	ted :		11		_	ompleted : 17/2/11 Logged by : SHH		Date Logge			Dato .
F	, and the		ILLING	-			ate e	MATERIAL		Date Logget	1	ATURAL	FRACTURES
F	rogre	-		-	S		\square	Description	1	Estimated	Spacing		Additional Data
SCALE (m)	2	Rillepo	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Weathering	Strength Is ₍₅₀₎ MPa 0.0.0.0.0.0.0 0.0.0.0.0.0 0.0.0.0.0 0.0.0.0.0 0.0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.00 0.0.00 0.0.00 0.0.00 0.0.00 0.0.000 0.00000 0.0000 0.00000 0.00000 0.000000	(mm)	Fractu	, partings, seams, zones and veins) re type, orientation, infilling or ng, shape, roughness, other.
;	NMLC corino + HO Casino to 4.2m	0% Loss	6.45	(16)		6.24 (1.16) 6.45 (0.95)	X	SANDSTONE, as previous. CORE LOSS 210mm thick. SANDSTONE, as above, except with orange staining.	MW			RF, TI 5.19B 5.21B 5.36 & TI 6.46-6	.05 SM, HZ, CLAY, PLN, , 20°, FE, PLN, RF, TI P, 20°, FE, PLN, RF, TI P, 20°, FE, PLN, RF, TI 5.4 BP, HZ, FE, PLN, RF, - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -		%0	8.00	(0)		<u>8.00</u> (-0.60)			MW	e e		7.03 & PLN, F 7.16 B	7.08, BP's x 2, 20°, FE,
				1 + 4 - 1 - 1		(-0.60)		End of Borehole at 8.0 metres.					
6	letail	s of	dard s abbr	evia	tions	s (<u>SH</u>	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Aug T: 61 2 9462 4700 F: 61 2 9462 4710 E: CONSULTING GEOTECHNICAL ENGINEE	atnn	nail@ghd.com	ISTS	Job N	lo. 21-20258

ا محم	ect :	3	YDNEY	LIGHT R		IER W	EST E	XTENSION	HOLE No.	BH	10	
	ation							O DULWICH HILL			SHE	ET 1 OF 3
	tion: Type		28484.0 C					Surface RL: 7.6m	AHD Angle from Horiz. : 90' Driller : S.Pritchard	•		Processed : GBM Checked : 25
	•	ted: 1		mo	unung.			pleted : 16/2/11	Logged by : SHH			Date :
		DRILL	ING					MATERIA				
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, c minor compo a ROCK TYPE, colour	r iption alour, structure, nents (origin), nd , grain size, structure, g, strength	Moisture Condition	Consistency / Density Index	
				D	0.50			Clayey SAND and GRAVEL, li, coarse grained sand, fine to m subangular gravel with zones of fragments and plant matter (fil	edium sub-rounded and of day, trace charcoal).	D	(VL)	Coordinates and lev inferred from H&F project survey. Sandstone gravel, cobbles and glass fragments at surface
2	TC Auger 125mm	1 IN	6/02/11	SPT 2/2/2 N=4 D SPT 1/1/1 N=2 D SPT 0/0/1 N=1	0.50 (7.10)			Clayey SAND / Sandy CLAY, r fine to medium grained (fill). Below 1.8m, mottled light brow ferruginous bands.		VM	(VL/S	disturbed slopewash and alluvium.
3 				D U50	3.50 (1.10) <u>3.90</u>			SANDSTONE, pale brown, wh bedded with thinly spaced cross indurated bands, highly weather Start of coring at 3.9 metres.	s bedding and ferruginous ared, very low strength.			3.0m, U50 tube falling 300mm unde weight of rods 3.5m: Increased drilling resistance 3.9m: equivalent V- refusal for small drilling rig
								For Cored interval, see Core L	og Sheet.			
;	eton	dard o	heets f	ior 📕		GHI) GF	OTECHNICS		I,	ob N	lo.

	atio tior				-			NE, LILYFIELD TO DULWICH HILL 0 N MGA94 56 Surface RL: 7.6m AHI	D	Angle from I			SHEET 2 OF 3 Processed : GBN
-	Тур			XC	54.0		_	ing: Rubber Track Contractor : Terratest		Driller : S.Pr	2 77 IV		Checked : 8
-	-		a.: H		-	ę		(m): 1.5m & 3m Bit : Diamond (stepfaced)	-	Bit Condition	1000		Date :
	-	-	ed : 1		1		_	ompleted : 16/2/11 Logged by : SHH		Date Logged			$L = \mathcal{L}$
	D	RI	LLING	3		-		MATERIAL			1.1.1	ITA	URAL FRACTURES
	Drilling & Casing	Water	Drill Depth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	Description ROCK TYPE, colour, grain size, structure (texture, mineral composition, hardness, alteration, cementation, etc. as applicable) and SOIL TYPE, moisture, colour, consistency, structure, minor components (origin)	Ruman.	Estimated Strength Is ₍₅₀₎ MPa 01 01 01 01 01 01 01 01 01 01 01 01 01	Spacing (mm) 000 000 000 000 000 000 000	Visual	Additional Data (joints, partings, seams, zones veins) Fracture type, orientation, infilli coating, shape, roughness, ot
	F					3.90 (3.70)	1444	Start of coring at 3.9 metres. For Non Cored interval, see Borehole Log Sheet. SANDSTONE, pale brown with bands of				/	3.92 BP, 18°, CN, PLN, SO, TI
	Casing to 3.9m	S	4.40	(0)	~			orange and pale red, coarse grained, sub-horizontal bedding, iron indurated bands.				1111	4.0 BP, 0-5°, CN, IR, VR, TI 4.05 & 4.06 BP, 20°, CLAY, PL RF, TI 4.08 BP, 20°, CLAY, PLN, RF, 4.16 BP, 0-10°, CLAY, UN, VR,
	NMLC coring + HQ Casing to	0% Loss		(0)				MV	N			1 181	4.41 BP, 15°, FE, UN, VR, TI 4.55, 4.57, 4.58, 4.60 BPx4, 25 CLAY, PLN, RF, TI 4.61 BP, 25°, FE, PLN, RF, TI
	NMLC		4.95										
			ard s abbr				ÂHI	GHD GEOTECHNICS 57 Herbert Street, Artarmon NSW 2064 Austral	ia	1.1			lob No.

