OZZY STATES PTY LTD

DETAILED SITE INVESTIGATION REPORT 36 LONSDALE STREET, LILYFIELD, NSW

Report E22390 AB 24 March 2015

REPORT DISTRIBUTION

Detailed Site Investigation Report 36 Lonsdale Street, Lilyfield, NSW

El Report No.:	E22390 AB
Date:	24 March 2015

Copie	es	Recipient
1	Soft Copy (PDF – Secured, issued by email)	Mr Remolo Nigro Ozzy States Pty Ltd PO BOX 1791, Rozelle, NSW 2089
	Original (Saved to Digital Archives)	Environmental Investigations Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Author

r.A

EARIN SHORT Environmental Scientist Nichon Ne:

Senior Principal – Environment

Technical Reviewer

Revision	Details	Date	Amended By
0	Original	24 March 2015	

© 2015 Environmental Investigations Australia Pty Ltd T/A Environmental Investigations (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

EXECUTIVE SUMMARY

Background

Ozzy States Pty Ltd engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Detailed Stage 2 Site Investigation Report (DSI) for the property located at 36 Lonsdale Street, Lilyfield, NSW ('the site').

A Preliminary Stage 1 Site Investigation Report (PSI) for this site has been previously completed by EI and is presented separately in the report referenced E22390 AA Rev 1. The PSI incorporated a desktop assessment and historical records search including a search of Workcover records for dangerous goods and fuel storage infrastructure, and review of available environmental reports for the site. Further investigation involving a Stage 2 Detailed Site Investigation (DSI) was recommended in order to assess the environmental conditions and the potential for on-site contamination associated with the identified current and former land uses.

This environmental assessment was completed as part of a development application process through Leichhardt Municipal Council to allow site development for mixed, multi-storey, residential and commercial/retail land uses.

Objectives

The main objectives of the assessment were to:

- Characterise site environmental conditions in relation to the nature, degree and sources of any soil and groundwater impacts;
- Target potentially impacted areas identified during the preliminary stages of the assessment for intrusive investigation;
- Understand the influence of site specific, geologic and hydrogeological conditions on the potential fate and transport of any impacts that may be identified;
- Evaluate potential risks that identified impacts may pose to human health and the environment; and
- Where site contamination is confirmed, provide data to assist in the selection and design of appropriate remedial options.

Findings

The work was conducted with reference to the regulatory framework outlined in Section 1.3 of this report and assessment findings indicated the following:

- The site comprises a 0.96 hectare area occupied by a single level brick warehouse and offices. The property was bound directly to the east by retail, residential areas to the west and south, while to the north is the City West Link roadway and the Metro Light Rail Line.
- A previous Preliminary Site Investigation Report had been completed by EI in February 2015 (Ref. E22390 AA Rev 1), which indicated that the site has been subject to some commercial/industrial use since at least 1917 and included UST filling points on Lonsdale Street.
- Soil sampling and testing were conducted at seven borehole locations down to a maximum depth of 1.5 mBGL.

- The sub-surface layers comprised fill materials of various constituents to a maximum depth of 1.2 mBGL, including minor ash and hydrocarbon odours. The overall geological configuration within the site was anthropogenic fill underlain by Hawkesbury Sandstone bedrock.
- Groundwater was encountered at approximately 1.8 mBGL during sampling single groundwater monitoring event on 9.3.2015.
- Laboratory testing of selected soil samples from both the fill and undelying natural soils indicated exceedances
 of the adopted health-based investigation/screening levels in relation to the following analytes:
 - The heavy metals copper and zinc at concentrations exceeding adopted ecological criteria in site fill;
 - B(α)P TEQ exceedances in sampling location BH2 and BH6 within the fill layer;
 - Benzo(a)pyrene in fill at BH2, BH5 and BH6 exceeding ecological criteria; and
 - Total recoverable hydrocarbon (TRH) fraction F3 exceeding the ecological criterion in fill at BH2.
- Testing of groundwater sampled at MW1 identified concentrations in excess of the adopted groundwater investigation criteria:
 - The heavy metals arsenic, chromium, nickel and zinc;
 - TRH fraction F1; and
 - PAH benzo(a)pyrene concentrations.

In summary, soil impacts were identified as being constrained within the fill layer at locations BH2, BH5 and BH6, which may have been present in the fill prior to importation to the site, or may have resulted from past, on site activities.

Groundwater was found to be generally consistent with regional impacts in the Sydney, urban-industrial setting with regards to heavy metals; however, TRH F1, PAH and VOC were also potentially identified. Further investigation and assessment of groundwater after the demolition stage is considered warranted to delineate the extent of impacted groundwater, assess risks to site users and/or the environment and to inform any subsequent remedial action, if required.

Conclusions and Recommendations

Based on the findings of the DSI and with consideration of the Statement of Limitations (Section 12), El concludes that although widespread contamination was not identified at the site, the site can be made suitable for the proposed commercial and residential uses, after carrying out the following data gap closure investigations and any subsequent site management and remedial actions that may be found to be warranted:

- 1. Preparation of a Remedial Action Plan (RAP) to outline remediation requirements for contaminated soils and groundwater. The RAP should include further soil and groundwater investigations to close outstanding data gaps, including:
 - a) Remediation and validation of soils surrounding all identified UPSS infrastructure;
 - b) Remediation, waste classification of impacted soils from the UPSS areas and other areas of the site;

- c) Installation of three additional groundwater wells with at least one additional round of groundwater sampling and laboratory analysis for the relevant chemicals of concern;
- d) A well elevation survey followed by an assessment of hydraulic gradient, aquifer hydraulic conductivity and groundwater flow direction; and
- e) An assessment of risks to site users and/or the environment, should groundwater contamination be confirmed.
- Due to the restricted site access caused by the presence of tenants and structures, additional works required as part of the RAP should be conducted once the site has either been vacated or once demolition of structures has been completed;
- Any material being removed from site (including virgin excavated natural materials or VENM) must be classified for off-site disposal with an accompanying Waste Classification Certificate provided by a suitably qualified and experienced environmental scientist, in accordance the EPA (2014) Waste Classification Guidelines.
- 4. Any material being imported to the site should be assessed (validated) for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended land use or be certified in accordance with EPA (2014) as VENM or ENM.
- 5. Any dewatering activity necessary for excavation of basement car parking will require the appropriate approvals from Council and Sydney Water including ongoing groundwater disposal monitoring.
- 6. Validate that remediated areas are left free of contamination by comparing analytical results for excavation surfaces and any backfill material, against the adopted Remediation Criteria.
- 7. Preparation of a final site validation report by a qualified environmental consultant, certifying the suitability of the site for the proposed development.

In conclusion and within the Statement of Limitations, EI concludes that the site can be made suitable for the proposed development, subject to the recommendations provided. Site contamination issues can be managed through the development application process in accordance with the State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land and the Leichhardt Municipal Council Contaminated Land Policy.

CONTENTS

EXEC	CUTIVE SUMMARY	
1.	INTRODUCTION	1
	1.1 BACKGROUND AND PURPOSE	1
	1.2 PROPOSED DEVELOPMENT	1
	1.3 REGULATORY FRAMEWORK	1
	1.4 PROJECT OBJECTIVES	2
~	1.5 SCOPE OF WORKS	2
2.	SITE DESCRIPTION	4
	2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL	
	2.2 SURROUNDING LAND USE2.3 REGIONAL SETTING	45
	2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUN	
	2.5 SITE WALKOVER INSPECTION	6
3.	PREVIOUS INVESTIGATIONS	7
4.	CONCEPTUAL SITE MODEL	9
••	4.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES	9
	4.2 CHEMICAL OF CONCERN	9
	4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RE	
	4.4 DATA GAPS	10
5.	SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP) 12
	5.1 DATA QUALITY OBJECTIVES (DQO)	12
	5.2 DATA QUALITY INDICATORS	16
6.	ASSESSMENT METHODOLOGY	17
	6.1 SAMPLING RATIONALE	17
	6.2 INVESTIGATION CONSTRAINTS	17
	6.3 ASSESSMENT CRITERIA	17
	6.4 SOIL INVESTIGATIONS6.5 GROUNDWATER INVESTIGATIONS	19 21
7.	6.5 GROUNDWATER INVESTIGATIONS DATA QUALITY ASSESSMENT	23
8.		24
	8.1 SOIL INVESTIGATION RESULTS8.2 GROUNDWATER INVESTIGATION RESULTS	24 25
	8.3 LABORATORY ANALYTICAL RESULTS	23
9.	SITE CHARACTERISATION DISCUSSION	29
	9.1 CONCEPTUAL SITE MODEL	29
	9.2 POLYCYCLIC AROMATIC HYDROCARBON (PAH) IN SO	
	9.3 PAH AND HEAVY METALS IN GROUNDWATER	29
	9.4 ASBESTOS RISK	30
10.	CONCLUSIONS	31
11.	RECOMMENDATIONS	33
12.	STATEMENT OF LIMITATIONS	34
REFE	ERENCES	35
	REVIATIONS	36
יוסטא		50

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	4
TABLE 2-2	SURROUNDING LAND USE	4
TABLE 3-1	SUMMARY OF PREVIOUS INVESTIGATION WORKS AND FINDINGS	7
TABLE 5-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	13
TABLE 5-2	DATA QUALITY INDICATORS	16
TABLE 6-1	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	18
TABLE 6-2	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	19
TABLE 6-3	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	21
TABLE 8-1	GENERALISED SUBSURFACE PROFILE (M BGL)	24
TABLE 8-2	MONITORING WELL CONSTRUCTION DETAILS	25
TABLE 8-3	GROUNDWATER FIELD MEASUREMENTS AND OBSERVATIONS	25
TABLE 8-4	SUMMARY OF SOIL ANALYTICAL RESULTS	26

TABLES

TABLE T1	SOIL ANALYTICAL RESULTS FOR HEAVY METALS
TABLE T2	SOIL ANALYTICAL RESULTS FOR TRH, BTEXN
TABLE T3	SOIL ANALYTICAL RESULTS FOR PAH
TABLE T4	SOIL ANALYTICAL RESULTS FOR ASBESTOS
TABLE T5	SOIL ANALYTICAL RESULTS FOR OCP, OPP & PCB
TABLE T6	GROUNDWATER ANALYTICAL RESULTS FOR HEAVY METALS, TRH, BTEX & PAH
TABLE T7	GROUNDWATER ANALYTICAL RESULTS FOR VOC

FIGURES

- FIGURE 1 SITE LOCALITY PLAN
- FIGURE 2 SAMPLING LOCATION PLAN
- FIGURE 3 SOIL AND GROUNDWATER EXCEEDANCES
- FIGURE 4 CONCEPTIAL SITE MODEL (In Text, Section 4)

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS & SURVEY PLANS

APPENDIX B BOREHOLE LOGS

- APPENDIX C FIELD DATA SHEETS & CALIBRATION CERTIFICATES
- APPENDIX D CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS
- APPENDIX E LABORATORY ANALYTICAL REPORTS
- APPENDIX F QA/QC ASSESSMENT
- APPENDIX G LABORATORY QA/AC POLICIES AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Mr Remolo Negro of Ozzy States Pty Ltd engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Detailed Site Investigation (DSI) for site characterisation purposes for 36 Lonsdale Street, Lilyfield, NSW ('the site').

As presented in Figure 1, the site Project is located approximately 4 km west of the Sydney central business district. The site is situated within the Local Government Area of Leichhardt Municipal Council and covers a total area of approximately 0.96 ha (966 m2), as depicted in the site plan presented as Figure 2.

This assessment was conducted in support of a Development Application (DA) to Leichhardt Municipal Council and for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil and/or groundwater. It is also understood that this Phase 1 assessment is to accompany the development application lodgement package to Leichhardt Municipal Council.

A Preliminary Site Contamination Investigation Report (PSI, February 2015) for this site has previously been completed by EI and is presented separately in the report referenced E22390 AB. The PSI incorporated site walkover observation, a desktop assessment involving historical records search, and review of other available environmental reports for the site.

A Preliminary Geotechnical Investigation was also undertaken by EI in conjunction with the DSI. This report is presented separately in the report referenced E22390 GA Rev 1. The PGI report provides geotechnical advice and recommendations for the preparation of the designs for the proposed residential development. The GI report should be read in conjunction with this report.

This assessment was for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

1.2 PROPOSED DEVELOPMENT

Based on the proposed development plans provided by the client (Ref. Derek Raithby Architecture, dated Jan 2015), the proposed site redevelopment will involve demolition of existing infrastructure and erection of a multi-storey mixed use residential building, ground level retail / commercial uses and basement car parking. Concept plans for the proposed development (including landscape plans) are provided in Appendix A.

It is also understood that a two level basement car park for the development will extend to a depth of approximately 7.5m BGL.

1.3 **REGULATORY FRAMEWORK**

The following regulatory framework and guidelines were considered during the preparation of this report:

ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;

- DECCW (2009) Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, (UPSS Guidelines);
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition);
- EPA (1995) Sampling Design Guidelines;
- EPA (2014) Technical Note: Investigation of Service Station Sites;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- NSW EPA (1997) Contaminated Land Management Act,
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 **PROJECT OBJECTIVES**

The primary objectives of this investigation were to:

- To investigate and quantify the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In order to achieve the above objectives and in keeping the project cost-effective while generally complying with the OEH (2011) guidelines for consultants reporting on contaminated sites, the scope of works was as follows:

1.5.1 Desktop Study

- A review of the previous Phase 1 Preliminary Site Investigation Report prepared by EI in February 2015 (Ref. PSI, 2015);
- A review of existing underground services on site;
- Preparation of a Work, Health, Safety & Environment Plan and quality assurance and quality control measures (QA/QC);

1.5.2 Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Drilling of test boreholes at seven locations (BH1 to BH7) distributed in a targeted pattern across accessible areas of the site;
- Installation of one groundwater monitoring well to a depth of 3.7 mBGL, constructed to standard environmental protocols to investigate potential groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the constructed groundwater monitoring wells; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in Table 2-1, while the site locality is shown in Figure 1.

Attribute	Description
Street Address	36 Lonsdale Street, Lilyfield, NSW 2040
Location Description	The site comprises a single level brick warehouse and office spaces. The property directly to the east is zoned B2 (Local Centre), the areas to the west and south are zoned R1 (General Residential), while to the north is the City West Link roadway and the Metro Light Rail Line.
Site Area	960 m ²
Site Owner	Ballasal Pty Limited
Lot and Deposited Plan (DP)	Lots 18, 19 & 20 in DP 977323
State Survey Marks	SS25270D is located on the north eastern corner of the site.
Local Government Authority	Leichhardt Municipal Council
Parish	Petersham
County	Cumberland
Current Zoning	General Residential

Table 2-1 Site Identification, Location and Zoning

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed use and current uses on surrounding land are described in Table 2-2.

Direction Relative to Site	Land Use Description
North	City West Link, a major arterial road which is a Transport for NSW Roads and Maritime Services (RMS) asset. Beyond City West Link are the Metro Light Rail, Lilyfield Light Rail Stop and former Rozelle Goods Yard.
East	Lonsdale Street, with a mixed use building (IGA and residential apartments) with basement car parking opposite and one to two-storey residential buildings.
South	One to two-storey, brick residential developments.
West	One to two-storey residential buildings.

 Table 2-2
 Surrounding Land Use

The nearest sensitive environmental receptors are the residential properties surrounding the site on three sides.

2.3 REGIONAL SETTING

Local ground topography, geology, soil landscape and hydrogeological information are summarised in Table 2-3.

Table 2-3	Regional Setting Information
-----------	------------------------------

Attribute	Description
Ground Topography	The site is on a minor slope trending toward a former drainage line. Local topography slopes downwards to the northeast, at approximately 5 to 10°. There is significant urban development around the site, with a deep sandstone cutting for the Light Rail and associated Lilyfield Station 50m to the north of the site. Elevation for the site is between RL 18 to 14 mAHD.
Site Drainage	As the site is comprised predominantly of hardstand pavement, site drainage is expected to discharge to the municipal stormwater system
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by Hawkesbury Sandstone, which typically comprises medium to coarse grained quartz sandstone, very minor shale and laminite lenses.
Soil Landscapes	The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 (2nd Edition) indicates that the erosional landscape at the site likely comprises the Gymea Landscape.
	The Gymea landscape soils are shallow to moderately deep (30-100 cm) yellow earths and earthy sands on crests and inside of benches; shallow (<20 cm) siliceous sands on leading edges of benches; localised gleyed podzolic soils and yellow podzolic soils on shale lenses; shallow to moderately deep (<100 cm) siliceous sands and leached sands along drainage lines.
Acid Sulphate Soil Risk	In accordance with the Leichhardt Local Environmental Plan 2013 Acid Sulfate Soils Map – Sheet ASS_004, the site is classified as Class 5 for Acid Sulfate Soils (ASS). Category 5 sites require development consent where works within 500 m of adjacent Class 1,2,3 or 4 land are below 5 mAHD are likely to lower the water table below 1 mAHD. As the local geology is Hawkesbury Sandstone ASS are unlikely to be present.
Likelihood & Depth of Site Filling	Based on site observations reported in the PSI (Feb 2015), site fill is like to extend to depths of approximately 1.50 mBGL, however, the total depth of fill may be reduced in some areas of the site.
Typical Soil Profile (Summary of lithology from El (2015))	Concrete hardstand over clayey sand and sand fill with some gravel including brick and sandstone, overlying distinctly to slightly weathered or fresh with depth, medium to coarse grained.
Depth to Groundwater	No Groundwater seepage inflows were observed during the geotechnical investigations (EI, 2014), however the standing water level was recorded as 2.7 mBGL on 11 December 2014.
Aquifer Types / Estimated Thickness	The groundwater includes intermittent seepage zones that may be present in the fill layer and deeper groundwater moving through fractures, joints and bedding planes within the underlying sandstone bedrock.
Nearest Surface Water Feature	The nearest surface water is Johnstons Bay; a part of Sydney Harbour, approximately 950 m to the northeast. This part of the river is considered to be tidally influenced and is therefore classed as a marine water ecosystem.
Groundwater Flow Direction	Groundwater flow direction in the vicinity of the site is inferred to be Johnstons Bay; a part of Sydney Harbour, approximately 950 m to the northeast).

Environmental Investigations Australia Contamination | Remediation | Geotechnical

Attribute	Description
Hydraulic Gradient	Unknown
Hydraulic Conductivity	Unknown
Aquifer Porosity	Unknown
Groundwater Seepage Velocity	Unknown
Groundwater Salinity	Inferred to be low. Groundwater electrical conductivity (EC) measured at MW1 (reported as 977-1489 uS/cm)

2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE

An online search was conducted using the NSW Natural Resource Atlas (NR Atlas), which records relevant information pertaining to all licensed water bores for the state of New South Wales, revealed one (1) registered monitoring bore located within 500 m of the site. No groundwater details were available from NR Atlas at the time of this report.

2.5 SITE WALKOVER INSPECTION

Ms Sari Eru (EI, Environmental Scientist) made a number of observations during a detailed walkover inspection of the site on 6 January, 2015:

- The site comprised a trapezoidal shaped block of land, situated on the corner of Lonsdale Street and the City West Link Road. The block comprised a high roofed commercial warehouse with offices with concrete flooring throughout.
- The site topography was sloping down to the north with site drainage expected to flow to the local street stormwater system.
- The site was tenanted by two commercial businesses eing *Australian Prestressing* in the northern portion and *Pacific components Pty Ltd* in the southern portion. Anecdotal evidence was noted from *Australian Prestressing* that the northern part of the site was formerly used as a workshop before being converted to office space in the last two-three years.
- The warehouse was built from brick and was in relatively good condition with minimal weathering of painted surfaces and / or metallic surfaces observed.
- Condition of suspected corrugated fibreboard roofing (potentially containing Asbestos fibres) were not able to be closely examined due to height/access restriction.
- Evidence of an existing underground petroleum storage system (UST filling points) were observed at the eastern boundary on Lonsdale Street as shown in Figure 2.

3. PREVIOUS INVESTIGATIONS

A previous investigation was undertaken by EI in February 2015, the findings of which were documented in the report titled "Preliminary Site Investigation Report (PSI), 36 Lonsdale Street, Lilyfield NSW", Report No. E22390 AA Rev 1, dated 20 March 2015.

A summary of key findings and recommendations of the PSI is outlined in Table 3-1.

Assessment Details	Project Tasks and Findings
Work Objectives	The primary objective of the PSI were to:
	 Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources.
	 The assessment would also provide some indication of the additional works that would be required to achieve adequate site characterisation, as required under the NEPM 2013 guidelines.
Scope of Works	The scope of works comprised a desk study including:
	 A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
	• Review of a previous environmental report for the site by Environmental Investigation Services (ref. <i>Environmental Site Screening for Proposed Residential/Commercial Development,</i> ref: E12514f.RPT, dated 16 May 1997);
	 Search of historical aerial photographs archived at NSW Land and Property Information in order to review previous site use and the historical sequence of land development in the neighbouring area;
	 A land titles search, also conducted through NSW Land and Property Information for information relating to site ownership;
	• Site history survey involving a detailed search of Leichhardt Council records for information relating to operational site history and/or relevant environmental incidents;
	 A search through the NSW EPA / OEH Land Information records to confirm that there are no statutory notices current on the site under the Contaminated Land Management Act (1997);
	 A search of the Stored Chemical Information Database (SCID) and microfiche records held by WorkCover NSW relating to possible underground tank approvals and locations;
	• A review of existing underground services on site;
	A detailed site walkover inspection.

 Table 3-1
 Summary of Previous Investigation Works and Findings

Assessment Details	Project Tasks and Findings		
Conclusions	El concluded that:		
	 The historical review of available information for the site was inconclusive as limited documented information was available regarding former commercial or industrial activities conducted onsite; 		
	 The site was free of statutory notices issued by the NSW EPA/OEH; 		
	• WorkCover search indicated that the site was not listed as containing a UST, however the EIS (1997) report indicated that a UST was present onsite. The EIS report states: "Pipes were traced back from the fill points located in Lonsdale Street to the tank. The tank is approximately 2 m in diameter and is known to contain hydrocarbon product."		
	• Previous EIS (1997) investigation identified hydrocarbon and heavy metal impacted soils on site; and		
	• The depth to groundwater is assumed to be approximately 3 mBGL and groundwater flow direction is assumed to be in a northerly direction.		
Recommendations	The following recommendations were made for the site should proposed residential redevelopment proceed:		
	 El considered that there is potential for site contamination and complete exposure pathways to be present onsite under current and future site configurations that requires further investigation. 		
	 El considered that a Detailed Site Investigation (DSI) should be performed, comprising intrusive soil and groundwater investigation to quantify potential site contamination and exposure risks. 		
	 The DSI should be undertaken in accordance with guidelines made or approved by the NSW EPA under section 105 of the CLM Act. 		