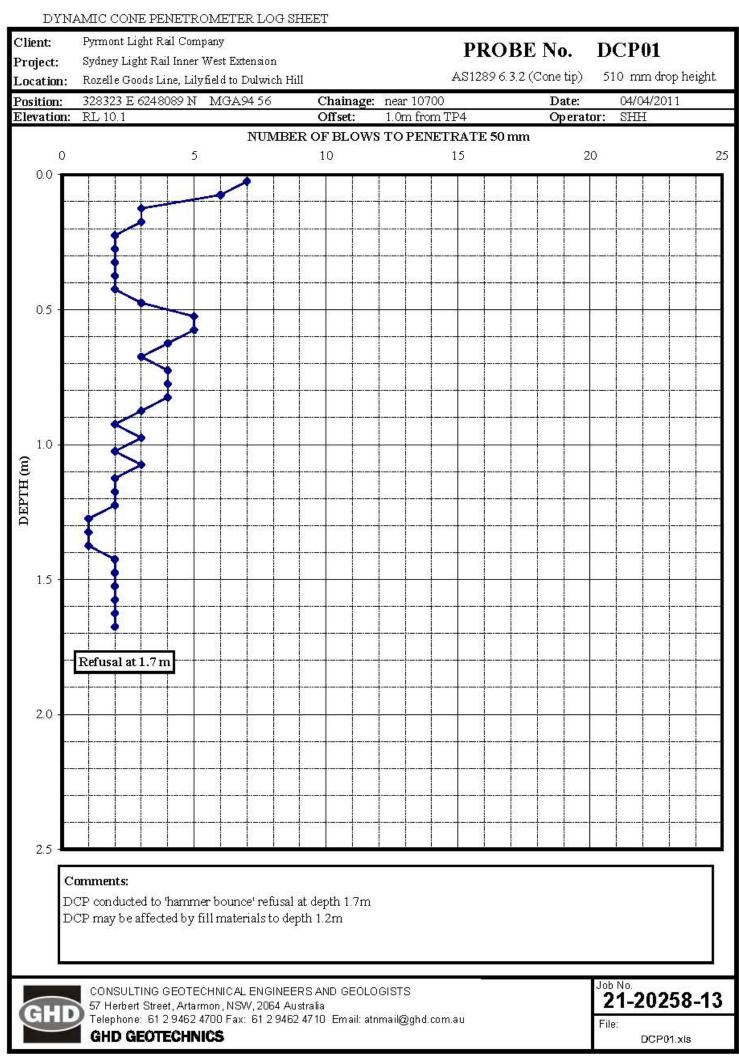
-oca Posit	-	_	-			1.000	1.	the state present to the state	O DULWICH HILL Surface RL: 7.6m	AHD	Angle	e from I	Horiz. : 90°	1	SHEE	T 3 OF 3 Processed : GBN
Rig T	ype	:	X	(C		N	lount	ing: Rubber Trac	ck Contractor : Terratest	180	Drille	r : S.Pr	itchard			Checked :
Casi		_			_	_		(m): 1.5m & 3m		ofaced)	The state of the second	and the set of the set of	n: Good			Date :
Date	Sta	rtec	1:1	6/2/1	1	D	ate C	ompleted: 16/2	/11 Logged by : SHH		Date	Logged	1: 16/2/11	_		
	DF	ULL	ING						MATERIAL				N	ATL	JRAL F	RACTURES
rogr	Winter Casing as		Urill Uepth (m)	(Core Loss / Run %)	SAMPLES & TESTS	Depth / (RL) metres	Graphic Log	(texture, n alteration, o SOIL	Description PE, colour, grain size, structure nineral composition, hardness, cementation, etc. as applicable) and TYPE, moisture, colour, tructure, minor components (orig	ui Weathering	Stre Is ₍₅₀₎	MPa	Spacing (mm) 000 000 000 000 000 000 000 000 000	Visual	(joints, Fracture	Additional Data parlings, seams, zones veins) type, orientation, infillin g, shape, roughness, oth
NMI C contract HO Contract 2 0m	n fullen nu + fullion	7	.40_	(0)		<u>9.00</u> (-1.40)		SANDSTONE, I Below 7.8m, Cr indistinct.	oss-bedding becoming	SW					11 5.96 BP 11 6.21 - 6. RF, TI 6.35 BP 6.35-6.0 VR, OP 6.98 & 7 RF, TI	71 BP, 10°, FE, VR, TI 6 SM, 10°, CLAY, UN, RF , 10°, FE, CLAY, UN, RF , 20 BP, 20°, X, UN, VR, 22 SM, 10°, CLAY, UN, , 20°, CN, PLN, SO, OP 4 JT, 60°, FE, CLAY, IR, .05 SM, 20°, CLAY, UN, .05 SM, 20°, CLAY, UN, 20°, FE, UN, VR, OP
0	stan								DTECHNICS						lob Ne	

GHD GEOTECHNICS 21/20258//BA552_Rev 1.docx

	ient:			HT RAIL C		HOLE	No	. т	'P1
	oject: cation					ST EXTENSION	SHE		1 OF 1
	sition:	Contraction Contract		46859.0 N			AHE	50653 5	Processed: SH
	A.A. 1985	fExplor	54.95		ne excav				Checked: 25
	te:	05/04/1		010 101		Logged by: SHH			Date:
scale (m)	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture	Consistency / Density Index	Comments Observations
		D			÷	COBBLES and Clayey SAND, dark grey, angular cobbles up to 100mm diameter (railway ballast), fine to coarse grained sand, trace ceramic roof tile and plastic wrapping (fill)	M		Fill appears poorly compacted
		D D	0.40 (29.80)		•	Clayey SAND, brown, medium grained, with fine to coarse gravel of mixed origin, coarse gravel sized clay pockets, trace ceramic tiles and brick fragments (fill)	M	2 92	
			0.00			0.8m, band of coarse sand and gravel sized slag/ash			
1		D D	0.90 (29.30)		СН	CLAY, orange/light brown, high plasticity, indistinct slickensided features, with some relic shale structure (residual)	SM	VSI	Clay is dry of plastic lir
		D				1.4m, As previous, becoming pale brown with orange motlling, with roots, rootlets and dessication related slickensided features			
2			1.80 (28.40)			SHALE/SILTSTONE, pale brown with red bands, bands are ferric indurated/cemented, extremely weathered to highly weathered, very low strength			
		D	<u>2.50</u> (27.70)			End of Test Pit at 2.5m			
3						Slow progress excavator refusal Test pit is dry on completion			
def	tails of a	ard sheets abbreviati descriptio	ons	GHD	57 Her T: 61	GEOTECHNICS bert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com ULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS		Job	No. 21-20258

Source: GHD Pty Ltd

CLIENTS | PEOPLE | PERFORMANCE


Pyrmont Light Rail CompanyjSydney Light Rail Inner West ExtensionTest Pit Geotechnical Investigationsscaleas showndate04 April 2011

job no 21- 20258

TP1

57 Herbert Street Artarmon NSW 2064 T 61 2 9462 4700 F 61 2 9462 4710 E atnmail@ghd.com.au/ghdgeotechnics

	ROZELLE 328323.0 Explorat 04/04/11	E GOODS) E 62480/ ion: {	LINE, LI 89.0 N 5.5 tonne	MGA	ator Hole Size: 0.3 x 3.1 Logged by: SHH Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,	Moisture Condition	ET >	1 OF 1 Processed: SHI Checked: Date:
Position: Method of I Date:	328323.0 Explorat 04/04/11) E 62480	89.0 N 5.5 tonne	MGA:	94 56 Surface RL: 10.1m ator Hole Size: 0.3 x 3.1 Logged by: SHH Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,	AHE	>	Processed: SH Checked: 28- Date:
Method of I Date:	Explorat 04/04/11	ion: (5.5 tonne	e excav	ator Hole Size: 0.3 x 3.1 Logged by: SHH Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,			Checked: 28- Date:
Date:	04/04/11		Graphic Log	USC Symbol	Logged by: SHH Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,	bisture Indition	stency / ty Index	Date:
Water Samples	D	Depth / (RL) metres	Graphic Log	USC Symbol	SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure,	bisture indition	stency / ty Index	Comments Observations
					weathering, strength	žሪ	Cons	
	D D D	1.20		-	Clayey SAND, dark brown, fine to coarse grained, with bands of disturbed orange clay, coarse gravel, angular coarse coal and slag gravels, trace ceramic tile fragments (fill)	SM		Uncontrolled fill appear moderately compacted
	D	1.20 (8.90) 1.60 (8.50)		CH	CLAY, orange with grey mottling, high plasticity, with fine to coarse angular shale gravel, trace charcoal fragments (alluvium) SANDSTONE, pale brown and orange bands, highly	M VM	St	Clay appears disturbed shale derived
	D	(8.50) 1.70 (8.40)			weathered, extremely low to very low strength End of test pit at 1.7m			
2					Excavator refusal on sandstone bedrock Test pit is dry on completion			
3					GEOTECHNICS) No.

CI	ien	t:	PYRM	ONTLIG	HT RAIL (COMPAN	HOL	E No	т	P5
	oje						TEXTENSION			
		tion:	CORP. Lo Mail No. 11	2 2 27 20	Construction of the	ter attraction	D TO DULWICH HILL	SHE		1 OF 1
		ion:			48164.0 1			AH	D	Processed: SH
			Explor		5.5 tor	nne excav				Checked: 25
Da	ate:	8	04/04/1	1			Logged by: SHH			Date:
scale (m)	Water	Comatoo	& Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture	Consistency / Density Index	Comments Observations
1			D D D D	1.7((7.50		CI/ SC	COBBLES and Gravelly SAND, dark brown, fine to coarse grained, fine to coarse gravel, with highly disordered medium to high plasticity clay, cobbles and boulders up to 400mm diameter, brick fragments, ripper sandstone/siltstone (fill)	ed M	F	0.4m to 1.5m, Roots up to 25mm diameter Fill is uncontrolled and appears moderately compacted
2			D	<u>2.9(</u> (6.30			2.5m, increased ferriferous cementation		St VSt	
3				(6.30			End of test pit at 2.9m Test pit is dry on completion			
Se	e st	tandar	d sheets		\sim	GHD	GEOTECHNICS		Job	No.
0.7	1000000	200020200000	breviati		GHD	57 Her	ert Street, Artarmon NSW 2064 Australia 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com			21-20258

Source: GHD Pty Ltd

CLIENTS | PEOPLE | PERFORMANCE scale

Pyrmont Light Rail Company j Sydney Light Rail Inner West Extension Test Pit Geotechnical Investigations date 04 April 2011 as shown