4. CONCEPTUAL SITE MODEL

In accordance with Schedule B2 – Guideline on Site Characterisation of the National Environmental Protection (Assessment of Site Contamination) Measure 1999 Amendment 2013 (NEPM 2013) and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site history, search findings and limited soil sampling as reported in the EIS investigation (1997) as described in Section 3, EI consider potential chemical hazards and onsite contamination sources to be as follows:

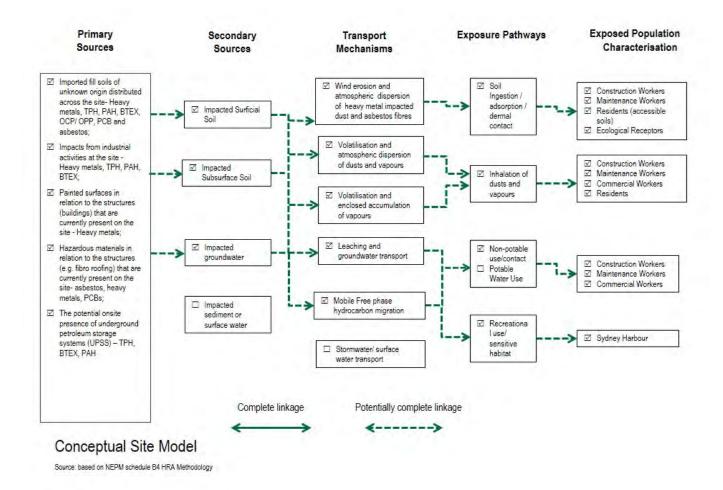
- Imported fill soils of unknown origin distributed across the site;
- Impacts from previous and current industrial and/or commercial activities at the site, including the handling and storage of hydrocarbon fuels in the identified UPSS;
- Spills and leaks from parked vehicles or machinery;
- Weathering of painted, structural surfaces (buildings), historically and currently;
- Hazardous materials, including potential asbestos-containing materials (ACM) from building products used onsite;
- Previously identified heavy metals, TRH, BTEX and PAH impacted fill;
- Deeper, natural soils containing residual impacts, representing potential secondary sources of contamination; and
- Impacts that may have migrated onto the site from unknown, offsite contamination sources.

4.2 CHEMICAL OF CONCERN

Based on the findings of the site contamination appraisal, the chemicals of concern (COC) at the site are considered to be:

- Soil heavy metals (HM), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), the monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl benzene and xylenes (BTEX), organochlorine and organophosphate pesticides (OCP/ OPP), polychlorinated biphenyls (PCB) and asbestos.
- Groundwater HM, TRH, BTEX, PAH, and volatile organic compounds (VOC) including chlorinated VOC (VOCC) such as trichloroethylene (TCE).

4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS


Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in Figure 4.

4.4 DATA GAPS

Based on information from the site walkover inspection and site history review, El considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in Section 5.1), with systematic sampling coverage in site areas where operational site history was not documented.

Figure 4 – Preliminary Conceptual Site Model

Environmental Investigations Australia Contamination | Remediation | Geotechnical

5. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology including media to be sampled, details of analyses and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the USEPA (2006) *Data Quality Assessment* and the DEC (2006) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the El assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in Table 5-1.

Table 5-1Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Give a concise description of the problem. Develop a conceptual model of the environmental hazard to be investigated. Identify resources available.	The site is designated to be redeveloped into a mixed commercial/residential use multi-storey apartment block including retail use on ground floor, over a two level car park basement. The site has been historically used for some industrial purposes followed by commercial warehouses. Possible contamination could derive from these former site uses, as well as possible contamination from spills / leaks of parked cars and loading areas; building material weathering, hazardous materials (including potential ACM), subsurface infrastructure (UPSS), and contamination and filling material of unknown origin and quality. Previous limited sampling on site identified impacted fill soils; however to meet the required sampling density further investigation needs to be undertaken.	-
2. Identify the Goal of the Study (Identify the decisions)Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	Identify principal study question(s). Consider alternative outcomes or actions that may result from answering the question(s). For decision problems, develop decision statement(s), organise multiple decisions. For estimation problems, state what needs to be estimated and key assumptions.	Intrusive environmental soil and groundwater sampling and laboratory analysis is required to assess if contamination is present. Furthermore, this investigation will provide information to develop a decision on the site suitability for the intended mixed commercial/residential development.	-

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	Identify types and sources of information needed to resolve decisions or produce estimates. Identify the basis of information that will guide or support choices to be made in later steps of the DQO Process. Select appropriate sampling and analysis methods for generating the information.	The main inputs to the environmental investigation works include: Identification of historic potential contamination on site; derived from the preliminary site investigation and identified impacted fill soils (Section 3); National and NSW EPA guidelines under the NSW Contaminated Land Management Act 1997. Seven (7) borehole sampling locations were selected using a targeted sampling pattern across accessible areas of the site. An additional bore hole location was utilised for the installation of a groundwater monitoring well. Laboratory analysis of subsurface and deeper soils, and groundwater. National and NSW EPA guidelines under the NSW Contaminated Land Management Act 1997.	 BH1, BH3, BH4, BH5 & BH6 refused in shallow Sandstone bedrock. Borehole BH2 refused below sandstone bedrock on concrete (suspected retaining wall cavity filling). BH7 refused on buried concrete slab preventing access and sampling of natural soils.
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Define the target land-use and receptors of interest and its relevant spatial boundaries. Define what constitutes a sampling unit. Specify temporal boundaries and other practical constraints associated with sample/data collection. Specify the smallest unit on which decisions or estimates will be made.	Lateral – the site is located on the corner of City West Link Road and Lonsdale Street and is surrounded by a mix of residential, transportation and retail land uses; Vertical – from the existing ground level to at least the base of the proposed excavations at approximately 7.5 mBGL; Temporal – The findings of this assessment will hold true for as long as the site use remains passive in nature; that is, for as long as the site is used for residential uses and retail uses and there are no activities taking place onsite or on immediately adjacent (upgrading) properties that may compromise onsite environmental conditions.	
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	Specify appropriate land-use parameters for making decisions or estimates. For decision problems, choose a workable Action Level and generate an "If then else" decision rule which involves it. For estimation problems, specify the methodology and the estimation procedure.	 The decision rules for the investigation were: If the concentrations of contaminants in the soils data exceed adopted land use criteria; then assess the need to further investigate the extent of impacts onsite and select appropriate remedial methods. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 	

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	For decision problems, specify the decision rule as a statistical hypothesis test, examine consequences of making incorrect decisions from the test, and place acceptable limits on the likelihood of making decision errors. For estimation problems, specify acceptable limits on estimation uncertainty.	 Specific limits for this project were in accordance with the appropriate guidance made by the NSW EPA, appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits: A decision can be made based on a probability that 95% Upper Confidence Limits (UCL) of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect. A decision can be made based on the probability that a contamination hotspot of a certain circular diameter will be detected with 95% confidence using a selected density of systematic data points. The decision error will be limited to a probability of 5% that a contamination hotspot may not be detected. If contaminant concentrations in groundwater exceed the adopted 	
7. Develop the Detailed Plan for	Compile all data and outputs generated in	criteria, further investigation will be considered prudent. If no contamination is detected in groundwater, further action will not be warranted. Written instructions will be issued to guide field personnel in the required	
Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	Steps 1 to 6. Use this information to identify alternative sampling designs that fit your intended use Select and document a design that will yield data to best achieve your data quality.	fieldwork activities. Soil samples would be collected from accessible areas across the site and at targeted locations such as the suspected UPSS area and proposed landscape area to characterise the site's suitability for the intended land use. One round of groundwater sampling (minimum) would be performed at predefined monitoring well locations to assess groundwater conditions at the site.	

5.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in Table 5-2, which related to both field and laboratory-based procedures. The data quality assessment is discussed in Section 7.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: • Results are less than 10 times the limits of reporting (LOR);
	 Results are less than 20 times the LOR and the RPD is less than 50%; or
	 Results are less than 20 times the LOK and the RPD is less than 50%, of Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative measure	Data accuracy would be assessed through the analysis of:
of the closeness of reported data to	 Method blanks, which are analysed for the analytes targeted in the primary samples;
the "true" value	 Matrix spike and matrix spike duplicate sample sets; and
	Laboratory control samples.
Representativeness – The confidence (expressed qualitatively)	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
that data are representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	 The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the amount of useable data from a data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
collection activity	• Standard operating procedures (SOPs) for sampling protocols were adhered to; and
	 Copies of all COC documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
event	In addition the data will be collected by experienced samplers and NATA-accredited laboratory methodologies will be employed in all laboratory testing programs.

Table 5-2 Data Quality Indicators

6. ASSESSMENT METHODOLOGY

6.1 SAMPLING RATIONALE

With reference to the CSM described in Section 4, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from seven test bore locations located systematically across accessible areas of the site using a targeted sampling pattern to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at the newly installed monitoring well located in the former workshop area, to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

6.2 INVESTIGATION CONSTRAINTS

Boreholes generally refused in sandstone bedrock during the drilling investigation at between 0.5 m and 1.6 mBGL. Variable conditions at BH7 however, resulted in refusal on a buried concrete slab at shallow depth (0.3m BGL) and BH2 refused below sandstone bedrock on concrete presumed to be retaining wall cavity filling. As such limited vertical delineation of fill materials was achieved. Detailed borehole logs, including monitoring well construction details are presented in Appendix C.

6.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in Table 6-1. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables presented as Tables T1 – T7, which are discussed in Section 8.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013	Soil Health-based Investigation Levels (HILs)
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	All soil samples to be assessed against the NEPM 2013 HIL-B thresholds for residential sites with minimal soil access as the northern portion of the site has been designated for residential with minimal soil access.
		Ecological Investigation Levels (EILs)
		Soil samples would also be assessed against the NEPM 2013 EILs for Urban residential and public open space land use for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems.
		Soil Health-based Screening Levels (HSLs)
		The NEPM 2013 Soil HSL-A&B thresholds for low-high density residential sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene.
		Soils asbestos results to be assessed against the NEPM 2013 Soil HSL thresholds for "all forms of asbestos".
		Ecological Screening Levels (ESLs)
		Soil samples to be assessed against the NEPM 2013 ESLs for Urban residential and public open space land use for petroleum hydrocarbons fractions, BTEX & the PAH benzo(a)pyrene for protection of terrestrial ecosystems.
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also be assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	NEPM, 2013 GILs for	Groundwater Investigation Levels (GILs) for Marine Water
	Marine Waters	NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values for the 95% level of protection of aquatic ecosystems; however, the 99% Trigger values were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant, as the closest potential surface water receptor was Johnstons Bay, a part of Sydney Harbour, located approximately 950 m to the northeast and known to be tidally influenced.
		Groundwater Investigation Levels (GILs) for Fresh Water NEPM 2013 provides also GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values for the 95% level of protection of aquatic ecosystems. These criteria were also considered relevant for groundwater running both between and underneath the site and Johnstons Bay.
	NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The <i>HSL A</i> and <i>HSL B</i> thresholds for low –high density residential sites were applied for groundwater.

Table 6-1 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for specific parameters and were based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011). Johnstons Bay is likely to have recreational value; hence secondary contact recreation has been considered for receiving waters. To address secondary contact recreation, drinking water criteria have been multiplied by a factor of 10.

6.4 SOIL INVESTIGATIONS

The soil investigations conducted at the site are described in Table 6-2. Test bore locations are illustrated in Figure 2.

Table 6-2	Summary of Soil	Investigation	Methodology
	·· · · · · · · ·	J	

Activity/Item	Details
Fieldwork	The site investigation was conducted on 2 March 2015.
Drilling Method & Investigation Depth	Test bores BH1, BH2, BH3 and BH5 were drilled using a ute-mounted solid flight auger drilling rig using 100mm diameter augers.
	Test bore MW1 was drilled using a truck-mounted drill rig using solid flight augers equipped with a "tungsten-carbide" bit (T-C bit), followed by NMLC Diamond Coring from depths of 1.70 m to 7.68 mBGL for geotechnical purposes.
	Test bores BH4, BH6 and BH7 were drilled using a hand auger.
	Final bore depths were: 0.3 m to 0.7 mBGL for BH1, BH3, BH4, and BH6 (due to refusal on Sandstone); 1.6 mBGL and 0.3 mBGL for BH2 and BH7 respectively (refused on concrete); and 1.6 mBGL for BH5 (refusal on Sandstone).
	Boreholes MW1 was continued for geotechnical purposes using NMLC coring techniques from depths 3.7 mBGL to termination depth of 7.68 mBGL.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix B.
Field Observations (including	A summary of field observations is provided, as follows:
visual and olfactory signs of potential contamination)	 Slight hydrocarbon odour was noted in the fill layer at BH1, BH2, BH5 (from 0.9 mBGL into natural Sandstone to refusal at 1.6 mBGL); and
	• Traces of ash were observed in fill layers at BH1, BH2, and BH6.
Soil Sampling	Soil samples were collected using grab/dry methods (stainless steel trowel) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars using dedicated nitrile gloves.
Decontamination Procedures	Drilling Equipment – Where a solid flight auger or a hand auger was used, the drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials.
	Sampling Equipment – Sampling equipment (i.e. trowel) was cleaned with suitable phosphate free detergent and rinsed with distilled water between sampling episodes.

Activity/Item	Details
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	Soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 7.
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID). However due to calibration failure and erroneous readings, PID results were not recorded on logs. The PID meter used has since been found to be overly moisture sensitive and due to age of the meter has been put out of service.

6.5 GROUNDWATER INVESTIGATIONS

The groundwater investigations conducted at the site are described in Table 6-3. Groundwater monitoring well locations are illustrated in Figure 2.

Table 6-3	Summary of Groundwater	Investigation Methodology
Table 6-3	Summary of Groundwater	Investigation Methodology

Activity/Item	Details	
Fieldwork	Groundwater monitoring well MW1 was installed and developed on 11 December 2015. Water level gauging, well purging, field testing and groundwater sampling was conducted on all site groundwater monitoring wells on 9 March 2015.	
Well Construction	A single test bore was converted to a groundwater monitoring well MW1 to a depth of 3.7m in a partly down-gradient / targeted workshop location.	
	 The Well was drilled by Traccess Drilling using a track-mounted, mechanical drilling rig equipped with solid flight augers and NLMC diamond core. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix B. MW1 was installed with a screen interval of 1.7 m to 3.7 mBGL (including 0.15 m sump) within the confined Sandstone aquifer. 	
Well Construction (continued)	Well construction was in general accordance with the standards described in NUDLC (2012) and involved the following:	
(50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; 	
	 Base and top of each well was sealed with a uPVC cap; 	
	Annular, graded sand filter was used to approximately 300mm above top of screen interval;	
	Granular bentonite was applied above annular filter to seal the screened interval;	
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and 	
	• Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.	
	MW1 was plugged with granular bentonite from 3.7 to 4.0 mBGL due to the presence of a void that had been created for the NLMC core sampling.	
Well Development	Well development was conducted directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a bailer. Bailing was continued to further reduce suspended sediment, which involved the removal of several well volumes.	
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from spot height elevations marked on the survey plan provided by the Client (Appendix A). Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).	
Well Gauging & Groundwater Flow Direction	Monitoring wells MW1 was gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 9 March, 2015. The measured SWL is shown in Table 8-2. A transparent HDPE bailer was used to visually assess for the presence PSH prior to the commencement of well purging. PSH was not detected in the groundwater monitoring well, however dark colouration and hydrocarbon odour was noted.	
	The direction of groundwater flow could not be determined from a single well, but was inferred from the sloping bedrock surface to be in a north-east direction toward Rozelle Bay (Sydney harbour).	

Activity/Item	Details
Well Purging & Field Testing	Slight hydrocarbon odour was noted in MW1 during well purging. Measurement of water quality parameters was conducted repeatedly during well purging with water quality parameters recorded onto field data sheets (Appendix C) once water quality parameters stabilised. Groundwater was observed to be dark brown, with high turbidity. Field measurements for Dissolved Oxygen (DO), Reduction/Oxidation Potential (REDOX), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 8-3.
Groundwater sampling	During groundwater purging once three consecutive field measurements were recorded to within \pm 10% for DO, \pm 10mV for REDOX, \pm 3% for EC and \pm 0.05 for pH, it was considered to indicate that groundwater representative of the formation water had been attained and final physico-chemical measurements were recorded. Groundwater was sampled using the MicroPurge, low-flow sampling system.
	The MicroPurge system incorporates a low density poly-ethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation also included a MicroPurge QMP15 controller, which employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, to avoid excessive drawdown of water level during the sampling process. The low-flow discharge method is used to minimise potential loss of volatile compounds.
Decontamination Procedure	The low-flow Micropurge [™] pump used for purging and sampling and water level probe and water quality kit probes were decontaminated with a solution of potable water and Decon 90 [™] and rinsed with potable water between monitoring well locations. In addition, dedicated Micropurge [™] pump bladders and HDPE tubing were utilised at each groundwater monitoring well location; therefore decontamination was not required for those items.
Sample Preservation	Sample containers were supplied by the laboratory with the following preservatives:
	 One, 500ml amber glass, acid-washed and solvent-rinsed bottle;
	Two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and
	One, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL).
	Samples for metals analysis were field-filtered using 0.45 μ m pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix D

7. DATA QUALITY ASSESSMENT

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- suitable records of fieldwork observations including borehole logs;
- relevant and appropriate sampling plan (density, type, and location);
- use of approved and appropriate sampling methods;
- preservation and storage of samples upon collection and during transport to the laboratory;
- complete field and analytical laboratory sample COC procedures and documentation;
- sample holding times within acceptable limits;
- use of appropriate analytical procedures and NATA-accredited laboratories; and
- required LOR (to allow for comparison with adopted IL);
- frequency of conducting quality control measurements;
- laboratory blanks;
- field duplicates;
- laboratory duplicates;
- matrix spike/matrix spike duplicates (MS/MSDs);
- surrogates (or System Monitoring Compounds);
- analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in Appendix F. QA/QC policies and DQOs are presented in Appendix G.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

8. RESULTS

8.1 SOIL INVESTIGATION RESULTS

8.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes and installation of the single monitoring well may be described as a layer of anthropogenic filling overlying Hawkesbury Sandstone bedrock. The geological information obtained during the investigation is summarised in Table 8-1 and borehole logs from these works are presented in Appendix B.

Layer	Description	Depth to top & bottom of layer (m BGL)		
Concrete		0 – 0.2 (max 0.20 at BH1 & BH5)		
Fill Clayey SAND; fine to medium grained, brown/red/grey, poorly graded, clay medium plasticity & inferred stiff, no odour (hydrocarbon odour beyond 0.9 m at BH5);		0.2 – 1.2 (at BH5)		
	SAND, fine to medium grained, yellow to orange, no odour;	0.15 – 0.3 (at BH7)		
	Gravelly SAND; fine to medium grained, brown-dark brown, poorly graded, gravel is fine to coarse, trace ash, hydrocarbon odour at BH1 & BH2;	 0.12 – 0.7 (at BH6)		
Residual Soil	SAND; fine to medium grained, yellow – orange, poorly graded, no odour;	0.15 – 0.4 (at BH4)		
Bedrock	Inferred extremely – distinctly weathered Hawkesbury Sandstone, yellow grey, inferred low-medium strength, no odour (except mild hydrocarbon odour at BH5)	Min. 0.4 (BH3) – 7.68 (MW1)		

Table 8-1 Generalised Subsurface Profile (m BGL)

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.15 m to 1.5 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal, etc.) and the following observations were noted:

- Slight hydrocarbon odour was noted in the fill layer of borehole location BH1, BH2 and BH5 (beyond 0.9m into "stained" natural Sandstone);
- Traces of ash were observed in the fill layer of borehole locations BH1, BH2 and BH6;
- Fibrous cement sheeting was not observed in fill soils at any sampling location;
- Ash, charcoal, coal or slag was not observed in fill soils at the remaining test bores; and

• Soil headspace samples were field-screened using a portable PID, fitted with a 10.6 eV lamp; however due to calibration failure and erroneous readings, PID results were not recorded onto logs. The PID meter used has since been found to be overly moisture sensitive and due to age of the meter has been put out of service.

8.2 GROUNDWATER INVESTIGATION RESULTS

8.2.1 Monitoring Well Construction

A single borehole was converted to groundwater monitoring wells MW1, located as shown in Figure 2. Well construction details for the installed groundwater monitoring well is summarised in Table 8-2.

Table 8-2 Monitoring	Well Construction Details
----------------------	---------------------------

Well ID	Bore Depth (m BGL)	Screen Interval (m BGL)	Lithology Screened
MW1	3.7	1.7 – 3.55 (0.15m bottom sump)	SANDSTONE Bedrock

Notes:

m BGL = metres below ground level.

8.2.2 Field Observations and Water Test Results

A single GME was conducted on the newly installed monitoring well (MW1) on 9 March, 2015. The standing water level (SWL) was measured within the well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded final measured field data is presented in Table 8-3 and copies of the completed Field Data Sheets are included in Appendix C.

Table 8-3 Groundwater Field Measurements and Observations

Well ID	SWL (mBTOC)	Purge Volume (L)	DO (mg/L)	Field pH	Field EC (µS/cm)	Temp (ºC)	ORP (mV)	Odours / Turbidity
MW1	1.825	5	0.0	7.3	1488	25.1	158#	Slight hydrocarbon odour / Dark brown turbid.

Notes:

GME – Groundwater monitoring event.

SWL - Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling.

m BTOC - metres below top of well casing.

L - litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

µS/cm – micro Siemens per centimetre (EC units).

DO - Dissolved Oxygen in units of milligrams per litre (mg/L).

ORP – Oxidation/Reduction potential (REDOX).

Field ORP adjusted +204mV for Standard Hydrogen Electrode of Hanna 9828 Water Quality Meter.

All groundwater parameters (pH, EC, ORP and DO) were tested on site.

With reference to Table 8-3, the field pH data indicated that the groundwater was neutral (pH ranged from 6.9 to 7.3) with slightly oxidising conditions present. Electrical Conductivity (EC) measurements were recorded in the range 977 to 1488 µS/cm indicating that the groundwater was of low salinity.

8.3 LABORATORY ANALYTICAL RESULTS

8.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum / maximum analyte concentrations and samples found to exceed the SILs, is presented in Table 8-4. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in Tables T1 to T5 at the back of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in Appendix D and all laboratory analytical reports for tested soil samples are presented in Appendix E.