job no 21-20258 C

57 Herbert Street Artarmon NSW 2064 T 61 2 9462 4700 F 61 2 9462 4710 E atnmail@ghd.com.au/ghdgeotechnics

_	ENT			SHEET	aina O	'Rourke	loir	t Venture	ц		NO:SSC-S3-BH01
PR	OJECT	r : S	South	west Stat	ions ar	nd Corri	dor (SSC) - Tranche 1b			1 OF 1
LOO	CATIO	N : E	Ewart	St (cess)) - Hurl	stone P	ark N	ISW	0.		
				′848.9, N					ANG		ROM HORIZONTAL: 90°
	TYPE			25/2/19				: Ute CONTRACTOR : Stratacore ED : 25/2/19 DATE LOGGED : 25/2/19 LOGGED E	3Y : .		ILLER : CW CHECKED BY : ICC/MG
										·	
		-	RILLIN					MATERIAL	1	I S X	1
	GRESS	ATION	VATER	ESTS	I RL (m	0	BOL	Description SOIL TYPE, colour, structure, minor components (origin),	en de	INDE	COMMENTS /
DRILLING & CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH/RF (m)	GRAPHIC LOG	USC SYMBOL	ROCK TYPE, colour, grain size, structure, weathering, strength	MOISTURE CONDITION	CONSISTENCY/ DENSITY INDEX	OBSERVATIONS
				SPT+ES 7/9/12 N=31	- 0.0			Silty SAND, brown, fine to medium grained sand, with medium to coarse gravel (ballast), trace clay, root fibres (fill)			FILL 0.00m appears loose PID=0.3ppm SPT no sample test on ballast; SPT Recovery: 0 m 0.20m PID=0.3ppm
				0.40m ES 0.50m	12.0		> >	0.30m Clayey Silty SAND, pale brown mottled red/yellow, fine to medium grained sand, trace fine to medium, sub-angular gravel, trace carbonaceous material			0.30m appears loose - - 0.50m SPT Recovery: 0.36 m
UGER			Groundwater Not Encountered	SPT 6, 5, 4 N=9	-						0.50m SP1 Recovery: 0.36 m -
GHT A			lot Enc	0.90m ES	11.5		>				0.90m PID=0.4ppm -
ID FLIC			vater N	1.00m SPT	1.0			1.00m, becoming with trace clay.	м		1.00m SPT Recovery: 0 m
- 120mm SOLID FLIGHT AUGER			Groundv	8, 9, 8 N=17	-						-
				1.40m ES	11.0	ł					1.40m PID=0.7ppm
				1.50m SPT 9, 9, 12 N=21	-			1.50m Clayey Sitty SAND, pale brown mottled yellow, low plasticity sand, trace fine gravel, trace carbonaceous material (residual)	_		RESIDUAL 1.50m SPT Recovery: 0.4 m
					-		CL			VSt	-
				1.90m ES 1.95m	^{10.5}			2.00m			- 1.90m PID=0.4ppm
					2.0			BOREHOLE SSC-S3-BH01 TERMINATED AT 2.00 m Target depth			
					-	-					-
					-	-					-
					10.0 -						-
.07											-
0.00.01					-	-					-
7:00 1					-	-					-
/2019 1					9.5	-					-
05/Api					3.0]					-
S.GPJ											-
C LOG					-	-					-
)58_SS					9.0 -	1					-
3 21270					-	1					-
E_SSC											
T HOL					-	-					-
E DRIL					8.5 _	-					-
I-COR					4.0-	1					-
D NON					-]					-
.og GH						4					-
.GLB L					8.0 -	-					-
12_SSJ					-	1					-
HD 2.0					-	1					-
06.1 G]					-
AGS 3_1 RTA 1_1 LIB 06.1 GHD 2.02_SSJ.GLB Leg GHD NON-CORE DRILL HOLE_SSC 2127058_SSC LOGS GPJ 05/Apr/2019 17:00 10.00.01.07 察 ሷ 🖒					7.5						-
S S				heets fo		C		Aurecon Australasia Pty Ltd & GHD Pty Ltd			Job No.
b d 8 & d 8				viations riptions			J	Level 11 and 12, 4-6 Bligh Street Sydney NSW 2000 Australia T: +612 9465 5599 F: +612 9465 5598	ABN	70 856	21-27058

CLIENT: Sydney Metro

PROJECT: Sydney Metro Stage 2 (Central to Westmead) **LOCATION:** Richard Murden Reserve, Haberfield
 SURFACE LEVEL:
 1.7 AHD

 EASTING:
 328620.7

 NORTHING:
 6249816.7

 DIP/AZIMUTH:
 90°/-

BORE No: 3103-220 PROJECT No: 71421 DATE: 27 - 28/1/2010 SHEET 1 OF 5

	Denti	Description	Degree of Weathering	ie I	Rock Strength	1	Fracture Spacing	Discon	tinuities	Sa	ampli	ng &	n Situ Testing
	Depth (m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	Graph	Strength Very Low Medium High High High	Wate	0.05 (m) (m)	B - Bedding S - Shear	J - Joint D - Drill Break	Type	Core tec. %	RQD %	Test Results & Comments
	0.2	SILTY SAND - brown, silty sand filling with a trace of rootlets and gravel, damp [FILL;mf] SILTY CLAY - dark grey, slightly gravelly, silty clay filling with								E E* S E	-		3,2,2 N = 4
- - -	-2	- wet below 1.5m								E			pp = 20kPa
	2.7	- with some sandstone cobbles below 2.2m PEATY CLAY - very soft to soft, black peaty clay with a trace of shells and occasional silty sand bands, saturated, low plasticity, strong organic odour [CL;Qa]				¥ 				E			
	- 4									U S/E	-		No soil sampl recovered in l tube 1,0,0 N = 0

 RIG:
 Explorer 2000
 DRILLER: Terratest (R Welsh)
 LOGGED:
 PAV/BO

 TYPE OF BORING:
 Solid flight auger (TC-bit) to 10.6m;
 Rotary to 11.15m;
 HQ-Coring to 23.15m

 WATER OBSERVATIONS:
 Free groundwater observed at 2.7m whilst augering

 REMARKS:
 E = Environmental sample.
 *Field duplicate environmental sample taken

SAMF Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling

A D B U_x W C

 SAMPLING & IN SITU TESTING LEGEND pp
 Pocket penetrometer (kPa)

 pp
 Pocket penetrometer (kPa)

 pi
 Photo ionisation detector

 Standard penetration lest
 Initials:

 nm dia.)
 PL

 V
 Shear Vane (kPa)

 V
 Water seep

 ¥
 Water level

CLIENT:Sydney MetroPROJECT:Sydney Metro Stage 2 (Central to Westmead)

LOCATION: Richard Murden Reserve, Haberfield

 SURFACE LEVEL:
 1.7 AHD

 EASTING:
 328620.7

 NORTHING:
 6249816.7

 DIP/AZIMUTH:
 90°/-

BORE No: 3103-220 PROJECT No: 71421 DATE: 27 - 28/1/2010 SHEET 2 OF 5

		Description	Degree of Weathering Au ≩ ≹ & & 2 €	Rock Strength	Fracture	Discontinuities				In Situ Testing
ᆈ	Depth (m)	of		ExLow Very Low Very Low Medium Wery High Ex High	Spacing (m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Results &
	. ,	Strata	A M M W M M M M M M M M M M M M M M M M		0.01 0.10 0.50 1.00	S - Shear D - Drill Break	Ţ	U S S S S S S S S S S S S S S S S S S S	R N	Comments
	5.5	PEATY CLAY - very soft to soft, black peaty clay with a trace of shells and occasional silty sand bands, saturated, low plasticity, strong organic odour [CL;Qa] (continued)					S/E			1,0,0 N = 0
-4-		SILTY CLAY - very soft to soft, dark grey and yellow, silty clay with some silty sand bands, saturated, low plasticity [CL;Qa]						_		
	6						E			
								_		
-φ-							S/E			1,0,0 N = 0 No SPT's
	7									undertaken below 7.0m due to collapsing soils
-φ.										
	8						E	-		
	9						E	-		
-φ-										
-										