No. of primary samples	hary Analyte Min. Conc. Max. Conc. (mg/kg) (mg/kg)		Concentrations exceeding adopted SILs	
Hydrocarbons				
12	F1	<25	<25	None
12	F2	<25	<25	None
12	F3	<90	1300	BH2 0.2-0.4 ESL
12	F4	<120	590	None
12	Benzene	<0.1	<0.1	None
12	Toluene	<0.1	0.1	None
12	Ethyl benzene	<0.1	<0.1	None
12	Total xylenes	<0.3	<0.3	None
PAHs				
12	Benzo(a)pyrene	<0.1	4	BH2_0.2-0.4, BH2_0.6-0.8, BH5_0.6-0.8, BH5_1.0-1.2, BH6_0.2-0.4, BH6_0.5-0.7 ESL
12	B(α)P TEQ	<0.3	5.8	BH2 0.2-0.4, BH6 0.5-0.7 HIL
12	Total PAHs	<0.8	49	None
12	Naphthalene	<0.1	0.2	None
OCPs				
8	OCPs	Not Detected	Not Detected	None
OPPs				
8	OPPs	Not Detected	Not Detected	None
PCBs				
8	PCBs	Not Detected	Not Detected	None
Heavy Metal				
11	Arsenic	<3	39	None
11	Cadmium	<0.3	1.8	None
11	Chromium (Total)	2	14	None
11	Copper	3	120	BH1_0.2-0.4 EIL
11	Lead	2	230	None
11	Mercury	<0.01	0.51	None
11	Nickel	<0.5	15	None
11	Zinc	6	480	BH1_0.2-0.4, BH2_0.2-0.4, BH5_0.6-0.8, BH6_0.2-0.4, BH6_0.5-0.7 EIL

Table 8-4 Summary of Soil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Concentrations exceeding adopted SILs
Asbestos				
8	Asbestos	No asbestos detected	No asbestos detected	None

Notes: SIL = Soil Investigation Levels (as detailed in Section 6.3)

Heavy Metals

With reference to Table T1, all heavy metals concentrations were below the corresponding health based SILs for residential settings with minimal soil access.

Exceedances of the derived ecological investigation levels (EIL) was detected for the heavy metal copper in fill sample BH1_0.2-0.4 (120mg/kg) and zinc in fill samples BH1_0.2-0.4 (330mg/kg), BH2_0.2-0.4(480mg/kg), BH5_0.6-0.8 (230mg/kg), BH6_0.2-0.4 (180mg/kg), BH6_0.5-0.7 (140mg/kg).

TRH

As shown in Table T2, all TRH concentrations were below the corresponding adopted SIL for TRH.

The ecological screening level (ESL) for the F3 TRH fraction was exceeded in the fill layer in sample BH2_0.2-0.4 with a concentration of 1300mg/kg.

BTEX and Naphthalene

As shown in Table T2 all BTEX and naphthalene concentrations were below the detection limit and below the adopted criteria for human health and ecology.

PAH

As summarised in Table T3 exceedances of the human health adopted criteria were noted for carcinogenic PAHs in the fill layer of BH2_0.2-0.4 (5.8mg/kg) and BH6_0.5-0.7 (4.1mg/kg). The remaining analysed soil samples for PAHs reported concentrations either below the detection limit or below the adopted criteria for human health.

Exceedances were also noted of the ecological adopted criterion for benzo(α)pyrene in the fill layer at sampling locations BH2_0.2-0.4, BH2_0.6-0.8, BH5_0.6-0.8, BH5_1.0-1.2, BH6_0.2-0.4 and BH6_0.5-0.7 ranging from 0.9mg/kg to 4mg/kg.

Asbestos

As summarised in Table T4, asbestos fibres were not detected in any of the analysed soil samples.

OCP, OPP and PCB

With reference to Table T5, no detectable concentration of any of the screened OCP, OPP and PCB compounds was identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs.

8.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in Tables T6 and T7, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in Appendix D. Copies of the laboratory analytical reports are attached in Appendix E.

Heavy Metals

With reference to Table T6 exceedances of the adopted GILs for heavy metals arsenic ($17\mu g/L$), chromium ($37\mu g/L$), nickel ($10\mu g/L$) and zinc ($110\mu g/L$). All remaining concentrations for heavy metals were reported in concentrations below the adopted GILs.

TPHs and BTEX

As shown in Table T6, tested TRH concentrations were either below the detection limit or below the adopted criteria with the conservative exception of TRH F1 fraction reported as <2500 µg/L due to matrix interference. All BTEX concentrations were reported below the detection limit or below the adopted criteria.

PAHs

As shown in Table T6, exceedance of the adopted GIL for $benzo(\alpha)$ pyrene with a concentration of 4 µg/L was reported in MW1. Total PAH concentration of 49 µg/L was also reported to be well above the laboratory preactical quantitation limits (PQL).

SVOCs & VOCs

As shown in Table T7, adjusted laboratory detection limits of <15 μ g/L for vinyl chloride were reported above adopted GIL for drinking water (0.3 μ g/L). Adjusted laboratory detection limits to <25 μ g/L for the other VOC compounds in Table T7 compounds were also reported. It is important to note that while the adjusted PQLs were in excess of the respective GILs, this does not confirm that the contaminant parameters are present at detectable concentrations.

9. SITE CHARACTERISATION DISCUSSION

9.1 CONCEPTUAL SITE MODEL

On the basis of investigation findings the preliminary CSM discussed in Section 4 was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in Section 4.4 have been largely addressed; however, the following data gaps remain:

- Location of UPSS and extent of any soil or groundwater impacts as indicated on the central eastern boundary adjacent filling points (shown in Figure 2) and north eastern area around former workshop; and
- Groundwater at the site has not been adequately addressed, given only a single monitoring well was installed due to access restriction (i.e. office areas and height restrictions). As such further investigation is warranted to adequately characterise both up-gradient and down-gradient groundwater and flow direction.

Although site soil sampling coverage was partly restricted due to site accessibility (i.e. drilling rig height restrictions, tenanted office areas), the investigation showed consistent shallow fill overlying sandstone bedrock, which can be considered representative of soils at the site, subject to any unexpected finds requiring further investigation, which can be managed during redevelopment of the site.

9.2 POLYCYCLIC AROMATIC HYDROCARBON (PAH) IN SOIL

Carcinogenic PAHs concentrations (calculated as benzo(a)pyrene toxicity equivalent quotient as per NEPM 2013) were reported in excess of the health-based SILs for residential use with minimal soil access, believed to be due to ash within the fill layer at sampling locations BH2 and BH6. Impacted $B(\alpha)P$ TEQ fill material should be visually identified and segregated in accordance with the NSW EPA Waste Classification Guidelines before removal offsite during excavation for the proposed development.

Benzo(a)pyrene impacts in exceedance of the ecological-based criteria were identified at BH2, BH5 and BH6 within the fill layer. Since fill materials will be excavated and removed for offsite disposal to enable construction of a two-level, basement car park, no further ecological assessment would be required.

9.3 PAH AND HEAVY METALS IN GROUNDWATER

Elevated concentrations of heavy metals, TRH and PAH including benzo(a)pyrene were detected in in the single onsite monitoring well MW1, as identified in Section 8.3.2. The identified heavy metals are considered indicative of background (regional groundwater quality) conditions; however, the TRH and PAH contamination in groundwater are thought to represent impacts from former and existing UPSS infrastructure identified at the site. Further investigation will be required to delineate the extent of the groundwater impacts and to inform the remedial action plan for the site. This will require the installation of an additional three groundwater monitoring wells to adequately characterise both up-gradient and down-gradient groundwater and flow direction and quality.

9.4 ASBESTOS RISK

While no soil borehole samples tested positive for asbestos in fill materials beneath the building slab, potential existing building materials (i.e. fibrous cement sheet roofing), identified on the warehouse covering the site, may potentially contain asbestos and therefore may require management for any planned demolition works.

El also has no knowledge of any Hazardous Materials Survey (HMS) for the site. A HMS should be completed prior to demolition of existing structures. If asbestos is identified, an Asbestos Clearance Certificate is to be prepared by an appropriately licenced contractor to ensure that any hazardous materials are adequately managed before and during demolition to prevent the spreading of contamination and potential health risk to site workers and surrounding areas.

Any demolition works are to be in accordance with Code of Practice for the Safe Removal of Asbestos in Workplaces (Ref. Safe Work Australia, 2011). Following any demolition works, prior to the commencement of any construction activities. A visual inspection of all fill soils across the site should be conducted by a qualified environmental consultant post building demolition, and all wastes designated for offsite disposal to be classified in accordance with the NSW waste classification guidelines.

10. CONCLUSIONS

The land parcel known as 36 Lonsdale Street, Lilyfield was the subject of a Detailed Site Investigation in order to assess the environmental conditions and the potential for on-site contamination associated with the identified current and former land uses. Based on the findings of this assessment and within the limitations of normal environmental investigations (Section 12), El concluded that:

- The site comprises a 0.96 hectare area occupied by a single level brick warehouse and offices. The property was bound directly to the east by retail, residential areas to the west and south, while to the north is the City West Link roadway and the Metro Light Rail Line.
- A previous Preliminary Site Investigation Report had been completed by EI in February 2015 (Ref. E22390 AA Rev 1), which indicated that the site has been subject to some commercial/industrial use since at least 1917 and included UST filling points on Lonsdale Street.
- Soil sampling and testing were conducted at seven borehole locations down to a maximum depth of 1.5 mBGL.
- The sub-surface layers comprised fill materials of various constituents to a maximum depth of 1.2 mBGL, including minor ash and hydrocarbon odours. The overall geological configuration within the site was anthropogenic fill underlain by Hawkesbury Sandstone bedrock.
- Groundwater was encountered at approximately 1.8 mBGL during sampling single groundwater monitoring event on 9.3.2015.
- Laboratory testing of selected soil samples from both the fill and undelying natural soils indicated exceedances of the adopted health-based investigation/screening levels in relation to the following analytes:
 - The heavy metals copper and zinc at concentrations exceeding adopted ecological criteria in site fill;
 - B(α)P TEQ exceedances in sampling location BH2 and BH6 within the fill layer;
 - Benzo(a)pyrene in fill at BH2, BH5 and BH6 exceeding ecological criteria; and
 - Total recoverable hydrocarbon (TRH) fraction F3 exceeding the ecological criterion in fill at BH2.
- Testing of groundwater sampled at MW1 identified concentrations in excess of the adopted groundwater investigation criteria:
 - The heavy metals arsenic, chromium, nickel and zinc;
 - TRH fraction F1; and
 - PAH benzo(a)pyrene concentrations.

In summary, soil impacts were identified as being constrained within the fill layer at locations BH2, BH5 and BH6, which may have been present in the fill prior to importation to the site, or may have resulted from past, on site activities.

Groundwater was found to be generally consistent with regional impacts in the Sydney, urban-industrial setting with regards to heavy metals; however, TRH F1, PAH and VOC were also potentially identified. Further investigation and assessment of groundwater after the demolition stage is considered warranted to delineate the extent of impacted groundwater, assess risks to site users and/or the environment and to inform any subsequent remedial action, if required.

In conclusion and within the Statement of Limitations, EI concludes that the site can be made suitable for the proposed development, subject to the recommendations provided. Site contamination issues can be managed through the development application process in accordance with the State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land and the Leichhardt Municipal Council Contaminated Land Policy.

11. RECOMMENDATIONS

It is assumed that during the proposed construction of a basement level car park as part of the development, all fill and residual soil materials will be removed from the site, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site will be made suitable for the proposed residential development on completion of the following recommendations:

- 1. Preparation of a Remedial Action Plan (RAP) to outline remediation requirements for contaminated soils and groundwater. The RAP should include further soil and groundwater investigations to close outstanding data gaps, including:
 - a) Remediation and validation of soils surrounding all identified UPSS infrastructure;
 - b) Remediation, waste classification of impacted soils from the UPSS areas and other areas of the site;
 - c) Installation of three additional groundwater wells with at least one additional round of groundwater sampling and laboratory analysis for the relevant chemicals of concern;
 - d) A well elevation survey followed by an assessment of hydraulic gradient, aquifer hydraulic conductivity and groundwater flow direction; and
 - e) An assessment of risks to site users and/or the environment, should groundwater contamination be confirmed.
- 2. Due to the restricted site access caused by the presence of tenants and structures, additional works required as part of the RAP should be conducted once the site has either been vacated or once demolition of structures has been completed.
- 3. Any material being removed from site (including virgin excavated natural materials or VENM) must be classified for off-site disposal with an accompanying Waste Classification Certificate provided by a suitably qualified and experienced environmental scientist, in accordance the EPA (2014) Waste Classification Guidelines.
- Any material being imported to the site should be assessed (validated) for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended land use or be certified in accordance with EPA (2014) as VENM or ENM.
- 5. Any dewatering activity necessary for excavation of basement car parking will require the appropriate approvals from Council and Sydney Water including ongoing groundwater disposal monitoring.
- 6. Validate that remediated areas are left free of contamination by comparing analytical results for excavation surfaces and any backfill material, against the adopted Remediation Criteria.
- 7. Preparation of a final site validation report by a qualified environmental consultant, certifying the suitability of the site for the proposed development.

12. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Ozzy States Pty Ltd , who is the only intended beneficiary of El's work. The scope of the investigations carried out for the purpose of this report is limited to those agreed with Mr Remolo Negro in the DSI proposal (ref: P12963.1) on 23.02.2015.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling locations chosen to be as representative as possible under the given circumstances.

El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

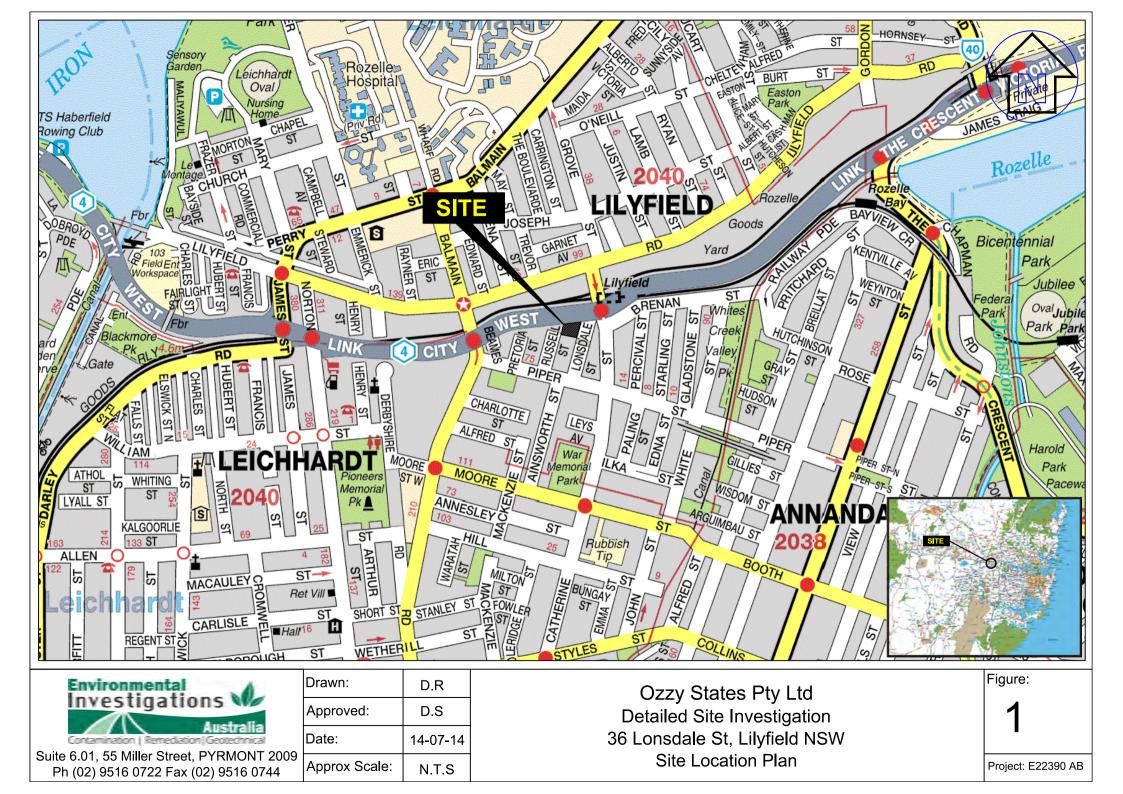
El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

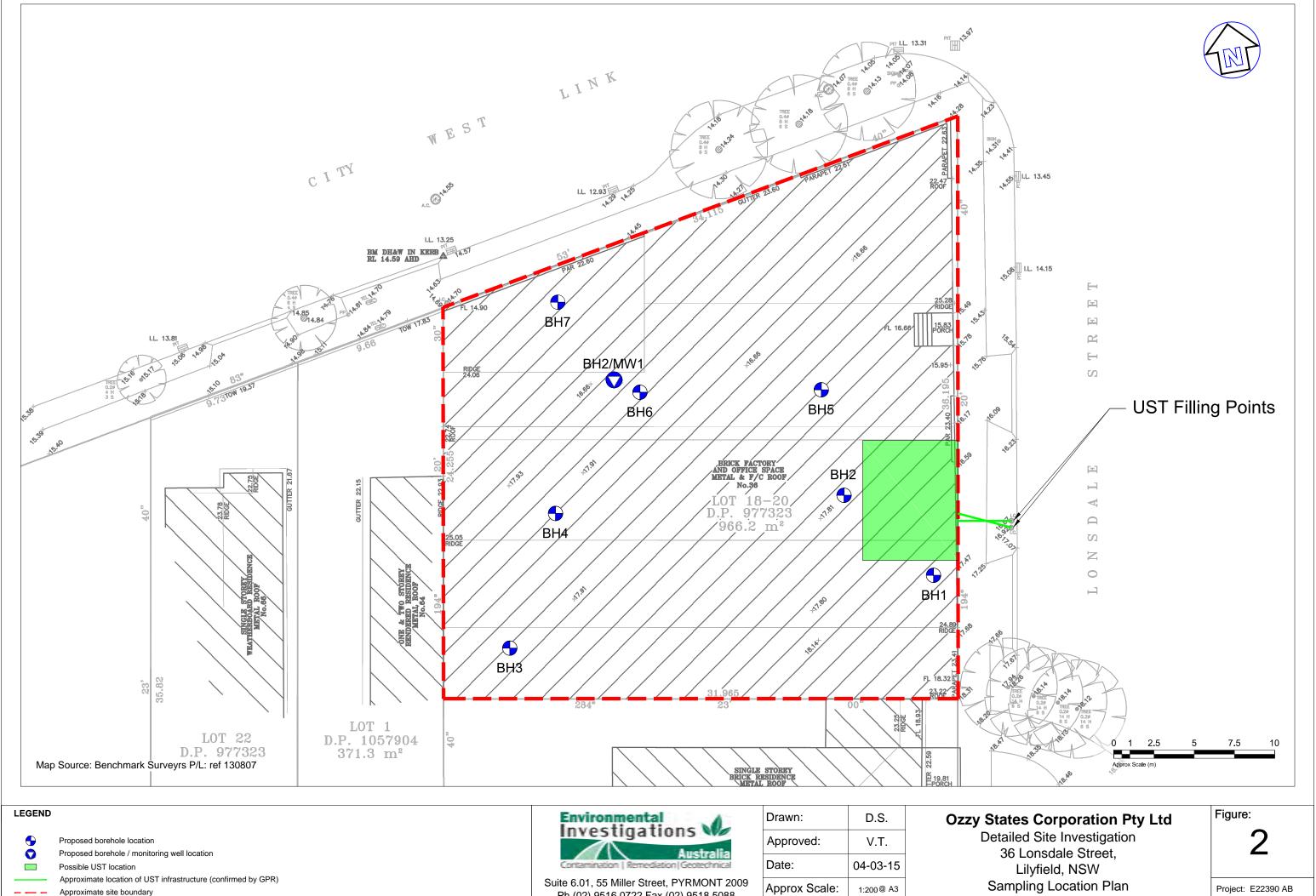
REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) Soil Investigation Levels for Urban Development Sites in NSW, in Guidelines for the NSW Site Auditor Scheme, 2nd Edn., NSW Dept. of Environment and Conservation, DEC 2006/121, April 2006.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2009) Waste Classification Guidelines, Department of Environment, Climate Change and Water, New South Wales, DECCW 2009/806, December 2009.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- Environmental Investigations (2015) Preliminary Site Investigation, 36 Lonsdale Street, Lilyfield, NSW, Report No. E22390 AA Rev 1, dated 10 February 2015 – Environmental Investigations Australia Pty Ltd
- EPA (2014) Technical Note: Investigation of Service Station Site Environment Protection Authority of New South Wales, EPA 2014/0315, April 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- NUDLC (2012) Minimum Construction Requirements for Water Bores in Australia, Third edition, National Uniform Drillers Licensing Committee 2011.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

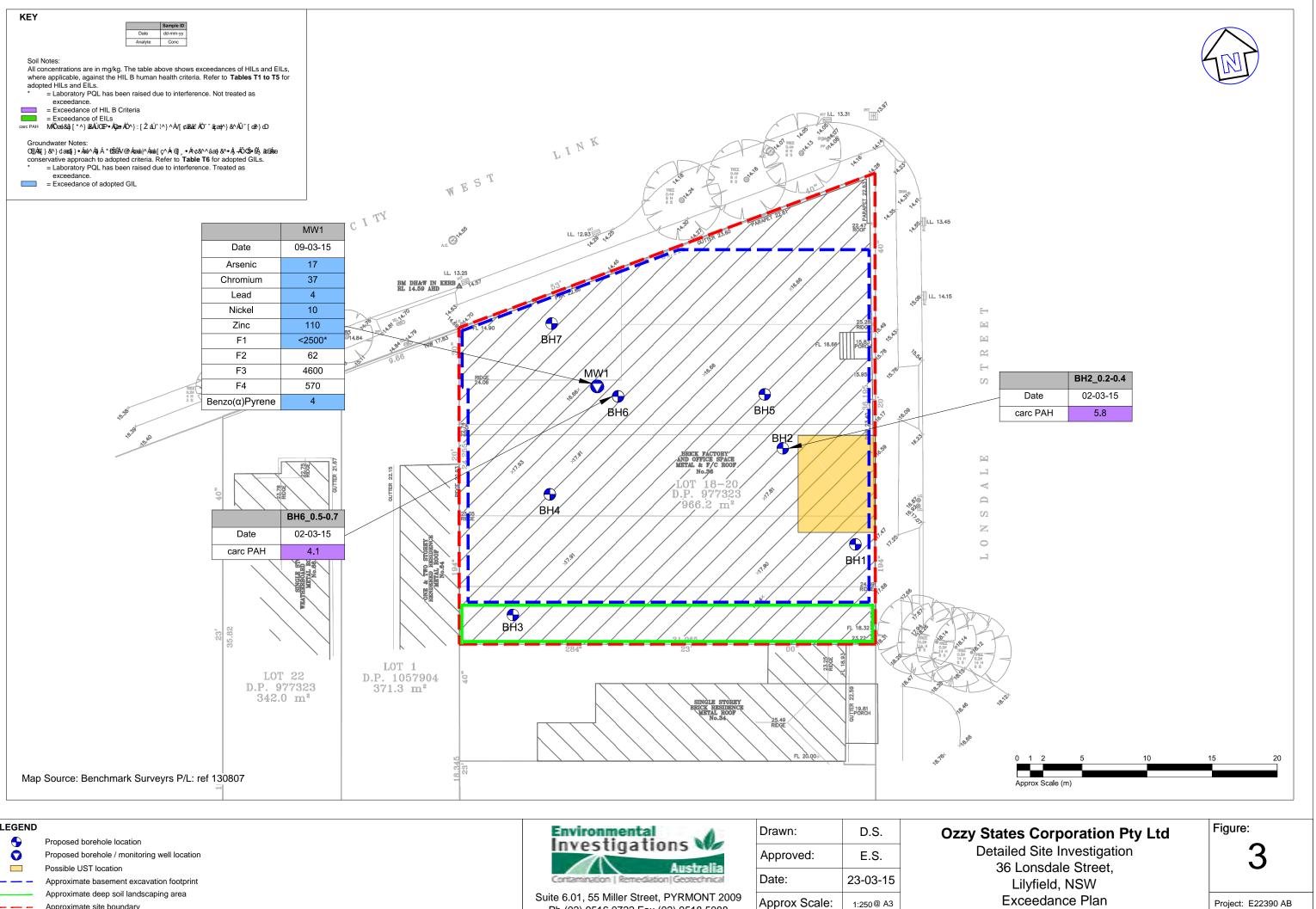
ABBREVIATIONS

A CN4	Askastas santaining motorials
ACM	Asbestos-containing materials
ASS	Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
	Agriculture and Resource Management Council of Australia and New Zealand
B(a)P	Benzo(a)Pyrene
BH	Borehole
BTEX	Benzene, Toluene, Ethyl benzene, Xylene
COC	Chain of Custody
CSM	Conceptual Site Model
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EPA	Environment Protection Authority
F1	TRH C6 – C10 less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH >C10 – C16 less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
DNAPL	Dense, non-aqueous phase liquid
m	Metres
m AHD	Metres Australian Height Datum
m BGL	Metres Below Ground Level
mg/m³	Milligrams per cubic metre
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
рН	Measure of the acidity or basicity of an aqueous solution




PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
USEPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)
VOCCs	Volatile Organic Chlorinated Compounds (a sub-set of the VOC analysis suite)

FIGURES



Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Drawn:	D.S.	Ozzy
Approved:	V.T.	C
Date:	04-03-15	
Approx Scale:	1:200@ A3	

LEGEND		Environmental	Drawn:	D.S.	Ozzy State
	Proposed borehole location Proposed borehole / monitoring well location Proposed borehole / monitoring well location	Investigations	Approved:	E.S.	Detail
	Possible UST location Approximate basement excavation footprint	Contamination Remediation Geotechnical	Date:	23-03-15	36
	Approximate deep soil landscaping area Approximate site boundary	Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088	Approx Scale:	1:250@ A3	E

	BH2_0.2-0.4
Date	02-03-15
carc PAH	5.8

TABLES

Table T1 – Soil Analytical Results for Heavy Metals

Sample ID	Arsenic ¹ (mg/kg)	Cadmium (mg/kg)	Chromium ² (mg/kg)	Copper (mg/kg)	Lead ³ (mg/kg)	Mercury ⁴ (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)
BH1_0.2-0.4	6	1.1	8	120	230	0.37	15	330
BH2_0.2-0.4	6	1.8	8	89	220	0.10	10	480
BH2_0.6-0.8	<3	<0.3	5	5	14	0.01	1	49
BH3_0.2-0.4	<3	<0.3	7	68	17	0.04	7	33
BH4_0.2-0.4	<3	<0.3	14	85	2	<0.01	7	8
BH5_0.2-0.4	39	<0.3	9	37	32	0.16	1	29
BH5_0.6-0.8	29	0.4	14	79	34	0.16	10	230
BH5_1.3-1.5	<ও	<0.3	5	3	4	0.01	<0.5	6
BH6_0.2-0.4	8	0.4	10	33	100	0.24	4	180
BH6_0.5-0.7	9	0.5	8	30	110	0.51	4	140
BH7_0.15-0.3	<3	<0.3	2	28	2	<0.01	3	6
	SIL							
HIL B	500	150	500	30000	1200	120	1200	60000
EIL⁵	100 ⁶	NR	190	95	1100	NR	30	70

Notes:

SIL HIL HIL B	Soil investigation level. Health-based investigation levels (mg/kg) as per NEPM 1999 Schedule B1 2013 Amendment. Residential with minimal oppurtunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
	Residential with minimal oppurtunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
HIL B	space such as high-rise buildings and apartments.
EIL	Ecological Investigation Levels (mg/kg) as per NEPM. As the physiochemical properties of soil onsite was not tested, the most conservative Added Contaminant Limits values provided in NEPM were adopted.
NR	No recommended soil assessment criteria are currently available for the indicated parameter(s).
NA	Sample 'not analysed'
1	Arsenic - HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer to NEPM 1999 Schedule B7 2013 Amendment).
2	HILs are for Chromium VI while EILs for Chromium III. Concentrations reported were total Chromium including both VI and III. Speciation were not conducted as total Chromium concentrations reported were well under SILs.
3	Lead - HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
4	Value shown is representative of inorganic mercury as provided in Table 1A(1) (refer to NEPM 1999 Schedule B1 2013 Amendment).
5	In the absence of site specific soil data, added contaminant limits as described within the NEPM 2013 have been applied, and are considered to be conservative.
6	Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to NEPM 1999 Schedule B5c 2013 Amendment.

Table T2 – Soil Analytical Results for TPH, BTEX, and Naphthalene

Sample Depth			Total Petroleum Hydrocarbons (mg/kg)					Benzene	Toluene	Ethyl	Total	Naphthalene
ID	(m BGL)	Primary Soil Texture	F1 ¹	F2 ²	F2 minus Naphthalene	F3 ³	F4 ⁴	(mg/kg)	(mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	(mg/kg)
BH1_0.2-0.4	0.2-0.4	FILL: Gravelly SAND (mild hydrocarbon odour & trace ash)	<25	<25	<25	220	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH2_0.2-0.4	0.2-0.4	FILL: Gravelly SAND (mild hydrocarbon odour & trace ash)	<25	<25	<25	1300	590	<0.1	<0.1	<0.1	<0.3	0.2
BH2_0.6-0.8	0.6-0.8	SANDSTONE	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH3_0.2-0.4	0.2-0.4	SAND	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH4_0.2-0.4	0.2-0.4	SAND	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH5_0.2-0.4	0.2-0.4	Clayey SAND	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH5_0.6-0.8	0.6-0.8	Clayey SAND	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH5_1.0-1.2	1.0-1.2	Clayey SAND (mild hydrocarbon odour & staining)	<25	<25	<25	130	<120	<0.1	0.1	<0.1	<0.3	<0.1
BH5_1.3-1.5	1.3-1.5	SANDSTONE	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH6_0.2-0.4	0.2-0.4	FILL: Gravelly SAND (trace ash)	<25	<25	<25	160	<120	<0.1	<0.1	<0.1	<0.3	<0.1
BH6_0.5-0.7	0.5-0.7	FILL: Gravelly SAND (trace ash)	<25	<25	<25	210	<120	<0.1	0.1	<0.1	<0.3	<0.1
BH7_0.15-0.3	0.15-0.3	FILL: SAND	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1
	-				SIL					-	-	-
HSL A & B (SAND)	0 m to <1 m	Sand	45	NR	110	NR	NR	0.5	160	55	40	3
HSL A & B (CLAY)	0 m to <1 m	Clay	50	NR	280	NR	NR	0.7	480	NL	110	5
5 01 ⁵		Coarse grained	180*	120*	NR	300	2800	50	85	70	105	170
ESL⁵		Fine grained	100	120		1300	5600	65	105	125	45	170
Management	l imits ⁶	Coarse grained	700	1000	NR	2500	10000	NL	NL	NL	NL	NR
Management Limits ⁶		Fine grained	800	1000		3500	10000	NL	NL	NL	NL	

Notes:

NOLES.	
	Highlighted concentration value indicates exceedance of ESL.
SIL	Soil investigation level.
HSL	Health screening level as per NEPM 1999 Schedule B1 2013 Amendment. Different HSLs apply based on the primary soil texture encountered.
HSL A & B	Low to high density residential settings.
ESL	Ecological screening levels (mg/kg). ESL adopted is for urban residential and public open space development.
Management limits	As per Table 1 B(7) in NEPM 1999 Schedule B1 2013 Amendment.
NL	'Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical, i.e. where the soil vapour is at equilibrium with the
	then the soil vapour source cannot exceed a level that would result in the maximum allowable vapour risk for the given scenario, therefore the limit is not limiting.
NR	No recommended soil assessment criteria are currently available for the indicated parameter(s).
NA	Sample 'not analysed'
<pql< td=""><td>Concentrations of analytes were below laboratory Practical Quantification Limit.</td></pql<>	Concentrations of analytes were below laboratory Practical Quantification Limit.
1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
2	F2 refers to Total Recoverable Hydrocarbon >C10-C16 fraction.
3	F3 refers to Total Recoverable Hydrocarbon >C16-C34.
4	F4 refers to Total Recoverable Hydrocarbon >C34-C40.
5	ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.
6	Management limits are applied after consideration of relevant ESLs and HSLs. BTEX and Naphtalene are not subtracted from the relevant fractions to obtain F1 and F2 when considering management limits.

the pore water,

nits.

Sample	Polyaromatic Hydrocarbons (mg/kg)						
ID	Carcinogenic PAHs (as Benzo[a]pyrene TEQ)	Benzo(a)pyrene	Total PAHs				
BH1_0.2-0.4	0.8	0.5	4				
BH2_0.2-0.4	5.8	4	49				
BH2_0.6-0.8	1.8	1.3	15				
BH3_0.2-0.4	<0.3	<0.1	<0.8				
BH4_0.2-0.4	<0.3	<0.1	<0.8				
BH5_0.2-0.4	0.9	0.6	5				
BH5_0.6-0.8	1.8	1.3	12				
BH5_1.0-1.2	1.5	1	11				
BH5_1.3-1.5	<0.3	<0.1	<0.8				
BH6_0.2-0.4	1.3	0.9	9				
BH6_0.5-0.7	4.1	3	28				
BH7_0.15-0.3	<0.3	<0.1	<0.8				
	SIL						
HIL B	4	NR	400				
ESL	NR	0.7	NR				

Notes:

	Concentration value indicates exceedance of adopted HIL.
	Concentration exceeds adopted ESL.
SIL	Soil investigation level.
HIL	Health-based investigation level (mg/kg).
HIL B	Residential with minimal oppurtunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
ESL	Ecological screening levels (mg/kg) as per NEPM 1999 Schedule B1 2013 Amendment.
NR	No recommended soil assessment criteria are currently available for the indicated parameter(s).

Sample ID	Asbestos (% w/w)
BH1_0.2-0.4	<0.01
BH2_0.2-0.4	<0.01
BH3_0.2-0.4	<0.01
BH4_0.2-0.4	<0.01
BH5_0.2-0.4	<0.01
BH6_0.2-0.4	<0.01
BH6_0.5-0.7	<0.01
BH7_0.15-0.3	<0.01
	SIL
HSL B	0.04%

Notes:

Soil investigation level.

HSL Health screening level as per NEPM 1999 Schedule B1 2013 Amendment.

HSL B Residential with minimal oppurtunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

Sample					ОСР				Total OPPs	Total PCBs
ID	Aldrin (mg/kg)	Dieldrin (mg/kg)	Endrin (mg/kg)	Chlordane (mg/kg)	Heptachlor (mg/kg)	DDT (mg/kg)	DDD (mg/kg)	DDE (mg/kg)	(mg/kg)	(mg/kg)
BH1_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH2_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH3_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH4_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH5_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH6_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH6_0.5-0.7	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
BH7_0.15-0.3	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	ND	<1
		-			SIL		•	•	-	-
HIL B	Tot	al 10	20	90	10		Total 600		NR	1
EIL	NR	NR	NR	NR	NR	180	NR	NR	NR	NR

Notes:

SIL Soil investigation level.

HIL Health-based investigation level (mg/kg) as per NEPM 1999 Schedule B1 2013 Amendment.

HIL B Residential with minimal oppurtunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

EIL Ecological Investigation Level (mg/kg) as per NEPM as per NEPM 1999 Schedule B1 2013 Amendment.

NR No recommended soil assessment criteria are currently available for the indicated parameter(s).

ND Concentrations of all tested analytes in this group was under the laboratory practical quantifation limit.

NA Sample not tested for analyte.

	Heavy Metals								BTEX			TRH				РАН			
Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Total Xylene	F1*	F2**	F3 (>C ₁₆ -C ₃₄)	F4 (>C ₃₄ -C ₄₀)	Benzo (a) pyrene	Naphthalene	Total PAH
MW1	17	0.1	37	1	4	<0.1	10	110	<25	<25	<25	<75	<2500	62	4600	570	4	0.3	49
GIL																			
GIL (Marine Waters)	NR	0.7 ³	27 (Cr III) 4.4 (Cr VI)	1.3	4.4	0.1 ³	7	15 ¹	500 ¹	NR	NR	NR	NR	NR	NR	NR	NR	16	NR
GIL (Fresh Waters)	24 (As III) 13 (As V)	0.2	- (Cr III) 1 (Cr VI) ¹	1.4	3.4	0.06 ³	11	8 ¹	950	NR	NR	350 (o- xylene) 200 (p- xylene)	NR	NR	NR	NR	NR	50 ¹	NR
HSL A & B ²	NR	NR	NR	NR	NR	NR	NR	NR	800	NL	NL	NL	1000	1000	NR	NR	NR	NL	NR
ADW	10	2	50 (as CrVI)	2000	10	1	20	NR	1	800	300	600	NR	NR	NR	NR	0.01	NR	NR
Notes: All results are in u GIL ADW HSL NL	Concentration Groundwater (<i>B1</i>) - Guide systems for NEPM (2011) Health-base 'Not Limiting vapour is at	er Investigat eline on Inv water table 3) Groundw d Screenin d Screenin i' If the deri equilibrium	estigation Lev being 2 m - < vater Investiga g Level. ved soil vapou with the pore	GIL values els for Soil 4 m below tion Levels r limit exce	sourced fr and Grour the final sla for drinkin	om <i>Nationa</i> ndwater, (Ni ab level. g water qua bil concentra	EPC) Inves ality, based ation at whi	stigation le I on Austra ich the por	vels apply f lian Drinkir e water pha	to Marin W ng Water G ase cannot	aters and F uidelines (dissolve a	<i>mination) Measu</i> Fresh Waters for NHMRC 2011). ny more of the ir mum allowable v	typical sligh	ntly-moder emical, i.e.	ately distur	bed soil			
NR ND * ** 1 2	No recommo Concentratio To obtain F To obtain F Indicated the	vapour is at equilibrium with the pore water, then the soil vapour source cannot exceed a level that would result in the maximum allowable vapour risk for the given scenario, therefore the limit is not limiting. No recommended groundwater assessment criteria are currently available for the indicated parameter(s). Concentrations of all tested analytes in this group was under laboratory's practical quantifation limit. To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction. To obtain F2 subtract Naphthalene from the >C10-C16 fraction. Indicated threshold value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance. NEPC (2013) Table 1A(4) Groundwater HSL A & HSL B for vapour intrusion at the contaminant source depth ranges in sand, which is consistent with the groundwater sampling depth and soil																	

3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

								VOCs							
Sample ID	Trichloroethene (Trichloroethylene,TCE)	Tetrachloroethene (Perchloroethylene,PCE)	Vinyl chloride (Chloroethene)	trans-1,2-dichloroethene	1,1-dichloroethene	cis-1,2-dichloroethene	Chloroform (THM)	1,2-dichloroethane	1,1,1-trichloroethane	Bromodichloromethane (THM)	1,1,2-trichloroethane	Bromoform (THM)	1,3,5-trimethylbenzene	1,2,4-trimethylbenzene	Naphthalene
MW1	<25	<25	<15	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
							GI	L							
GIL (Marine Water)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	1900	NR	NR	NR	50
HSL A & B ¹	NR	NR	NR	NR	NR	NR	NR	NR	800	NR	NR	NR	NR	1000	1000
ADW	NR	50	0.3	NR	30	60	3	0.3	NR	NR	NR	NR	NR	NR	NR
OSWER ²	5	11	2.5	180	190	210	80	23	3100	21	41	0.08	25	24	150

Notes: All results are in units of μ g/L.

GIL Groundwater Investigation Level. All GIL values sourced from National Environment Protection (Assessment of Site Contamination) Measure 1999 – Amendment 2013, Schedule (B1) - Guideline on Investigation Levels for Soil and Groundwater, (NEPC) Investigation levels apply to Marine Waters for typical slightly-moderately disturbed systems.

ADW NEPM (2013) Groundwater Investigation Levels for drinking water quality, based on Australian Drinking Water Guidelines (NHMRC 2011).

NR No groundwater assessment criteria are currently available for the indicated parameter(s).

NA Not analysed.

1 NEPC (2013) Table 1A(4) Groundwater HSL A & HSL B for vapour intrusion at the contaminant source depth ranges in sands 2m to <4m.

2 Target groundwater concentration correponding to indoor air concentrations associated with lifetime cancer risk, assuming the Soil Gas to Indoor Air Attenuation Factor = 0.001 and partitioning across the water table obeys Henry's Law. Vaues were adopted from Table 2b, "OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils", 2002. **Used as interim working criteria only.**

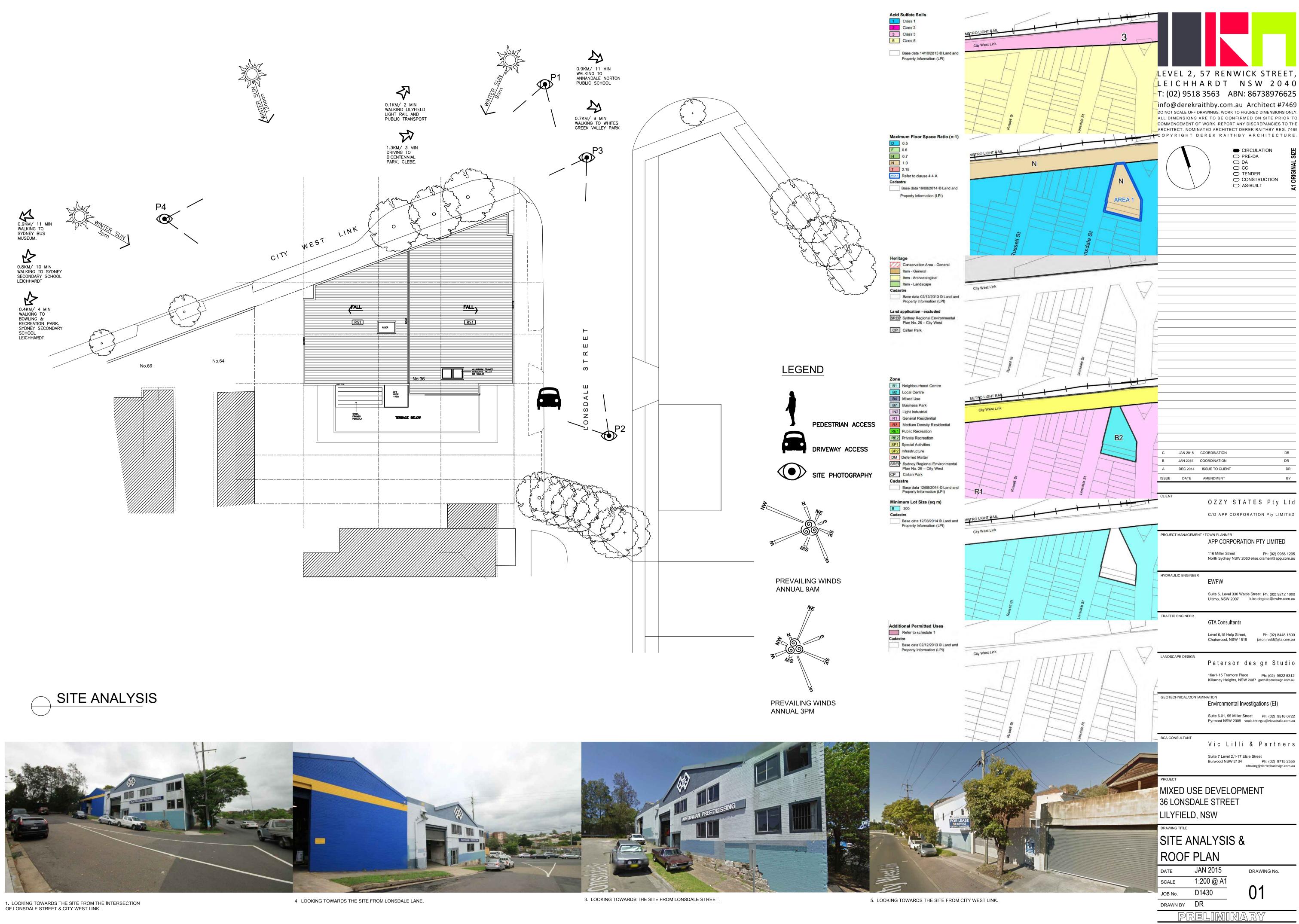
APPENDIX A Proposed Development Plans & Survey Plans

STREET DIRECTORY (www.street-directory.com.au)

STREET DIRECTORY (www.street-directory.com.au)

ARCHITECTURAL DRAWINGS

PROJECT#	DWG#	TITLE
D1430		


DWG#	TITLE	SCALE	ISSUE	DATE
$\begin{array}{l} DA & - \ 00 \\ DA & - \ 01 \\ DA & - \ 02 \\ DA & - \ 03 \\ DA & - \ 03 \\ DA & - \ 04 \\ DA & - \ 05 \\ DA & - \ 05 \\ DA & - \ 06 \\ DA & - \ 07 \\ DA & - \ 08 \\ DA & - \ 09 \\ DA & - \ 10 \\ DA & - \ 11 \\ DA & - \ 12 \\ DA & - \ 13 \\ DA & - \ 14 \\ DA & - \ 15 \\ DA & - \ 16 \\ DA & - \ 17 \\ DA & - \ 16 \\ DA & - \ 17 \\ DA & - \ 16 \\ DA & - \ 17 \\ DA & - \ 18 \\ DA & - \ 16 \\ DA & - \ 21 \\ DA & - \ 22 \\ DA & - \ 22 \\ DA & - \ 23 \\ DA & - \ 25 \\ DA & - \ 26 \\ \end{array}$	COVER SHEET SITE ANALYSIS / ROOF PLAN BASEMENT LEVEL 1 BASEMENT LEVEL 2 GROUND FLOOR PLAN FIRST FLOOR PLAN FIRST FLOOR PLAN NORTH & EAST ELEVATIONS SOUTH & WEST ELEVATIONS SOUTH & WEST ELEVATIONS SOUTH & WEST ELEVATIONS SECTIONS SITE MANAGMENT PLAN EXTERNAL FINISHES ARTIST IMPRESSION DIAGRAMS - SHADOWS DIAGRAMS - SHADOWS DIAGRAMS - SHADOWS DIAGRAMS - SHADOWS DIAGRAMS - SOLAR ACCESS DIAGRAMS - GFA DIAGRAMS - POS / LANDSCAPE / COS DETAILS - DRIVEWAY RAMP WINDOW / DOOR SCHEDULE ROOF PLAN	NTS @ A1 1:200 @ A1 1:100 @ A1 1:200 @ A1 1:100 @ A1 1:100 @ A1 1:100 @ A1 1:100 @ A1	00000000000000000000000000000000000000	JAN 2015 JAN 2015
	······		-	