CHECKED

Initials: Date:

 RIG:
 Explorer 2000
 DRILLER: Terratest (R Welsh)
 LOGGED:
 PAV/BOK

 TYPE OF BORING:
 Solid flight auger (TC-bit) to 10.6m;
 Rotary to 11.15m;
 HQ-Coring to 23.15m

 WATER OBSERVATIONS:
 Free groundwater observed at 2.7m whilst augering

 REMARKS:
 E = Environmental sample.
 *Field duplicate environmental sample taken

SAMPLING & IN SITU TESTING LEGEND pp Pocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test nm dia.) PL Point load strength Is(50) MPa V Shear Vane (kPa) P Water seep ¥ Water level

SAMF Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling

A D B U_x W C CASING: HW to 10.6m

Douglas Partners Geotechnics · Environment · Groundwater

CLIENT: Sydney Metro PROJECT: Sydney Metro Stage 2 (Central to Westmead)

LOCATION: Richard Murden Reserve, Haberfield

 SURFACE LEVEL:
 1.7 AHD

 EASTING:
 328620.7

 NORTHING:
 6249816.7

 DIP/AZIMUTH:
 90°/-

BORE No: 3103-220 PROJECT No: 71421 DATE: 27 - 28/1/2010 SHEET 3 OF 5

		Description	Degree of Weathering	. <u></u>	Rock Fracture	Discontinuities	S		-	In Situ Testing
뷥	Depth (m)	of	Weathering	Log	Strength at the second	B - Bedding J - Joint	Type	5. %	RQD %	Test Results &
		Strata	EW MW FS SW FR	U	Ex Low Medi High Very Very Very 0.010 0.010 0.100 0.100	S - Shear D - Drill Break	Γ	с а	Ϋ́	Comments
-		SILTY CLAY - very soft to soft, dark grey and yellow, silty clay with some silty sand bands, saturated, low plasticity					E	_		
ľ	10.4	[CL;Qa] <i>(continued)</i>		Ż						
-		SANDY CLAY - very stiff, grey and yellow, medium to coarse grained sandy clay, wet, low plasticity [CL;res]					E	_		
	11	SANDSTONE - very low to low strength, grey and orange, medium to coarse grained sandstone [SST;Rh]								
ł										
	11.15	SANDSTONE - high strength, moderately weathered, unbroken, orange brown, medium grained sandstone [SST;Rh]					С	100	100	PL(A) = 1.17M PL(D) = 1.03M
	12 12.05	SANDSTONE - high strength, fresh,								PL(A) = 1.63MI
-		slightly fractured, light grey, medium to coarse grained sandstone. Indistinctly cross-bedded at 0°- 15° [SST;Rh]								PL(D) = 1.54M
	13									PL(A) = 1.41M PL(D) = 1.66W
-						13.49m: B5°, vn, cly, pl, sm	С	100	100	
	14					14.45m: B0°, inf, cly, pl,				PL(A) = 1.38M PL(D) = 1.26M
-						14.88m: B5°, vn, cly, pl,				

REMARKS: E = Environmental sample. *Field duplicate environmental sample taken

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 PID
 Photo ionisation detector

 B
 Bulk sample
 S
 Standard penetration test

 U,
 Tube sample (x mm dia.)
 PL
 Point load strength Is(50) MPa

 W Water sample
 V
 Shear Vane (kPa)
 Water level

 C
 Core drilling
 >
 Water seep
 ¥ Water level

CHECKED	
Initials:	
Date:	

Sydney Metro CLIENT:

Sydney Metro Stage 2 (Central to Westmead)

PROJECT: LOCATION: Richard Murden Reserve, Haberfield SURFACE LEVEL: 1.7 AHD 328620.7 EASTING: NORTHING: 6249816.7 DIP/AZIMUTH: 90°/--

BORE No: 3103-220 PROJECT No: 71421 DATE: 27 - 28/1/2010 SHEET 4 OF 5

	D "	Description	Degree of Weathering	ic	Rock Strength ភ្ល	Fracture	Discontinuities	Sa		-	In Situ Testing
ᆋᆝ	Depth (m)	of	Degree of Weathering ﷺ ∯ ≩ ଛ ଝ ଝ	Graph	Strength High High Kater Kater Strength High	Spacing (m)	B - Bedding J - Joint	Type	c. %	RQD %	Test Results &
		Strata	A M M M M M M M M M M M M M M M M M M M	•••••		0.10	S - Shear D - Drill Break	<u> </u>	ပမ္ရ	2	Comments
-		SANDSTONE - high strength, fresh, slightly fractured, light grey, medium to coarse grained sandstone. Indistinctly cross-bedded at 0°- 15° [SST;Rh] <i>(continued)</i>					sm 15.15m: B5°, vn, cly, pl, sm				PL(A) = 1.45MPa PL(D) = 1.27MP
	16						16.12m: B0°, vn, cly, pl, sm				PL(A) = 1.07MPa PL(D) = 1.38MP
	17						17.04m: B0°, vn, cly, pl, sm	C	100	100	PL(A) = 1.46MPa PL(D) = 1.41MPa
	18										PL(A) = 1.48MP PL(D) = 1.48MP
<u> </u>	19						19.06m: B0°, vn, cly, pl, ∫sm 19.09m: B0°, inf, cly, pl, ∫sm, 1mm thick	с	100	99	PL(A) = 1.88MPa PL(D) = 1.49MP
							19.27m: J25°, cln, pl, sm				