MIXED USE DEVELOPMENT 36 LONSDALE ST, LILYFIELD

AERIAL PHOTOGRAPH (maps.six.nsw.gov.au)

AERIAL PHOTOGRAPH — 1943 (maps.six.nsw.gov.au)

T: (02) 9518 3563 ABN: 867389766 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

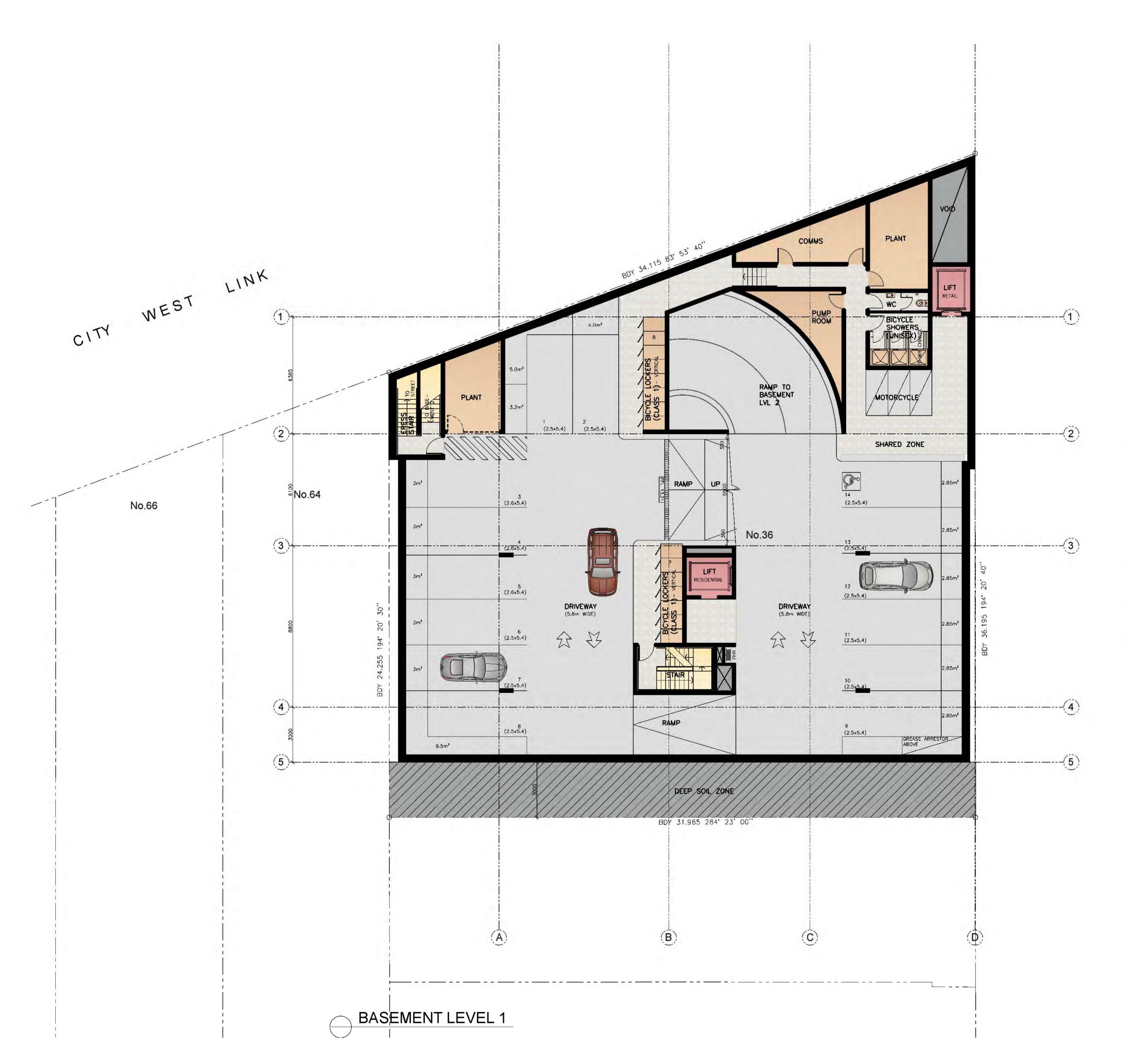
CIRCULATION
 PRE-DA
 DA
 CC
 TENDER
 CONSTRUCTION
 AS-BUILT

M

0 1451 2015 0		00
	COORDINATION	DR
	OORDINATION	DR
A DEC 2014 IS	SSUE TO CLIENT	DR
ISSUE DATE	AMENDMENT	BY
ISSUE DATE	AMENDMENT	BY
ISSUE DATE /	AMENDMENT	BY
	OZZY STATES Pty	
	OZZY STATES Pty	Ltd
		Ltd
	OZZY STATES Pty	Ltd
CLIENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM	Ltd
	OZZY STATES Pty C/O APP CORPORATION Pty LIM	L t d
CLIENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM	L t d
CLIENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99:	Ltd IITED) 56 1295
CLIENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED	Ltd IITED) 56 1295
CLIENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99:	Ltd IITED) 56 1295
CLIENT	OZZY STATES Pty C/OAPP CORPORATION Pty LIM / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app	Ltd IITED) 56 1295
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99:	Ltd IITED) 56 1295
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITE(116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app	Ltd ITED 56 1295 .com.au
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/OAPP CORPORATION Pty LIM / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app	L t d IITED) 56 1295 .com.au
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/OAPP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92:	L t d IITED) 56 1295 .com.au
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/OAPP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92:	L t d IITED) 56 1295 .com.au
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 Iuke.degioia@ewfw	L t d IITED) 56 1295 .com.au
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/OAPP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92:	L t d IITED) 56 1295 .com.au
CLIENT PROJECT MANAGEMENT	O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 Iuke.degioia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844	L t d IITED) 56 1295 .com.au 12 1000 .com.au
CLIENT PROJECT MANAGEMENT	O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 Iuke.degioia@ewfw GTA Consultants	L t d IITED) 56 1295 .com.au 12 1000 .com.au
CLIENT PROJECT MANAGEMENT	O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 luke.degioia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844	L t d IITED) 56 1295 .com.au 12 1000 .com.au
CLIENT PROJECT MANAGEMENT	O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 Iuke.degioia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844 Chatswood, NSW 1515 jason.rudd@g	L t d ITED 0 56 1295 .com.au 12 1000 .com.au
CLIENT PROJECT MANAGEMENT	O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 luke.degioia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844	L t d ITED 0 56 1295 .com.au 12 1000 .com.au
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/OAPP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 Iuke.degioia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844 Chatswood, NSW 1515 jason.rudd@g Paterson design Stu	L t d ITED 56 1295 .com.au 12 1000 .com.au 18 1800 ta.com.
CLIENT PROJECT MANAGEMENT	O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 Iuke.degioia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844 Chatswood, NSW 1515 jason.rudd@g	L t d ITED 0 56 1295 .com.au 12 1000 .com.au 48 1800 ta.com. d i o 22 5312
CLIENT PROJECT MANAGEMENT	OZZY STATES Pty C/O APP CORPORATION Pty LIM /TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 99: North Sydney NSW 2060elise.crameri@app EWFW Suite 5, Level 330 Waltle Street Ph: (02) 92: Ultimo, NSW 2007 luke.degicia@ewfw GTA Consultants Level 6,15 Help Street, Ph: (02) 844 Chatswood, NSW 1515 jason.rudd@g Paterson design Stu 16a/1-15 Tramore Place Ph: (02) 992	L t d ITED 0 56 1295 .com.au 12 1000 .com.au 48 1800 ta.com. d i o 22 5312

Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@elasutralia.com.au

BCA CONSULTANT Vic Lilli & Partners


> Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au

MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW

BASEMENT LEVEL 2

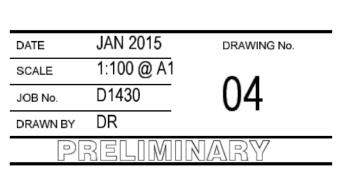
DRAWING TITLE

DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	00
JOB No.	D1430	02
DRAWN BY	DR	
P	RELIMI	NARY

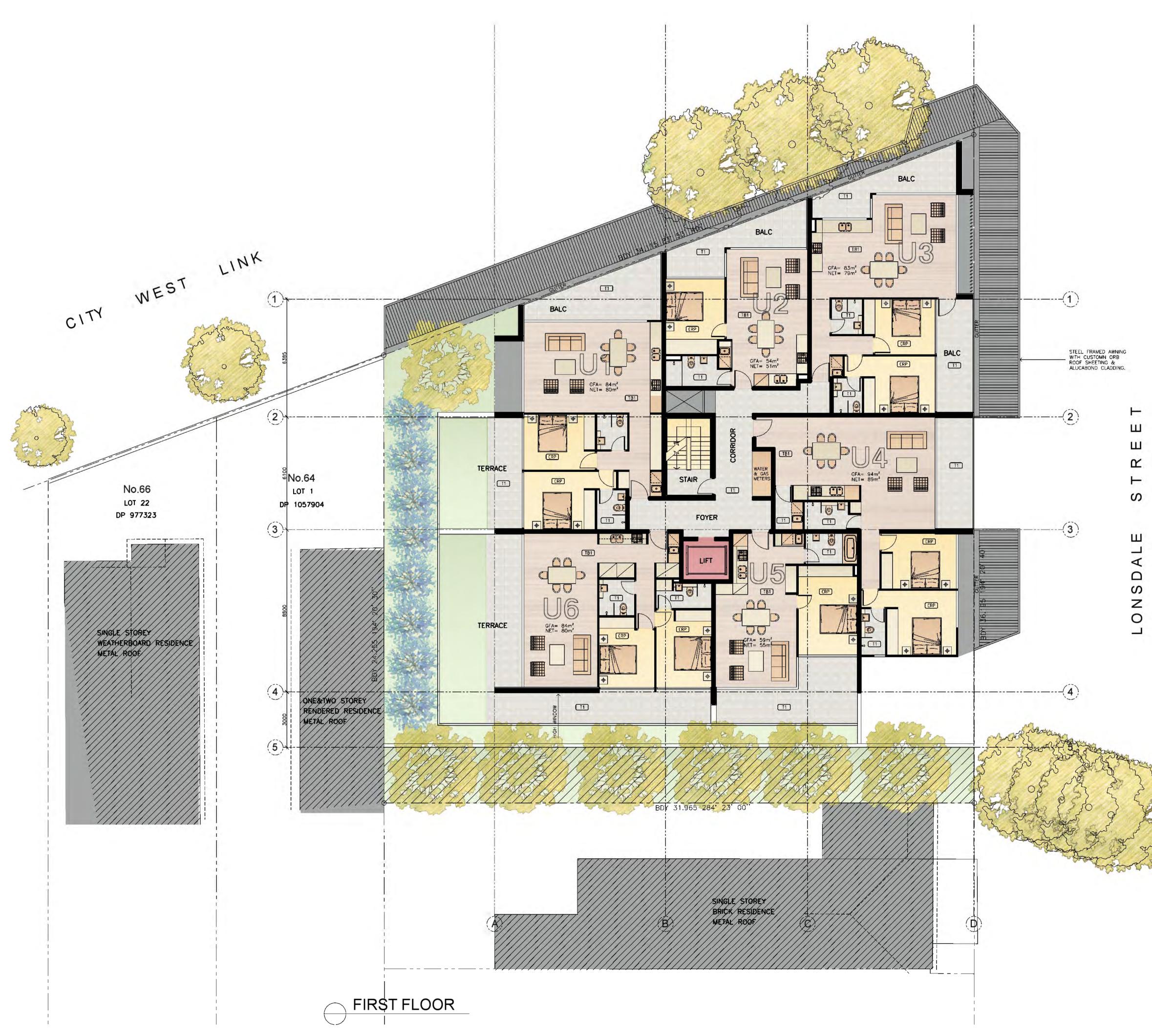
LONSDALE STREE

-

		DR DR
DEC 2014	ISSUE TO CLIENT	DR
	AMENDMENT	BY
ΝT	OZZY STATES Pty	Ltd
	C/O APP CORPORATION Pty LI	MITED
JECT MANAGEMENT	APP CORPORATION PTY LIMITE	D
	116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap	
AULIC ENGINEER		-
	EWFW	
	Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 luke.degioia@ewf	
FICENGINEER	GTA Consultants	
	Level 6,15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@	
SCAPE DESIGN		
	Paterson design St 16a/1-15 Tramore Place Ph: (02) 99	
	15a/1-15 Tramore Place Ph: (02) 99 Killarney Heights, NSW 2087 garth@pdsdesi	
FECHNICAL/CONTAN	Environmental Investigations (EI)	
	Suite 6.01, 55 Miller Street Ph: (02) 9: Pyrmont NSW 2009 voula.terlegas@elasu	
CONSULTANT	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu	itralia.com
CONSULTANT	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn	itralia.com
CONSULTANT	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu	rtralia.com
IECT	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 90 ntruong@dartechad	rtralia.com
ECT XED USE	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 93	e f S 715 2555
XED USE	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 99 ntruong@dartechad	e f S 715 2555
JECT XED USE LONSDAI LYFIELD, I	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 95 ntruong@dartechad	e f S 715 2555
LONSDAI YFIELD, I	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 99 ntruong@dartechad	e f S 715 2555
XED USE LONSDAI YFIELD, I	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 95 ntruong@dartechad	rtralia.con e f S 715 2555 esign.con
JECT XED USE LONSDAI LYFIELD, I WING TITLE ASEME TE JA ALE 1:1	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 97 ntruong@dartechad EDEVELOPMENT LE STREET NSW ENT LEVEL 1 N 2015 DRAWING No.	rtralia.con e ſ S 715 2555 resign.com
XED USE LONSDAI YFIELD, I ASEME TE JA	Suite 6.01, 55 Miller Street Ph: (02) 99 Pyrmont NSW 2009 voula.terlegas@eiasu Vic Lilli & Partn Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 99 ntruong@dartechad EDEVELOPMENT LE STREET NSW ENT LEVEL 1 NSW ENT LEVEL 1 N 2015 DRAWING No. 100 @ A1 430 03	rtralia.con e f S 715 2555 esign.con


LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 867389766 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

CIRCULATION
 PRE-DA
 DA


C CC TENDER CONSTRUCTION AS-BUILT

LEICHH T: (02) 95 info@derekr do not scale off d all dimensions commencement o architect. nomin	57 RENWICK STRE 57 RENWICK STRE ARDT NSW 20 18 3563 ABN: 867 aithby.com.au Architect # DRAWINGS. WORK TO FIGURED DIMENSION ARE TO BE CONFIRMED ON SITE PE F WORK. REPORT ANY DISCREPANCIES NATED ARCHITECT DEREK RAITHBY RE DEREK RAITHBY ARCHITEC) 4 0 38976 \$7469 NS ONLY. RIOR TO S TO THE EG: 7489 T U R E.
Λ	CIRCULATION O PRE-DA O DA O CC	1 ORIGINAL SIZE
\Box	O TENDER O CONSTRUCTION O AS-BUILT	A1 ORIGI
		_
		_
_		_
		_
C JAN 2015		
B JAN 2015		DR
B JAN 2015 A DEC 2014	COORDINATION ISSUE TO CLIENT AMENDMENT	DR DR BY
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT	DR DR BY
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT OZZY STATES Pty C/O APP CORPORATION Pty LI	DR DR BY
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT OZZY STATES Pty C/O APP CORPORATION Pty LI	DR DR BY Ltd MITED
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060clise.crameri@ap	DR DR BY L t d MITED
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060clise.crameri@ap	DR DR BY L t d MITED
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT OZZY STATES Pty C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap	DR DR BY L t d MITED 556 1295 sp.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060clise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9	DR DR BY L t d MITED 556 1295 sp.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEME HYDRAULIC ENGINEE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Iuke.degioia@ewf	DR DR BY L t d MITED 556 1295 pp.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEME HYDRAULIC ENGINEE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@	DR DR BY L t d MITED 956 1295 956 1295 956 1295 950 com.au 212 1000 w.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEME HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sign S t 16a/1-15 Tramore Place Ph: (02) 9	DR DR BY L t d MITED 556 1295 50.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 bgta.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT HYDRAULIC ENGINEER TRAFFIC ENGINEER HANDSCAPE DESIGN	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sign S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes	DR DR BY L t d MITED 556 1295 50.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 bgta.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEME HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sig n S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes TAMINATION Environmental Investigations (EI)	DR DR BY L t d MITED 556 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 ogta.com.au u d i 0 922 5312 ign.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT HYDRAULIC ENGINEER TRAFFIC ENGINEER HANDSCAPE DESIGN	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sign S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes	DR DR BY L t d MITED D 956 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 pgta.com.au u d i o 922 5312 ign.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT HYDRAULIC ENGINEER TRAFFIC ENGINEER HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sig n S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes TAMINATION Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9	DR DR BY L t d MITED ED 956 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 gta.com.au u d i 0 922 5312 ign.com.au 516 0722 stralia.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 9 Ultimo, NSW 1515 jason.rudd@ P a t e r s o n d e sign S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes FAMINATION Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9 Pyrmont NSW 2009 voula.terlegas@eiast V i c L i I i & P art r Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9	DR DR BY L t d MITED ED 956 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 ogta.com.au u d i O 922 5312 ign.com.au 516 0722 stralia.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060elise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 Luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sig n S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes FAMINATION Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9 Pyrmont NSW 2009 voula.terlegas@elast V i c L illi & P art n Suite 7 Level 2,1-17 Elsie Street	DR DR BY L t d MITED ED 956 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 ogta.com.au u d i O 922 5312 ign.com.au 516 0722 stralia.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT HYDRAULIC ENGINEER HYDRAULIC ENGINEER HYDRAULIC ENGINEER GEOTECHNICAL/CONT HYDRAULIC ENGINEER BCA CONSULTANT HYDRAULIC ENGINEER PROJECT MIXED US	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060olise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sig n S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes FAMINATION Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9 Pyrmont NSW 2009 voula.terlegas@eiast V i c L illi & P art r Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9 CV i c L illi & P art r Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9 CV i c L illi & P art r CV i c I illi & P art r CV	DR DR BY L t d MITED ED 956 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 ogta.com.au u d i O 922 5312 ign.com.au 516 0722 stralia.com.au
B JAN 2015 A DEC 2014 ISSUE DATE ISSUE DATE CLIENT ISSUE PROJECT MANAGEME INTRAFFIC ENGINEER TRAFFIC ENGINEER ISSUE GEOTECHNICAL/CONT ISSUE BCA CONSULTANT ISSUE PROJECT MIXED US ANDSCAPE DESIGN ISSUE DRAWING TITLE ISSUE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S P t y C/O APP CORPORATION Pty LI NT / TOWN PLANNER APP CORPORATION PTY LIMITE 116 Miller Street Ph: (02) 9 North Sydney NSW 2060olise.crameri@ap R EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9 Ultimo, NSW 2007 luke.degioia@ewf GTA Consultants Level 6, 15 Help Street, Ph: (02) 8 Chatswood, NSW 1515 jason.rudd@ P a t e r s o n d e sig n S t 16a/1-15 Tramore Place Ph: (02) 9 Killarney Heights, NSW 2087 garth@pdsdes FAMINATION Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9 Pyrmont NSW 2009 voula.terlegas@eiast V i c L illi & P art r Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9 CV i c L illi & P art r Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9 CV i c L illi & P art r CV i c I illi & P art r CV	DR DR BY L t d MITED ED 956 1295 pp.com.au 212 1000 w.com.au 212 1000 w.com.au 448 1800 ogta.com.au u d i O 922 5312 ign.com.au 516 0722 stralia.com.au

LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 867389766

info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

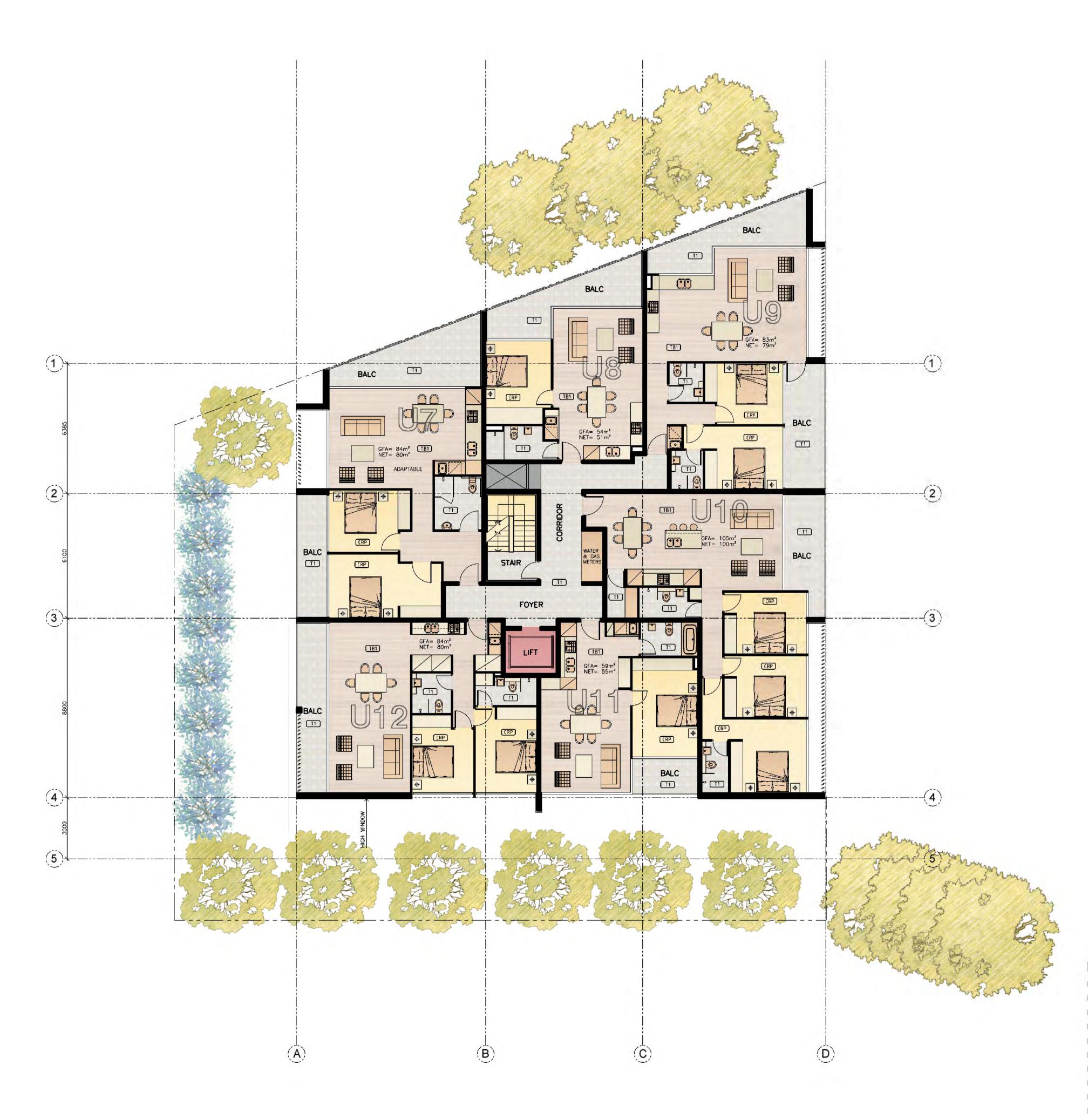
CIRCULATION
 PRE-DA
 DA
 CC
 TENDER
 CONSTRUCTION
 AS-BUILT

SIZE
GINAL
R
Ą

CLIENT OZZY STATES Pty Ltd C/O APP CORPORATION Pty LIMITED

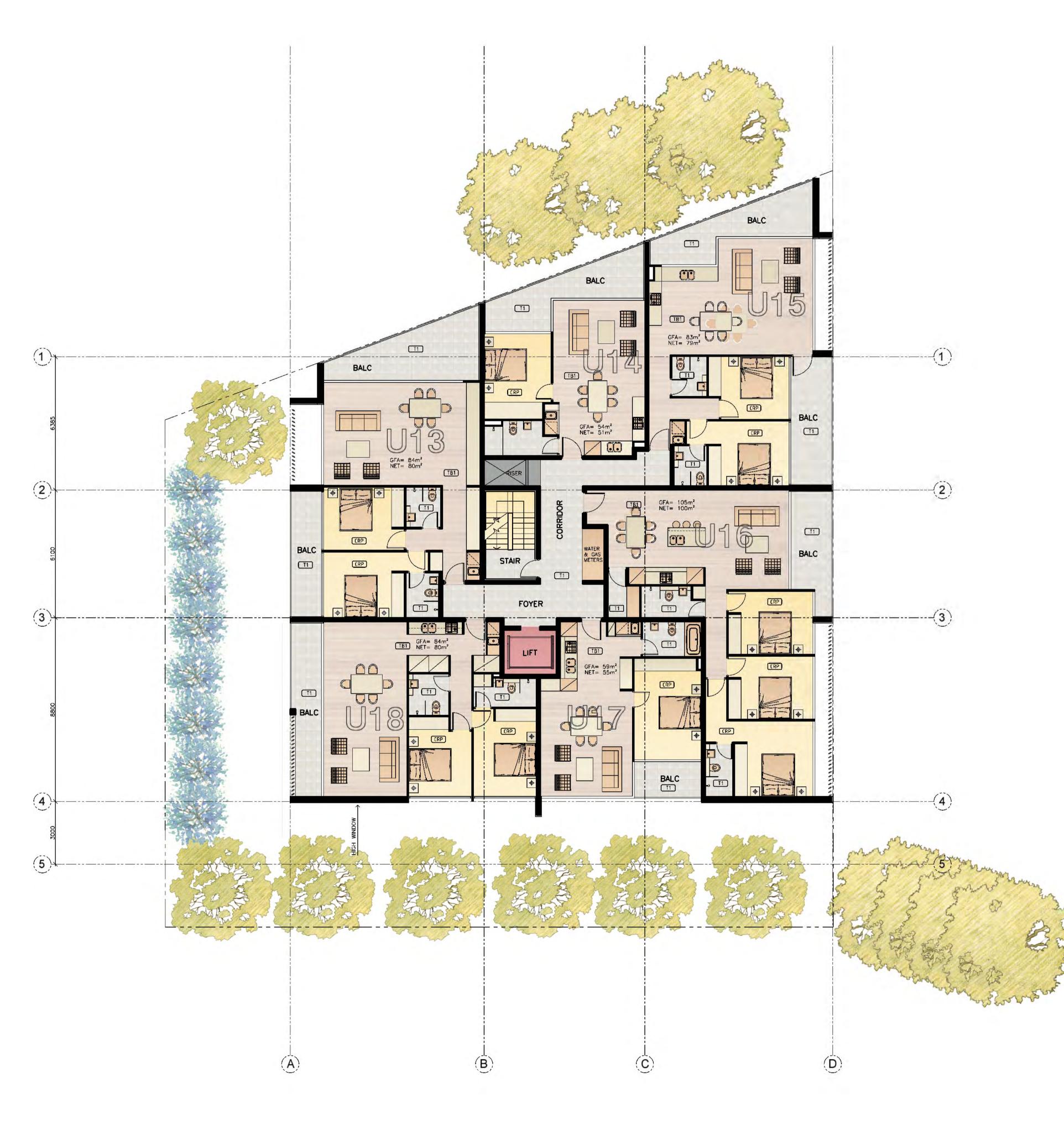
	C/O APP CORPORATION Pty LIMITED
PROJECT MANAGEMENT	
	APP CORPORATION PTY LIMITED
	116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060elise.crameri@app.com.au
HYDRAULIC ENGINEER	EWFW
	Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au
TRAFFIC ENGINEER	
	GTA Consultants
	Level 6,15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.a
LANDSCAPE DESIGN	
	Paterson design Studio
	16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au
GEOTECHNICAL/CONTAM	INATION
	Environmental Investigations (EI)
	Suite 6.01, 55 Miller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com
BCA CONSULTANT	
	Vic Lilli & Partners
	Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com
PROJECT MIXED USE	

MIXED USE DEVELOPMEN 36 LONSDALE STREET LILYFIELD, NSW


FIRST FLOOR PLAN

DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	05
JOB No.	D1430	05
DRAWN BY	DR	
P	RELIMI	INARY

LEGEND


RS1	COLOBOND 'SURFMIST' ROOF SHEETING.
([1]	WALL CLADING ALUCOBOND PANELS 'PURE WHITE'
BR1	WALL CLADING AUSTRAL BRICK 'OLD COLONIAL'
CL2	WALL CLADING ALUCOBOND 'ANTHRACITE GREY'
W1	WINDOWS & DOOR FRANING COLORBOND 'MONUMENT'
<u>S(1</u>)	METAL FRAMED SCREENS COLORBOND 'MONUMENT'
SC2	METAL PANELS COLORBOND 'MONUMENT'
LVR	METAL LOUVRES COLORBOND 'MONUMENT'
<u>⊺1</u>	EXTERNAL FLOOR TILES
BL1	BALUSTRADE, GLASS & STAINLESS STEEL
СРВ	CARPET.
TB1	TIMBER FLOORING.
UT1	SOLAR HOT WATER SYSTEM.

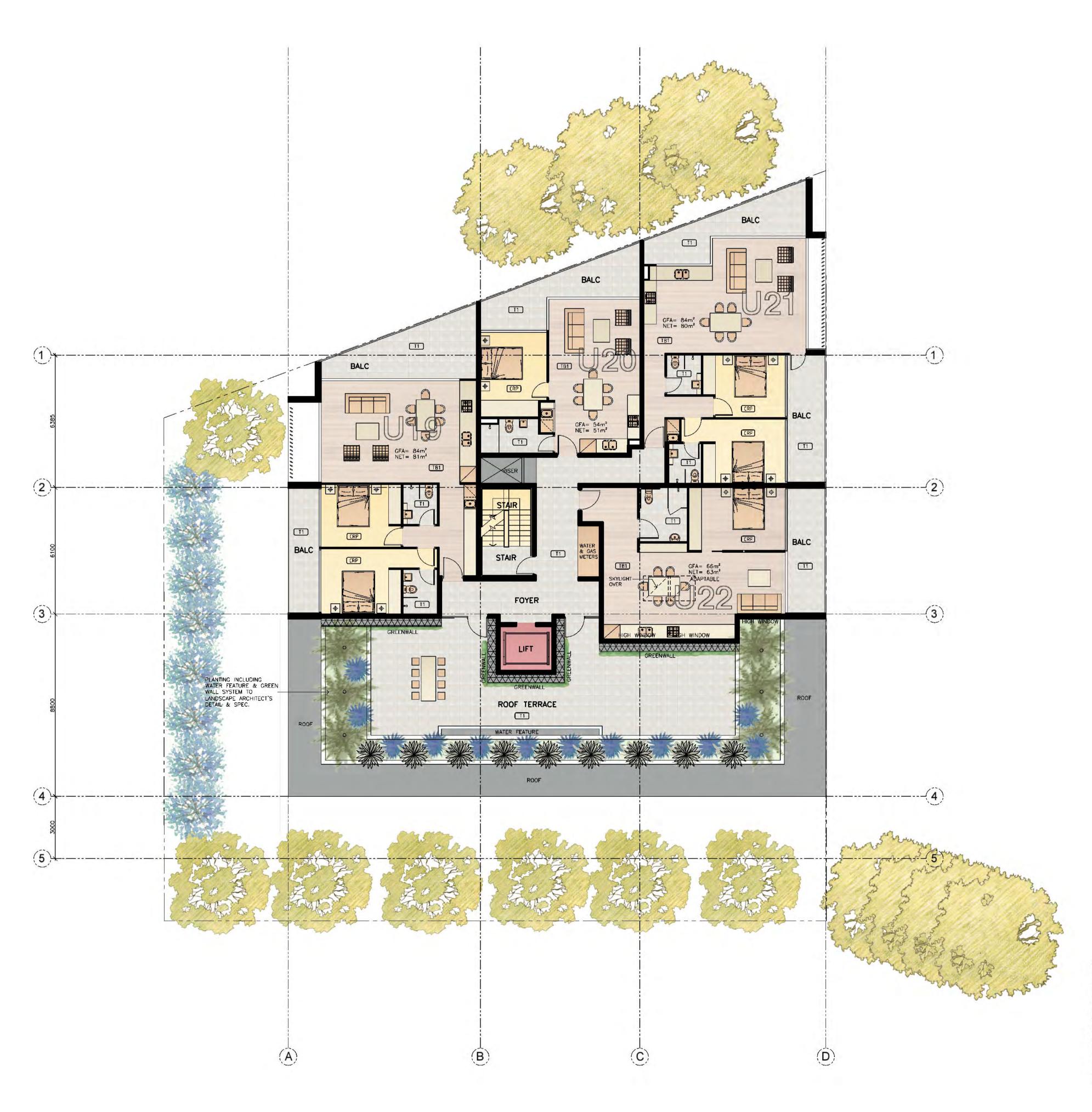
	CIRCULATI	
	O CONSTRUC AS-BUILT	CTION
C JAN 2014 B JAN 2014 A DEC 2014	COORDINATION COORDINATION ISSUE TO CLIENT	
ISSUE DATE	AMENDMENT OZZY STATES	Pty
PROJECT MANAGEME	C/O APP CORPORATION	
HYDRAULIC ENGINEER	North Sydney NSW 2060elise.cra	h: (02) 9 neri@aŗ
	EWFW Suite 5, Level 330 Waltle Street P Ultimo, NSW 2007 luke.degi	
	GTA Consultants	
TRAFFIC ENGINEER		
TRAFFIC ENGINEER	Chatswood, NSW 1515 jason Paterson design	: (02) 9
	Chatswood, NSW 1515 jason Paterson design 16a/1-15 Tramore Place Ph Killarney Heights, NSW 2087 garth AMINATION Environmental Investigation	n St (02) 9 @pdsdes ns(EI)
	Chatswood, NSW 1515 jason Paterson design 16a/1-15 Tramore Place Ph	n.rudd n S

LEGEND

RS1	COLOBOND 'SURFMIST' ROOF SHEETING.
(11)	WALL CLADING ALUCOBOND PANELS 'PURE WHITE'
BR1	WALL CLADING AUSTRAL BRICK 'OLD COLONIAL'
CL2	WALL CLADING ALUCOBOND 'ANTHRACITE GREY'
W1	WINDOWS & DOOR FRAMING COLORBOND 'MONUMENT'
<u>sc1</u>	METAL FRAMED SCREENS COLORBOND 'MONUMENT'
SC2	METAL PANELS COLORBOND 'MONUMENT'
LVR	METAL LOUVRES COLORBOND 'MONUMENT'
T1	EXTERNAL FLOOR TILES
BL1	BALUSTRADE, GLASS & STAINLESS STEEL
СРВ	CARPET.
TB1	TIMBER FLOORING.
[UT1]	SOLAR HOT WATER SYSTEM.

EVEL 2	57 RENWICK	CTDEET
EICHH	ARDT NSW	1 2040
The second se	8 3563 ABN: ithby.com.au Arch	
O NOT SCALE OFF DE	RAWINGS. WORK TO FIGURED I RE TO BE CONFIRMED ON	DIMENSIONS ONLY
RCHITECT. NOMINA	WORK. REPORT ANY DISCREATED ARCHITECT DEREK RA EREK RAITHBY ARC	ITHBY REG: 7469
1		
	O PRE-DA O DA O CC	INAL S
	O TENDER O CONSTR O AS-BUIL	
		4
		_
		_
C JAN 2015 B JAN 2015	COORDINATION	DR DR
B JAN 2015 A DEC 2014	COORDINATION ISSUE TO CLIENT	DR DR
B JAN 2015	COORDINATION	DR
B JAN 2015 A DEC 2014	COORDINATION ISSUE TO CLIENT	DR DR BY
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT	DR DR BY
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT OZZYSTATES C/O APP CORPORATIO	DR DR BY
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO	DR DR BY S Pty Ltd IN Pty LIMITED
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO	DR DR BY S Pty Ltd IN Pty LIMITED TY LIMITED Ph: (02) 9956 1295
B JAN 2015 A DEC 2014 ISSUE DATE	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/ TOWN PLANNER APP CORPORATION PT 116 Miller Street	DR DR BY S Pty Ltd IN Pty LIMITED TY LIMITED Ph: (02) 9956 1295
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/ TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2080elise.o EWFW Suite 5, Level 330 Waltle Stree	DR DR BY BY S Pty Ltd IN Pty LIMITED FY LIMITED Ph: (02) 9956 1295 crameri@app.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2060elise.o EWFW Suite 5, Level 330 Waltle Stree	DR DR BY SPtyLtd NPtyLIMITED TYLIMITED Ph: (02) 9956 1295 crameri@app.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/ TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2080elise.o EWFW Suite 5, Level 330 Waltle Stree	DR DR BY BY S Pty Ltd IN Pty LIMITED FY LIMITED Ph: (02) 9956 1295 crameri@app.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEMENT HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2080elise.o EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street,	DR DR BY BY S Pty Ltd IN Pty LIMITED FY LIMITED Ph: (02) 9956 1295 crameri@app.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEMENT HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2080elise.o EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street,	DR DR DR BY BY S P t y L t d IN P ty LIMITED TY LIMITED Ph: (02) 9956 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEMENT HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2080elise.o EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street,	DR DR DR BY BY C P t y L t d N P ty LIMITED TY LIMITED Ph: (02) 9956 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 son.rudd@gta.com.
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEMENT HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2060elise.o EWFW Suite 5, Level 330 Waltle Street Uttimo, NSW 2007 luke.de GTA Consultants Level 6, 15 Help Street, Chatswood, NSW 1515 ja	DR DR DR BY BY S P t y L t d IN P ty LIMITED TY LIMITED Ph: (02) 9956 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT PROJECT MANAGEMENT HYDRAULIC ENGINEER	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2060elise.o EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g	DR DR DR BY BY S P t y L t d IN P ty LIMITED TY LIMITED Ph: (02) 9956 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2080elise.o EWFW Suite 5, Level 330 Waltle Street Uttimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g	DR DR DR BY BY S P t y L t d IN P ty LIMITED TY LIMITED Ph: (02) 9956 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au ph: (02) 9212 1000 egioia@ewfw.com.au ph: (02) 9212 1000 egioia@ewfw.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATIO T/ TOWN PLANNER APP CORPORATION PT 118 Miller Street North Sydney NSW 2080elise. EWFW Suite 5, Level 330 Waltle Stree Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g	DR DR DR BY BY S P t y L t d IN Pty LIMITED Ph: (02) 9956 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au ph: (02) 9212 1000 egioia@ewfw.com.au ph: (02) 9212 1000 egioia@ewfw.com.au
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATION T/ TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2060elise. EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 Luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g MINATION Environmental Investigat Suite 6.01, 55 Miller Street Pyrmont NSW 2009 voula.terl	DR DR DR BY BY S P t y L t d IN P ty LIMITED Ph: (02) 9955 1295 crameri@app.com.au t Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au son.rudd@gta.com. g n S t u d i o Ph: (02) 9922 5312 arth@pdsdesign.com.au ions (EI) Ph: (02) 9516 0722 egas@elasutralia.com
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATION T/ TOWN PLANNER APP CORPORATION PT 118 Miller Street North Sydney NSW 2080elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g MINATION Environmental Investigat Suite 6.01, 55 Miller Street	DR DR DR BY BY S P t y L t d IN P ty LIMITED Ph: (02) 9956 1295 crameri@app.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au ions (El) Ph: (02) 9516 0722 egas@eiasutralia.com
B JAN 2015 A DEC 2014 ISSUE DATE CLIENT	COORDINATION ISSUE TO CLIENT AMENDMENT O Z Z Y S T A T E S C/O APP CORPORATION T/TOWN PLANNER APP CORPORATION PT 116 Miller Street North Sydney NSW 2060elise. EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g MINATION Environmental Investigat Suite 6.01, 55 Miller Street Pyrmont NSW 2009 voula.teri V i c L i I i & F Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134	DR DR DR BY BY S P t y L t d IN P ty LIMITED Ph: (02) 9956 1295 crameri@app.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au Ph: (02) 9212 1000 egioia@ewfw.com.au ions (El) Ph: (02) 9516 0722 egas@eiasutralia.com

LΕ	G	Е	Ν	D
(RS1)	COLOR	BOND	SURFA	IST'


RS1	COLOBOND 'SURFMIST' ROOF SHEETING.
[[]]	WALL CLADING ALUCOBOND PANELS 'PURE WHITE'
BR1	WALL CLADING AUSTRAL BRICK 'OLD COLONIAL'
CL2	WALL CLADING ALUCOBOND 'ANTHRACITE GREY'
W1	WINDOWS & DOOR FRAMING COLORBOND 'MONUMENT'
S(1)	METAL FRAMED SCREENS COLORBOND 'MONUMENT'
SC2	METAL PANELS COLORBOND 'MONUMENT'
LVR	METAL LOUVRES COLORBOND 'MONUMENT'
T1	EXTERNAL FLOOR TILES
BL1	BALUSTRADE, GLASS & STAINLESS STEEL
СРВ	CARPET.
(TB1)	TIMBER FLOORING.
UT1	SOLAR HOT WATER SYSTEM.

THIRD) FLOOR F	PLAN
DATE	JAN 2015	DRAWING N
SCALE	1:100 @ A1	~ -
JOB No.	D1430	07
DRAWN BY	DR	•

PRELIMINARY

DRAWING TITLE

LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 867389766 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE. CIRCULATION O PRE-DA O DA O CC TENDER
 CONSTRUCTION
 AS-BUILT C JAN 2015 COORDINATION B JAN 2015 COORDINATION A DEC 2014 ISSUE TO CLIENT DR ISSUE DATE AMENDMENT BY CLIENT OZZY STATES Pty Ltd C/O APP CORPORATION Pty LIMITED PROJECT MANAGEMENT / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060elise.crameri@app.com.au HYDRAULIC ENGINEER EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au TRAFFIC ENGINEER GTA Consultants Level 6,15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.au LANDSCAPE DESIGN Paterson design Studio 16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au GEOTECHNICAL/CONTAMINATION Environmental Investigations (EI) Suite 6.01, 55 Miller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.au BCA CONSULTANT Vic Lilli & Partners Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au MIXED USE DEVELOPMENT **36 LONSDALE STREET** LILYFIELD, NSW DRAWING TITLE