	SAMPLING &	IN SITU TESTING LEGEND	CHECKED
A	Auger sample	pp Pocket penetrometer (kPa)	
DB	Disturbed sample Bulk sample	PID Photo ionisation detector S Standard penetration test	Initials:
U,	Tube sample (x mm dia.)	PL Point load strength Is(50) MPa	
Ŵ	Water sample	V Shear Vane (kPa)	
C	Core drilling	Water seep ¥ Water level	Date:

CLIENT: Sydney Metro

PROJECT:

Sydney Metro Stage 2 (Central to Westmead)

LOCATION: Richard Murden Reserve, Haberfield

 SURFACE LEVEL:
 1.7 AHD

 EASTING:
 328620.7

 NORTHING:
 6249816.7

 DIP/AZIMUTH:
 90°/-

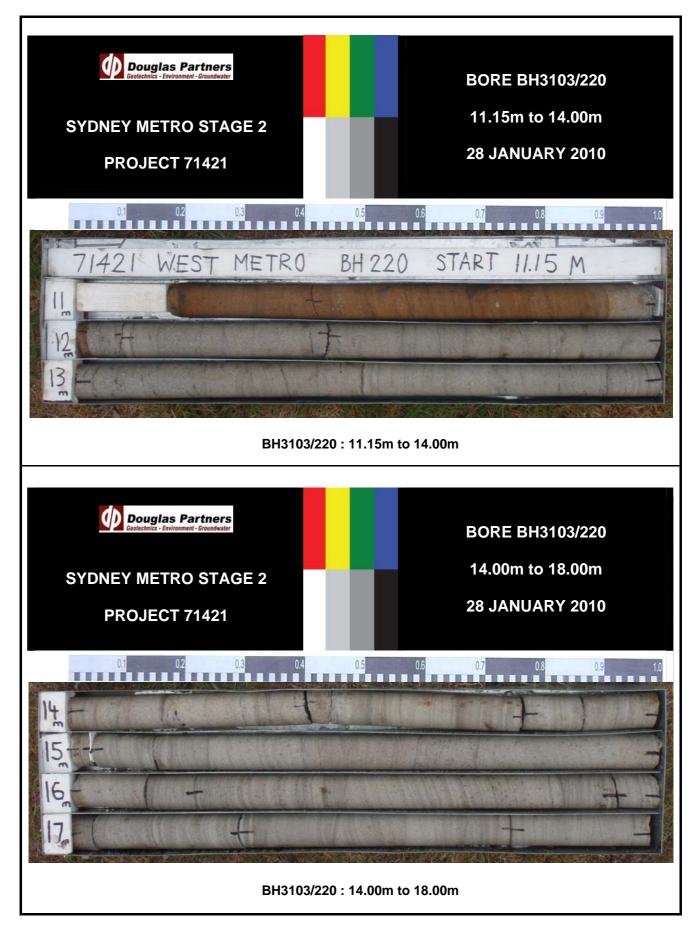
BORE No: 3103-220 PROJECT No: 71421 DATE: 27 - 28/1/2010 SHEET 5 OF 5

	Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	S	ampli	ng &	In Situ Testing
Depth (m)	of	weathering	Log	Strength Low Low Kery Low Kery Low Kery High Kery High Kery High Kery High Kery High Kery Kery Kery Kery Kery Kery Kery Kery	Spacing (m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Results &
		HW W SW SW	U	Ex Low Very I Mediu Very F Ex High		S - Shear D - Drill Break	Ty	с р	Я° ОЯ°	Comments
- - - - - - - - - - - - - -	SANDSTONE - high strength, fresh, slightly fractured, light grey, medium to coarse grained sandstone. Indistinctly cross-bedded at 0°- 15° [SST;Rh] <i>(continued)</i>						с	100	99	PL(A) = 1.64MPa PL(D) = 1.4MPa
- - - - - - - - - - - - - - - - - - -	- distinctly cross-bedded at 5° from 21.1m to 21.55m									PL(A) = 1.85MPa PL(D) = 1.32MPa
- 22							с	100	100	PL(A) = 1.96MPa PL(D) = 1.6MPa
- 23										PL(A) = 1.55MPa
-24	Bore discontinued at 23.15m									PL(D) = 1.33MPa