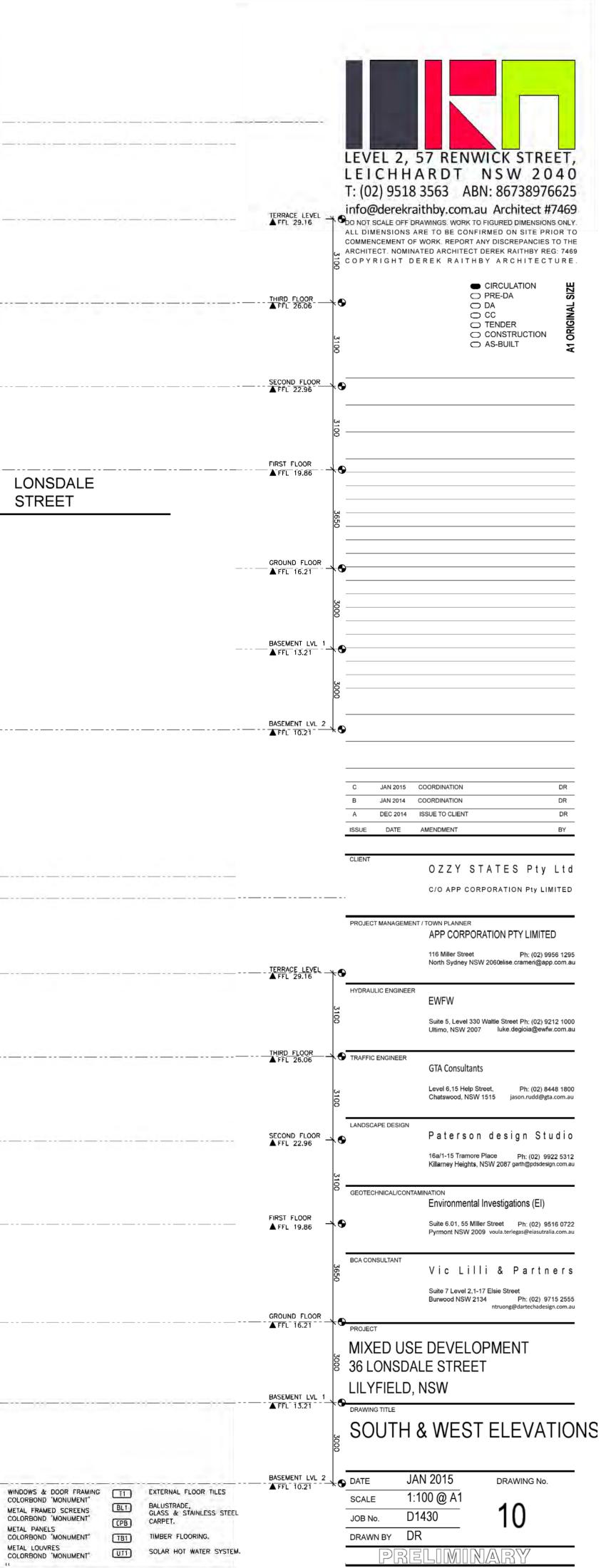
TERRACE LEVEL PLAN

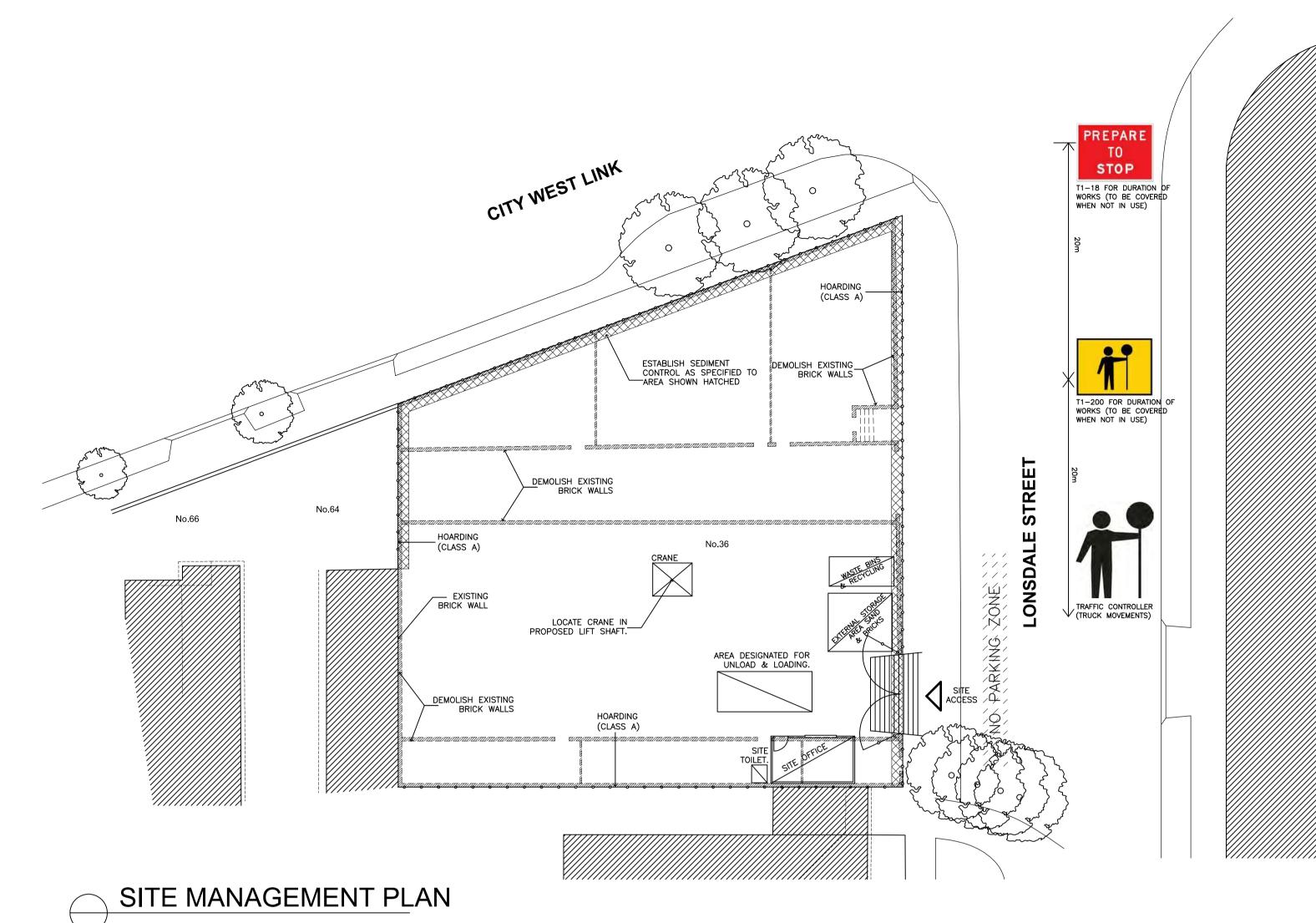
DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	00
JOB No.	D1430	80
DRAWN BY	DR	
P	RELIMIR	JARY

LEGEND

RS1	COLOBOND 'SURFMIST' ROOF SHEETING.
<u>(11</u>)	WALL CLADING ALUCOBOND PANELS 'PURE WHITE'
BR1	WALL CLADING AUSTRAL BRICK 'OLD COLONIAL'
CL2	WALL CLADING ALUCOBOND 'ANTHRACITE GREY'
[W1]	WINDOWS & DOOR FRAMING COLORBOND 'MONUMENT'
SC1	METAL FRAMED SCREENS COLORBOND 'MONUMENT'
<u>\$(2</u>)	METAL PANELS COLORBOND 'MONUMENT'
LVR	METAL LOUVRES COLORBOND 'MONUMENT'
T1	EXTERNAL FLOOR TILES
BL1	BALUSTRADE, GLASS & STAINLESS STEEL
(PB)	CARPET.
TB1	TIMBER FLOORING,
UT1	SOLAR HOT WATER SYSTEM.

(R\$1)	COLOBOND 'SURFMIST' ROOF SHEETING.	(W1)	WINDOWS & DOOR FI
(L1)	WALL CLADING ALUCOBOND PANELS 'PURE WHITE'	<u>(\$(1)</u>	METAL FRAMED SCRE COLORBOND 'MONUM
(BR1)	WALL CLADING AUSTRAL BRICK 'OLD COLONIAL'	<u>\$(2)</u>	METAL PANELS COLORBOND 'MONUM
<u>(L2</u>)	WALL CLADING ALUCOBOND 'ANTHRACITE GREY'	LVR	METAL LOUVRES COLORBOND 'MONUM


 \sim /


~

SOUTH ELEVATION

(RS1)	ROOF SHEETING.	<u>W1</u>	COLORBOND 'MONU
(11)	WALL CLADING ALUCOBOND PANELS 'PURE WHITE'	SC1)	METAL FRAMED SCR COLORBOND 'MONU
(BR1)	WALL CLADING AUSTRAL BRICK 'OLD COLONIAL'	SC2	METAL PANELS COLORBOND 'MONU
(L2)	WALL CLADING ALUCOBOND 'ANTHRACITE GREY'	LVR	METAL LOUVRES COLORBOND 'MONU
	1 1		a.

CONSTRUCTION NOISE/ DEMOLITION

- ALL EXCAVATION WORK TO BE CARRIED OUT DURING DAYS/HOURS AS PER DEVELOPMENT APPROVAL
- ALL DEMOLITION TO BE CARRIED OUT IN A CAREFUL AND SYSTEMATIC MANNER WITH MINIMUM INCONVENIENCE TO
- ADJOINING PROPERTIES. DEBRIS SHOULD BE WATERED TO REDUCE DUST DURING
- DEMOLITION
- SAFETY
- SITE TO BE SECURELY LOCKED AFTER HOURS • SIGN TO BE FIXED OUTLINING "DANGER. DO NOT ENTER." ALL OTHER REQUIREMENTS TO BE IN ACCORDANCE WITH THE
- OCCUPATIONAL HEALTH AND SAFETY ACT. SOIL AND WATER MANAGEMENT

REFER TO SEDIMENT & EROSION CONTROL PLAN

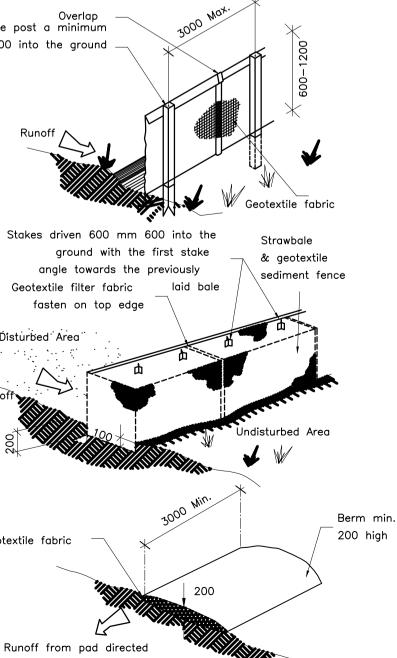
TREE PRESERVATION

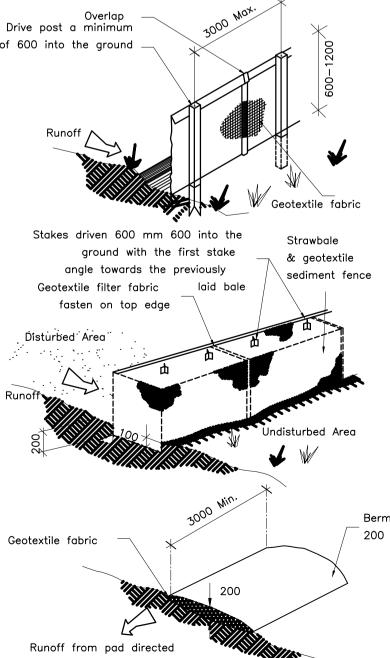
- ALL TREES IN THE VICINITY OF THE WORK AREA SHALL BE PROTECTED FROM DAMAGE BY:-• STRAPPING PALINGS AROUND THE BASE OF THE TRUNK. PLACING STAKES AROUND THE DRIP LINE OF THE TREE TO
- PREVENT EXCAVATION OR DAMAGE TO THE ROOTS IN THIS AREA.

GENERAL NOTES

• ENSURE A COPY OF ALL DOCUMENTS RELATING TO THE CONSTRUCTION CERTIFICATE APPROVAL INCLUDING DEVELOPMENT CONSENT ARE KEPT ON SITE AT ALL TIMES.

SEDIMENT & EROSION CONTROL PLAN


GENERAL

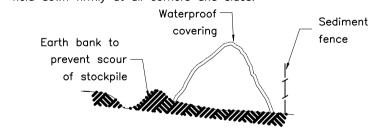

- G1 These drawings shall be read in conjunction with the architectural and other consultants' drawings / specifications and with other such written instructions as may be issued during
- the construction. Any discrepancy shall be referred to the Architect before commencing the work.
- G2 All dimensions are in millimeters, UNO (unless noted otherwise). ${\sf G3}$ These drawings shall not be scaled, refer to dimensions given
- only or refer to the Architectural drawings.
- G4 All levels and setting out dimensions shown on the drawings shall be checked on site prior to the commencement of the work.
- ${
 m G5}$ During construction the structure shall be maintained in a stable condition with no part being overstressed.
- G6 Existing services, where shown, have been drawn based on supplied information and as such their accuracy can not be guaranteed. It is the responsibility of the contractor to determine their exact location prior to the commencement of work
- G7 All service trenches under vehicular pavements shall be back filled in accordance with the respective authorities requirements.
- G8 All trench backfill material shall be compacted to the same density as the surround material.

- G9 All site disturbed areas shall be reinstate to the original condition, including kerbs, footpaths, concrete areas, gravel and grassed areas, playground etc.
- G10 It is the contractor's responsibility to obtain all authority approvals.
- SEDIMENT & EROSION CONTROL NOTES
- E1 The sediment & erosion controls shall be maintained effectively for the duration of the project. They shall not be removed until the site has been stabilized or landscaped to the principal certifying authorities satisfaction.
- E2 A single all weather access way shall be provided at the front of the property consisting of 50-80 mm aggregate or similar material with a minimum thickness of 150 mm laid over needle-punched geotextile fabric (Bidim A14 or similar) and installed prior to any works being commenced on site.
- ${\sf E3}$ A shaker pad must be installed as part of the
 - vehicular accessway. The shaker pad shall be:
 - Established on suitable prepared & compacted material.
 - Constructed such that it is flush with the adjoining
 - surfaces. - Designed with rungs spaced 200-250 mm apart
 - & with a maximum width of 75 mm each.
- E4 The contractor shall ensure that no spoil or fill encroaches upon adjacent areas during the project.
- E5 The contractor shall ensure that all kerb inlets and drains affected by stormwater flow from the site are protected at all times during the project. Kerb inlet sediment traps shall be installed along the immediate vicinity along the street frontage. These shall be regularly maintained during the project.
- E6 The street / road shall be kept clean from dirt and debris from vehicles departing the site.
- E7 Sediment fencing shall be secured to posts (please note that if star pickets or similar are used then plastic safety caps shall be installed on top of the posts) at 2000 mm intervals with the geotextile fabric embedded a minimum of 200 mm in to the soil.
- E8 All the topsoil stripped from the site shall be stockpiled such that it does not interfere with drainage lines and stormwater inlet pits. The stockpile shall be suitably covered with an impervious membrane and screened by sediment fencing.
- SOIL CONSERVATION NOTE:
- C1 Prior to the commencement of the site works the following shall be provided to capture water borne sediments: Sediment fencing
 - Sediment trap — Washout area
- C2 These shall be maintained regularly during the course of the construction with the sediment trap cleaned after each storm event.

- SEDIMENT FENCE on plan
- F2 Geotextile fabric to be buried 200 mm below ground at the lower edae.

Drive post a minimum of 600 into the ground

to sediment trap


F1 Provide sediment fence on down slope boundary as shown

F3 Drainage area is 0.5 HA with a maximum slope gradient 1:2 maximum and a maximum slope length of 50 m.

- VEHICLE ACCESS TO SITE
- \bigvee Vehicle access to the building site shall be restricted to a single point so as to reduce the amount of soil deposited on the street pavement.


BUILDING MATERIAL STOCKPILES

- M1 Where there are stockpiles of material on site they shall be located at least 2000 mm away from any hazard including surfaces with grades greater than 15 %, away from zones of concentrated stormwater flows, away from driveways, temporary vehicular accessways, footpaths, nature strips,
- kerbs, open swales & the drip zone of trees. M2 Sediment fencing shall be installed downslope of all
- stockpiles. M3 The stockpile shall be covered with a impervious cover and held down firmly at all corners and sides.

SANDBAG KERB SEDIMENT TRAP

K1 In certain circumstances extra sediment trapping may be needed in the street gutter

IMPORTANT !

SITE REMEDIATION.

REFER TO REMEDIAL ACTION PLAN.

USE OF PREMISES.			
MATERIALS ON SITE	REUSE AND RECYCLING	DISPOSAL	
RECYCLABLES	TEMPORARY STORAGE BINS - PAPER/CARDBOARD - GLASS AND ALUMINIUM - PLASTICS	TO RECYCLERS	
NON RECYCLABLES	TEMPORARY STORAGE BINS – FOODSCRAPS – OTHER PLASTICE – UNRECYCLABLE WASTE	TO LANDFILL SITE BY WASTE CONTRACTORS	

DEMOLI	FION, CONS	STRUCTION AND USE O	F PREMISES.
IATERIALS ON SITE		DESTIN	
TYPE OF	ESTIMATED	ON-SITE	OFF-SITE

MATERIALS ON SITE		DESTIN		
TYPE OF MATERIAL	ESTIMATED VOLUME (m ³)	ON-SITE	OFF-SITE	DISPOSAL
EXCAVATION MATERIAL	TBC	KEEP & REUSE TOPSOIL FOR LANDSCAPING, USE SOME BEHIND RETAINING WALLS.	NIL	NIL
GREEN WASTE	TBC	SEPARATED. SOME CHIPPED & STORED ONSITE FOR REUSE ON LANDSCAPING.	NIL	NIL
CONCRETE & ASPHALT	твс	FILL	NIL	REMAINDER (USELESS) TO KIMBRIKI LANDFILL SITE, MONA VALE RD, TERREY HILLS
BRICKS	твс	CLEAN & REUSE LIME MORTAR BRICKS.	CONCRETE MORTAR BRICKS TO KIMBRIKI WASTE RECYCLING, MONA VALE RD, TERREY HILLS	NIL
GLASS METAL	твс	NIL	TO KIMBRIKI RECYCLERS, MONA VALE RD, TERREY HILLS	NIL

DEMOLITION, CONSTRUCTION AND USE OF PREMISES. CONSTRUCTION STAGES				
MATERIALS ON SITE		DESTINATION		
TYPE OF MATERIAL	ESTIMATED VOLUME (m³)	ON-SITE	OFF-SITE	DISPOSAL
EXCAVATION MATERIAL		REFER TO DEMOLITION STAGE		
GREEN WASTE		REFER TO DEMOLITION STAGE		
BRICKS	TBC	NIL REMAINDER TO KIMBRIKI RECYCLERS, MONA VALE RD, TERREY HILLS		NIL
TIMBER	TBC	NIL	TO KIMBRIKI RECYCLERS, MONA VALE RD, TERREY HILLS	NIL
METALS	твс	NIL	TO KIMBRIKI RECYCLERS, MONA VALE RD, TERREY HILLS	REMAINDER TO KIMBRIKI LANDFILL SITE, MONA VALE RD, TERREY HILLS

Construction Noise

- 1. The contractor is to use the best available techniques to meet EPA (DECC) construction noise requirements and to comply with Australian Standard 2436-1981 "Guide to Noise Control on Construction, Maintenance and Demolition Sites", as far as practicable.
- Prior to commencement of work 2. Tree protection fencing must be erected around all trees as indicated in the above plan. The fencing must be constructed of 1.8 metres 'cyclone chainmesh fence' or star pickets spaces at 2.4m intervals, connected by continuous high-visibility barrier/hazard mesh at a height of 1 metre.
- 3. The tree protection fencing must be installed and inspected prior to the commencement of works. 4. All required tree protection measures are to be maintained in good condition for the duration of the construction period. 5. No activities, storage or disposal of materials shall take place beneath the canopy of any tree protected under
- Council's Tree Preservation Order at any time. 6. The Proponent must ensure that all machinery is cleaned of soil and debris before entering or exiting the
- site to prevent the spread of weeds and fungal pathogens.
- 7. A copy of the certified plans, specifications and documentation shall be kept on site at all times and shall be available for perusal by any officer of Council.
- 8. All deposits, bonds and/or bank guarantees must be paid in accordance with council's requirements prior to commencement.
- without a Road Opening Permit being obtained from the Council (upon payment of the required fee) beforehand. Erosion and Drainage Management
- 10. Prior to the commencement of works suitable erosion and sediment controls measures must be put in place in accordance with the guidelines set out in the NSW Department of Housing Manual Managing Urban Stormwater: Soil and Construction, to the satisfaction of the PCA. Durina work on-site
- 11. a) The hours of demolition or construction, including delivery of materials to and from the site, shall be restricted as follows: i) Between 7.00am and 5.00pm, Monday to Saturday,
- Sunday and/or public holidaysb) Works and deliveries may be undertaken outside these hours where: The delivery of materials is required by the Police or other authorities; or i) A variation to the working hours is authorised in writing by the principal certifying authority.
- 12. All vehicles involved in the excavation and/or demolition process and departing the property with demolition materials. spoil or loose matter must have their loads fully covered before entering the public roadway. 13. All materials on-site or being delivered to the site must be contained within the site. The requirements of the Protection of the Environment Operations Act 1997 are to be complied with when placing/stockpiling loose material or when disposing of waste products or during any other activities likely to pollute drains or watercourses.
- 14. During excavation, demolition and construction, adequate measures shall be taken to prevent dust from affecting the amenity of the neighbourhood. The following measures must be adopted:
- physical barriers shall be erected at right angles to the prevailing wind direction or shall be placed around or
- minimise the amount of time the site is left cut or exposed. all materials shall be stored or stockpiled at the best locations. the ground surface should be dampened slightly to prevent dust from becoming airborne but should not be
- wet to the extent that run-off occurs all vehicles carrying spoil or rubble to or from the site shall at all times be covered to prevent the escape of dust.
- all equipment wheels shall be washed before exiting the site using manual or automated sprayers and drive—through washing bays. — gates shall be closed between vehicle movements and shall be fitted with shade cloth. cleaning of footpaths and roadways shall be carried out daily.
- 15. during excavation, demolition and construction phases, toilet facilities are to be provided on the work site, at the rate of one toilet for every 20 persons or part of 20 persons employed at the site. 16. Should any new information come to light during demolition or construction works which has the potential to alter previous conclusions about site contamination the architect and principal certifier shall be notified and works must cease.
- 17. Any demolition work must be carried out in accordance with AS 2601--2001. The Demolition of Structures. published by Standards Australia on 13 September 2001 18. All waste generated by the project, shall be beneficially reused, recycled or directed to a waste facility lawfully
- permitted to accept the materials in accordance with the Waste Classification Guidelines (DECC 2008) and the Protection of the Environment Operations Act 1997. 19. The public way must not be obstructed by any materials, vehicles, refuse, skips or the like, under any circumstances.
- 20. Where required, the adjustment or inclusion of any new utility service facilities must be carried out by the applicant and in accordance with the requirements of the relevant utility authority and at the proponents full cost. It is the applicant's full responsibility to make contact with the relevant utility authorities to ascertain the impacts of the proposal upon utility services (including water, phone, gas and the like).