REMARKS: E = Environmental sample. *Field duplicate environmental sample taken

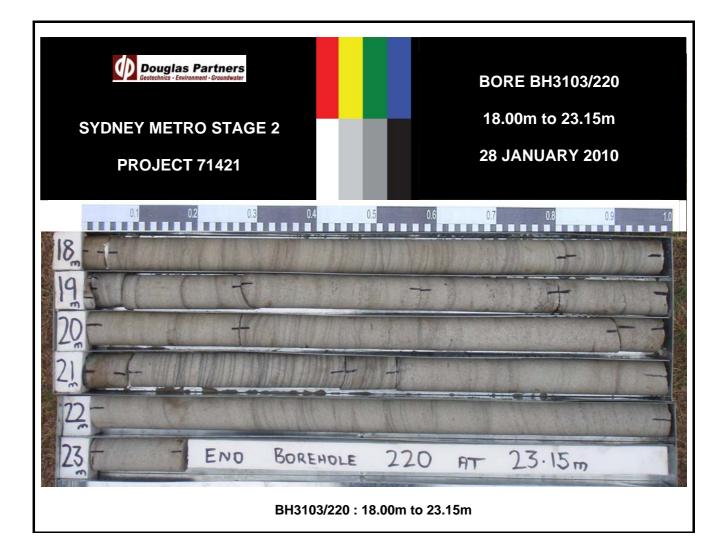
 SAMPLING & IN SITU TESTING LEGEND

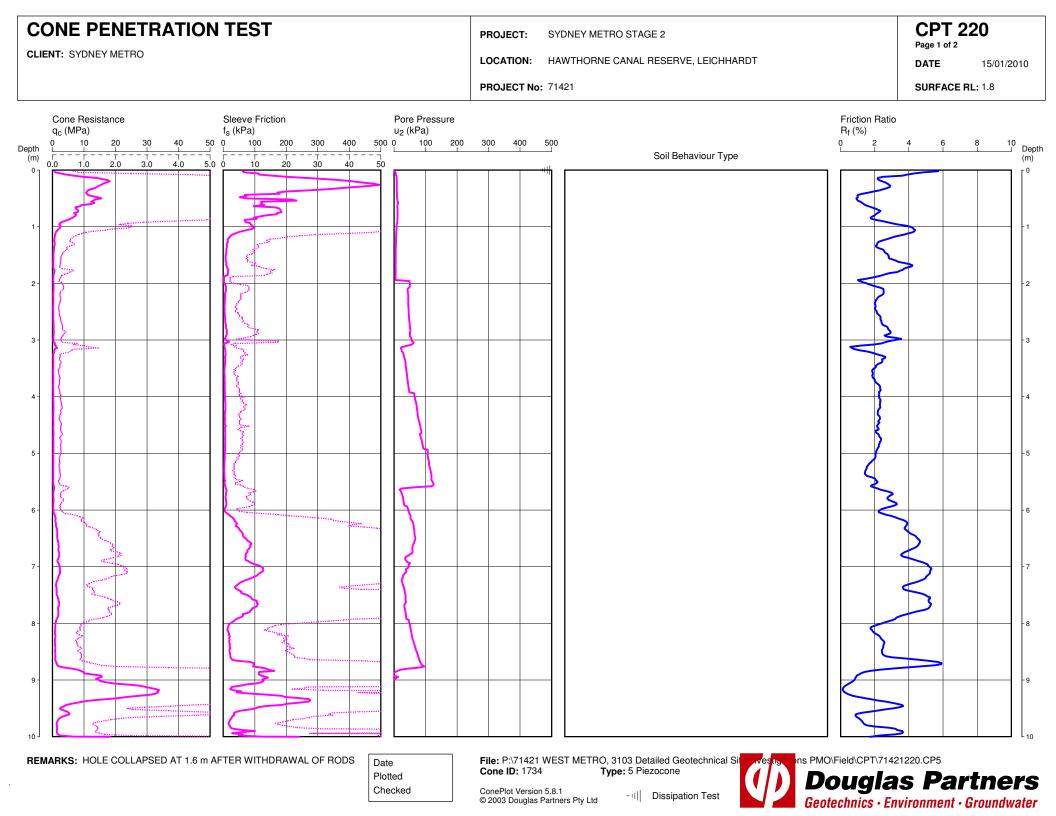
 A
 Auger sample
 pp
 Pocket penetrometer (kPa)
 Initials:

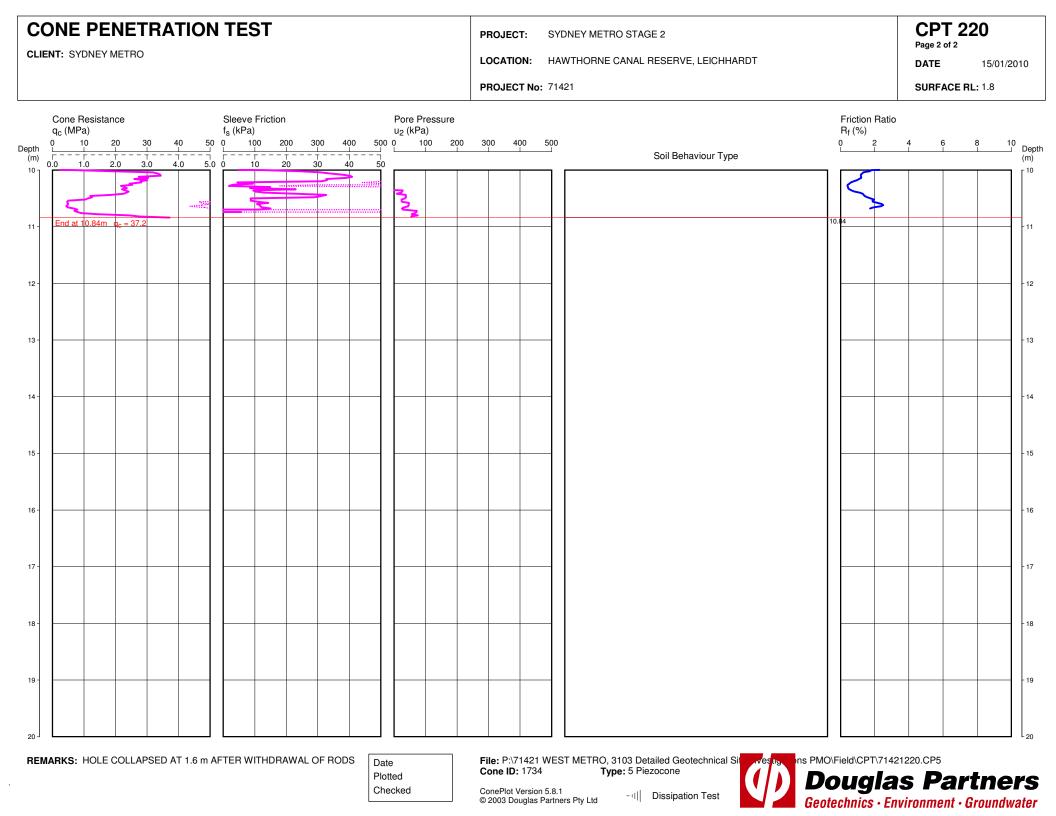

 D
 Disturbed sample
 PID
 Photo ionisation detector
 Initials:

 U
 Tube sample (x mm dia.)
 PL
 Point load strength Is(50) MPa
 Initials:

 W
 Water sample
 V
 Shear Vane (kPa)
 Date:


 C
 Core drilling
 V
 Water seep
 Water level




SYDNEY METRO CONTRACT 3103	PROJECT
ROCK CORE PHOTOGRAPHS	71421

Douglas Partners Geotechnics • Environment • Groundwater

SYDNEY METRO CONTRACT 3103 ROCK CORE PHOTOGRAPHS	PROJECT 71421	(<i>III</i>) Douglas Partners
		Geotechnics - Environment - Groundwater

PR .0	CAT	CT: ION:	Sydne Terrac		City and Southwest - Hurlstone Park			SUF INC	ORDS: 327828.8 m E 6246335.9 m N MGA94 56 RFACE RL: 19.19 m DATUM: AHD :LINATION: -90° LE DEPTH: 10.00 m		DRIL CON LOG	ET: 1 OF 2 L RIG: Komats TRACTOR: Ne GED: PGH CKED: HB/SI		
_		Dril	ling		Sampling	_			Field Material					
	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		ST	RUCTURE AND ADDITIONAL 3SERVATIONS	
			0 	19.19 0.50					FILL: GRAVEL medium to coarse grained, angular, grey, with cobbles, (rail ballast)			FILL		
			- - 1	18.69				* * * * * * * * *	FILL: Clayey SAND pale brown, with some sandstone gravel					
			-		SPT			* * * * *				-		
			2—		2.15 1.70 m SPT 1.70-2.15 m 5, 3, 4 N=7									
	L-H	GWNO	- 3— -		SPT 3.45 3.00 m SPT 3.00-3.45 m 6, 1, 1 N=2					м	L			
	м		- 4 -	4.50										
	н		5	14.69	SPT 4.55 4.50 m SPT 4.50-4.55 m 10/50mm N=R				SANDSTONE medium to coarse grained, brown highly weathered, very low to low strength For Continuation Refer to Sheet 2			WEATHERED F	ROCK	
			- - 6—											
			-											
			- 7— -											
			- 8		K									
			-											
			9											
			-											

(Ì	As	Gol	der ciate	s	D DC Geote	Duglas Partners					BOREHOLE:	SRT	Bŀ	15 ⁻	14	
PF LC		CT: ION:	Syc Ter	dney Me race Ro	for NSW etro City oad - Hu 3/10701	and So Irlstone	buthwest SURFACE RL: 19.19 m Park INCLINATION: -90°	COORDS: 327828.8 m E 6246335.9 m N MGA94 56 SURFACE RL: 19.19 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 10.00 m					tsu Jealings [[REV: Drilling DATE: DATE:	19/8		
		1	Dr				Field Ma		-			Defect Inform	nation				
METHOD	WATER	TCR		DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL	■ WEATHERING	S	NFERRE TRENG Is ₍₅₀₎ MPa	TH a	DEFECT DESCRIPTION & Additional Observation			DE SP	ERA EFEC ACII (mm)	CT NG)
		100	99 (100)	- 5 - - - 6	<u>4.75</u> 14.44		Continuation of Sheet 1 SANDSTONE medium to coarse grained, orange brown, thickly bedded, with indistinct cross beds dipping between and 8 degrees, iron stained	n O		*	5.1	95 m: D - 0.71MPa; A - 0.97MPa 8-5.19 m: Bx2, 15°, PI, Ro, carbonaceou 96 m: DS, 5-15°, PI, Ro, carbonaceous 95 m: D - 1.19MPa; A - 1.13MPa	us		_		
NMLC	As a Last Add at	100	100 (100)	- - 7 - -	6.67		from 6.67-8.87m : some iron-stained bands	SW	/	•	6.9 S1	95 m: D - 0.93MPa 6691; 6.95 m					-
		100	98 (100)	- 8	8.87					-		00 m: D - 0.75MPa; A - 0.61MPa 7 m: B, 5°, Pl, Ro, Cn					
		100	100 (100)	-	10.32 9.25 9.94		from 8.87-9.25m : leached pale-grey from 9.25-9.80m : iron-stained END OF BOREHOLE @ 10.00 m TARGET DEPTH GROUTED	FR MW SW	/		9.1 9.2	95 m: D - 1.06MPa; A - 0.74MPa 4-9.17 m: DS, 0°, sandy clay, 30mm thic 3 m: B, 5°, PI, Ro, carbonaceous 64 m: B, 5°, PI, Ro, carbonaceous Sn	ck				-
				└──10 ── g	This re eotechn	eport of ical pur	f borehole must be read in conjunction with ac poses only, without attempt to assess possibl tion only and do not necessarily indicate the p	e contami	inā	tion. Any	v refere	ences to potential contamination are	6	GAP g	INT F	-N. F	 =02a 3

(Ì	A	Gol	der ciate	s	D	Duglas Part	mers oundwater					BOREHOLE	: SF	RT BH	1514	4
F	OCAT	CT: ION:	Syo Ter	dney Me race Re	for NSW etro City oad - Hu 3/10701	and So rlstone	outhwest Park	COORDS: 3278 SURFACE RL: INCLINATION: - HOLE DEPTH:	19.19 m DATI -90°			A94 56	SHEET: 3 C DRILL RIG: F CONTRACTO LOGGED: PO CHECKED: F	Komatsu PR: Neali GH	• •	19/8/16	
	_		Dr					Field Ma					Defect	Informatio	on		
METHOD	WATER	TCR		DEPTH 01 (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL∎			Ë	INFERRED STRENGTH Is ₍₅₀₎ MPa	1	DEFECT DESCRIF & Additional Observ			AVER DEFE SPAC (mr	ECT CING m)
					eotechn	ical pu	rposes only, without	ead in conjunction	possible cont	tamin	ation. Any re	eference	ations. It has been prepar	on are f o r			
					i	nforma	tion only and do not	necessarily indica	te the presen	ce or	absence of	soil or gi	oundwater contamination		GAP g	INT FN.	RL3

GHD

Level 2 29 Christie Street T: 61 2 9462 4700 F: 61 2 9462 4710 E: slnmail@ghd.com

GHD 2020

This document may only be used for the purpose and in accordance with the terms of engagement between Inner West Council and GHD. Unauthorised use of this document in any form whatsoever is prohibited.

12515105-51798-

46/https://projectsportal.ghd.com/sites/pp15_03/thegreenwaygeotechni/ProjectDocs/12515105-REP-1_Geotechnical Report.docx

Document Status

Revision	Author	Reviewer		Approved for		
		Name	Signature	Name	Signature	Date
0	James Scognamiglio	Mark George	Nö	Mark George	1/2	20/2/2020
	0 0	Simon Mortimer	In Atato		100	
1	James Scognamiglio	Mark George	M. 7	Mark George	Mex.	26/3/2020
	ocognarnigilo	Simon Mortimer	Con Atartos	e.	100	

www.ghd.com