DEMOLITION STAGES

Road Opening Permit 9. The opening of any footway, roadway, road shoulder or any part of the road reserve shall not be carried out

ii) No work or deliveries on

- earthworks and scheduling activities shall be managed to coincide with the next stage of development to

T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE

LEICHHARDT NSW 2040

 CIRCULATION PRE-DA DA CC TENDER CONSTRUCTION AS-BUILT 	A1 ODICINAL SIZE
---	------------------

С	JAN 2015	COORDINATION	DR
В	JAN 2015	COORDINATION	DR
^	DEC 2014		DD

С	JAN 2015	COORDINATION	DR
В	JAN 2015	COORDINATION	DR
А	DEC 2014	ISSUE TO CLIENT	DR
ISSUE	DATE	AMENDMENT	BY

OZZY STATES Pty Ltd C/O APP CORPORATION Pty LIMITED

PROJECT MANAGEMENT /	TOWN PLANNER APP CORPORATION PTY LIMITED
	116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060 elise.crameri@app.com.au
HYDRAULIC ENGINEER	EWFW
	Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au
TRAFFIC ENGINEER	GTA Consultants
	Level 6,15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.au
LANDSCAPE DESIGN	Paterson design Studio
	16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au
GEOTECHNICAL/CONTAMI	
	Environmental Investigations (EI)
	Suite 6.01, 55 Miller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.au
BCA CONSULTANT	Vic Lilli & Partners
	Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au

DRAWING TITLE

MIXED USE DEVELOPMENT **36 LONSDALE STREET** LILYFIELD, NSW

SITE MANAGEMENT PLAN

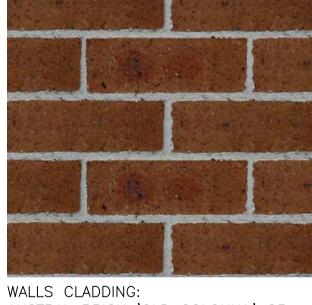
DATE	JAN 2015	DRAWING No.
SCALE	1:200 @ A1	
JOB No.	D1430	12
DRAWN BY	DR	
P	RELIMI	NARY

ID MONUMEN SC1

		_	
METAL	FRAME	J	SCREENS:
COLOR	BOND '	MC	NUMENT'

ROOF SHEETING:

RS1

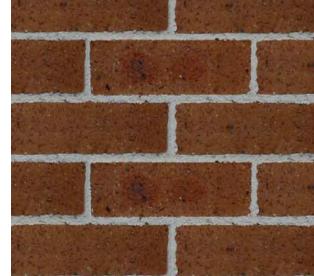

COLORBOND 'SURFMIST'

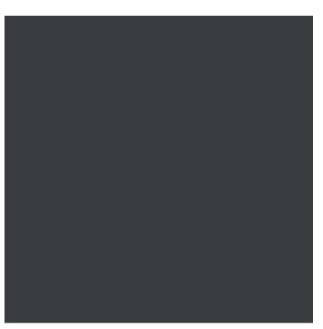
	Statement of the local division of the local	
	-	
	1 1	
COLUMN N P		-1-0
		-
weeks framework house and	Den brann (diese barren for
a second design of the second	CALCULATION DATE:	20.000
		des lo de la
	I I I I I I I I I I I I I I I I I I I	
	1.6	
	Real Property lies	
	-	

METAL PANELS: COLORBOND 'MONUMENT' SC2

CL1

WALL CLADDING: ALUCOBOND PANELS 'PURE WHITE'




AUSTRAL BRICK 'OLD COLONIAL' OR SIMILAR (BR1)

METAL LOUVRES:

LVR

<u>COLOR</u>BOND 'MONUMENT'

WALLS CLADDING-FRAMES: ALUCOBOND 'ANTHRACITE GREY'

CL2

EXTERNAL FLOOR TILES: SKHEME RE-EVOLUTION GREY SATIN OR SIMILAR T1

WINDOWS & DOORS FRAMING: COLORBOND 'MONUMENT' [W1]

GLASS & STAINLESS STEEL (BL1)

GUTTERS & DOWNPIPES: COLORBOND 'SURFMIST'

CARPARK GARAGE DOORS VENTILATED

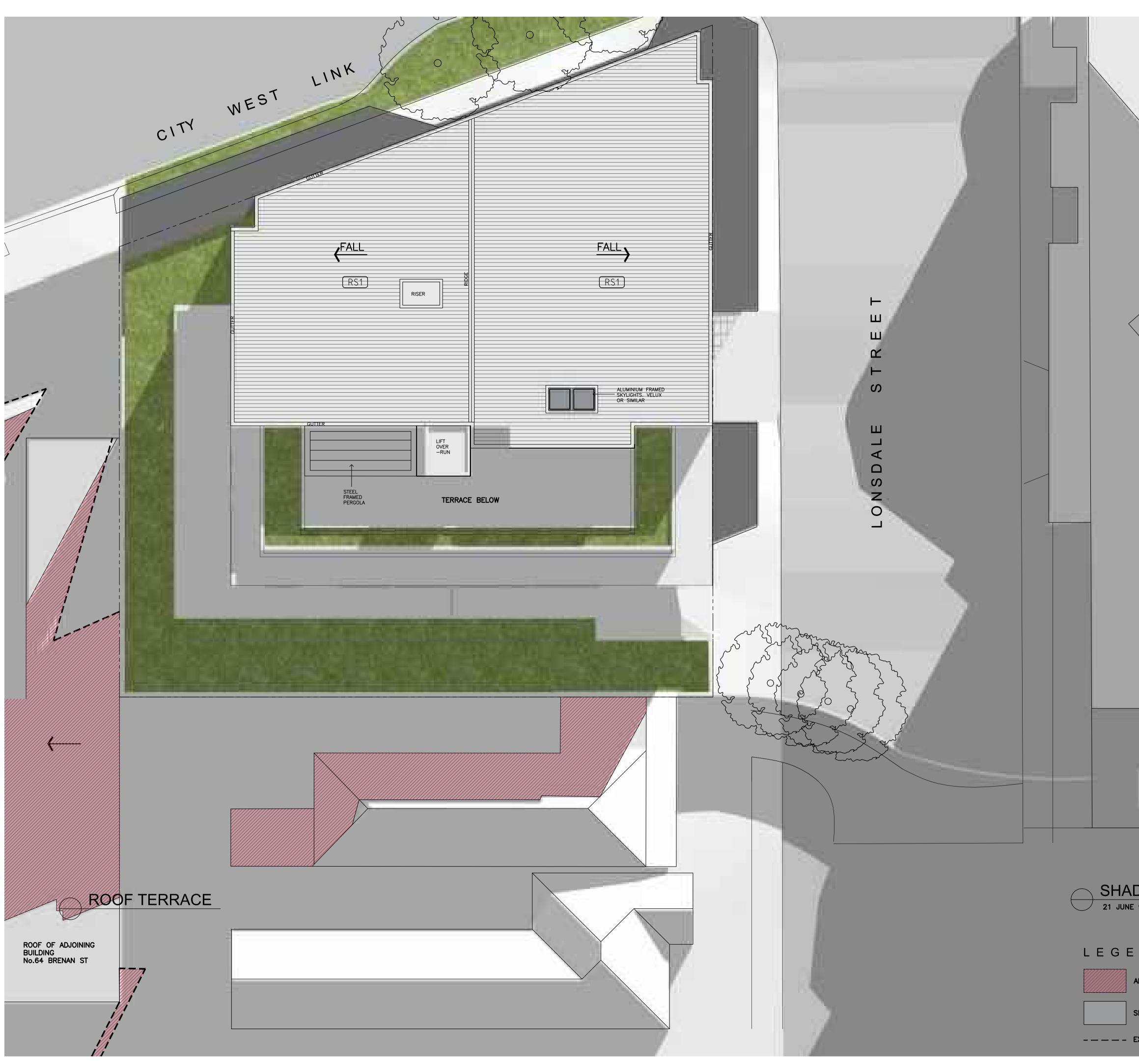
T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469

LEICHHARDT NSW 2040

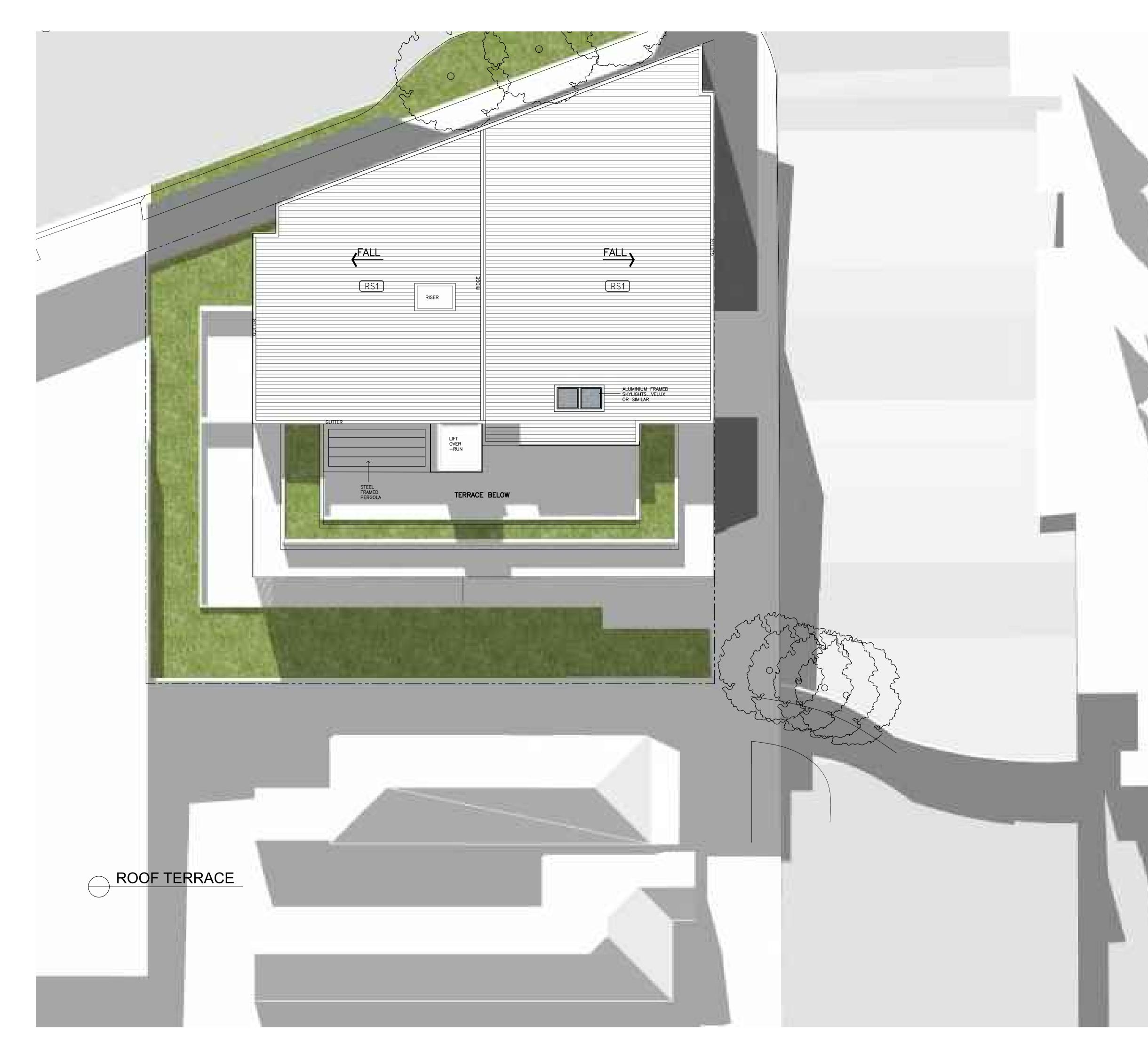
COPYRIGHT DEREK RAITHBY ARCHITECTURE. CIRCULATION 🔿 PRE-DA 🔿 da O TENDER CONSTRUCTION 🔿 AS-BUILT Y C JAN 2015 COORDINATION DR B JAN 2015 COORDINATION DR DR A DEC 2014 ISSUE TO CLIENT ISSUE DATE AMENDMENT BY OZZY STATES Pty Ltd C/O APP CORPORATION Pty LIMITED PROJECT MANAGEMENT / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060 elise.crameri@app.com.au HYDRAULIC ENGINEER EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au TRAFFIC ENGINEER GTA Consultants Level 6,15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.au LANDSCAPE DESIGN Paterson design Studio 16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au GEOTECHNICAL/CONTAMINATION Environmental Investigations (EI) Suite 6.01, 55 MIller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.au BCA CONSULTANT Vic Lilli & Partners Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au

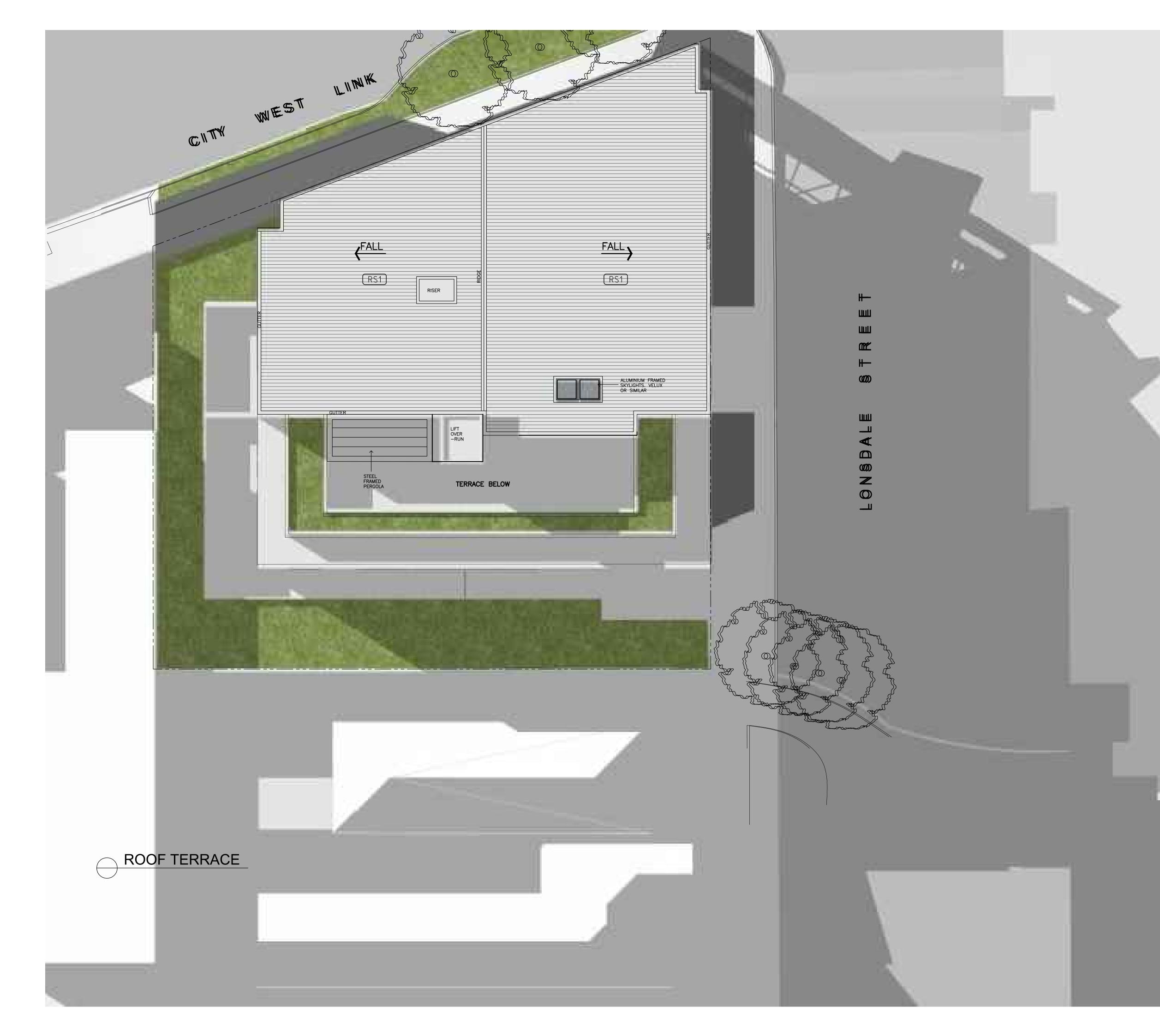
PROJECT

DRAWING TITLE


MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW

EXTERNAL FINISHES


DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	4.0
JOB No.	D1430	13
DRAWN BY	DR	


GUTTERS & DOWNPIPES: COLORBOND 'MONUMENT'

	LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 86738976625
	info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469
	COPYRIGHT DEREK RAITHBY ARCHITECTURE.
	CIRCULATION PRE-DA DA CC TENDER CONSTRUCTION AS-BUILT
	C JAN 2015 COORDINATION DR B JAN 2015 COORDINATION DR
	A DEC 2014 ISSUE TO CONSULTANTS DR ISSUE DATE AMENDMENT BY
	CLIENT OZZY STATES Pty Ltd C/O APP CORPORATION Pty LIMITED
	PROJECT MANAGEMENT / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060 elise.crameri@app.com.au
	HYDRAULIC ENGINEER EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au
	TRAFFIC ENGINEER GTA Consultants
	Level 6,15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.au
	Paterson design Studio 16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au
	GEOTECHNICAL/CONTAMINATION Environmental Investigations (EI) Suite 6.01, 55 MIller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.au
	BCA CONSULTANT Vic Lilli & Partners Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au
DOW DIAGRAM - PLAN 9am	PROJECT MIXED USE DEVELOPMENT 36 LONSDALE STREET
ND	DRAWING TITLE
ADDITIONAL SHADOW CAST	DIAGRAMS - SHADOW 9am
SHADOW CAST	DATE JAN 2015 DRAWING No. SCALE 1:100 @ A1 15
EXTENT OF EXISTING SHADOW CAST	JOB NO. D1430 15 DRAWN BY DR PRELIMINARY

LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY.
ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 C O P Y R I G H T D E R E K RAITH B Y AR C H I T E C T U R E. CIRCULATION PRE-DA DA CC TENDER CONSTRUCTION AS-BUILT CONSTRUCTION AS-BUILT
C JAN 2015 COORDINATION DR B JAN 2015 COORDINATION DR A DEC 2014 ISSUE TO CONSULTANTS DR ISSUE DATE AMENDMENT BY CLIENT CLIENT O Z Z Y STATES Pty Ltd C/O APP CORPORATION Pty LIMITED
PROJECT MANAGEMENT / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060 elise.crameri@app.com.au HYDRAULIC ENGINEER EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au TRAFFIC ENGINEER GTA Consultants
GTA CONSULTAITS Level 6, 15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.au LANDSCAPE DESIGN P a t e r s o n d e sig n S t u dio 16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au GEOTECHNICAL/CONTAMINATION Environmental Investigations (EI)
Suite 6.01, 55 Miller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.au BCA CONSULTANT Vic Lilli & Partners Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au PROJECT MIXED USE DEVELOPMENT
36 LONSDALE STREET LILYFIELD, NSW DRAWING TITLE DIAGRAMS - SHADOW 12pm
SCALE 1:100@A1 JOB NO. D1430 16 DRAWN BY DR PRELIMINARY

LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE. CIRCULATION 🔿 PRE-DA ○ TENDER C AS-BUILT JAN 2015 COORDINATION DR JAN 2015 COORDINATION DR DEC 2014 ISSUE TO CONSULTANTS DR ISSUE DATE AMENDMENT BY OZZY STATES Pty Ltd C/O APP CORPORATION Pty LIMITED PROJECT MANAGEMENT / TOWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 1295 North Sydney NSW 2060 elise.crameri@app.com.au HYDRAULIC ENGINEER EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 1000 Ultimo, NSW 2007 luke.degioia@ewfw.com.au TRAFFIC ENGINEER GTA Consultants Level 6,15 Help Street, Ph: (02) 8448 1800 Chatswood, NSW 1515 jason.rudd@gta.com.au LANDSCAPE DESIGN Paterson design Studio 16a/1-15 Tramore Place Ph: (02) 9922 5312 Killarney Heights, NSW 2087 garth@pdsdesign.com.au GEOTECHNICAL/CONTAMINATION Environmental Investigations (EI) Suite 6.01, 55 MIller Street Ph: (02) 9516 0722 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.au BCA CONSULTANT Vic Lilli & Partners Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au PROJECT MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW DRAWING TITLE DIAGRAMS - SHADOW 3pm

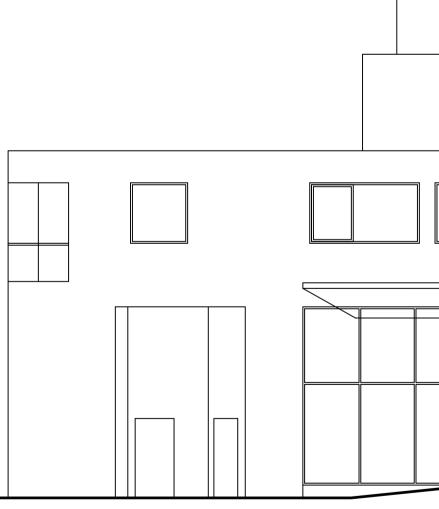
JAN 2015

D1430

DR

1:100 @ A1

PRELIMINAR


DRAWING No.

DATE

SCALE

JOB No.

DRAWN BY

CITY WEST LINK

SHADOW DIAGRAM -ELEVATION

21 JUNE 3pm 402 Catherine St view from Lonsdale St

LEGEND

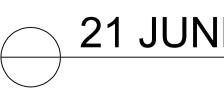
ADDITIONAL SHADOW CAST

LEVEL 2, 57 RENWICK STREET,

LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

		O PRE O DA O CC O TEN O COM		A1 ORIGINAL SIZE
C JAN 20 B JAN 20 A DEC 20	15 COORDINA			DR DR DR
ISSUE DAT	e Amendmi	ENT		BY
CLIENT			ESPTY	
PROJECT MANAG	116 Mi		DN PTY LIMITE Ph: (02) 995 elise.crameri@app.	56 1295
HYDRAULIC ENG	^{NEER} EWF	W		
			Street Ph: (02) 92 [,] luke.degioia@ewfw.	
TRAFFIC ENGINE	GTA (Consultants 6,15 Help Street, wood, NSW 1515	Ph: (02) 844 jason.rudd@gta	
LANDSCAPE DES	Pat		esign Stu	
		15 Tramore Place ey Heights, NSW 2	Ph: (02) 992 087 garth@pdsdesigr	
GEOTECHNICAL/			stigations (EI)	
GEOTECHNICALA	Envir Suite 6	onmental Inves 6.01, 55 Miller Stree nt NSW 2009 vou	,	
BCA CONSULTAN	Envir Suite 6 Pyrmo T	6.01, 55 Miller Stre nt NSW 2009 vou	et Ph: (02) 951	a.com.au

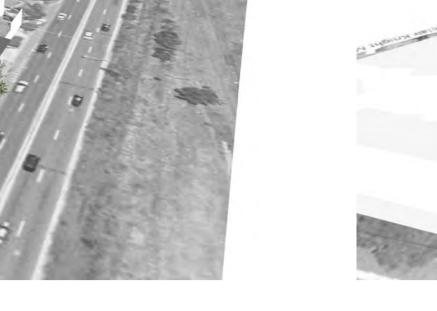
PROJECT


DRAWING TITLE

MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW

ELEVATION SHADOWS

DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	
JOB No.	D1430	18
DRAWN BY	DR	



SOLAR ACCESS

APARTMENTS

16 APARTMENTS OUT OF 22 ACHIEVES AT LEAST 3 HOURS OF DIRECT SUN LIGHT

TOTAL	16 OF 22 UNITS
PERCENTAGE OF UNITS WITH SOLAR ACCESS	72.7%
SEPP 65 REQUIREMENT LEICHHARDT DCP	70% 70%

SUN ANALYSIS

0 - 1 - 2 - 3 - 4 - 5 - 6 = TOTAL SUN HOURS

S	SOLAR ACCESS _ APARTMENTS						
No.	9am	10am	11am	12noon	1pm	2pm	3pm
U1	0	1	2	3	4	5	6
U2	0	1	2	3	4	5	6
U3	0	1	2	3	4	5	6
U4	0	0	0	0	0	0	0
U5	0	0	0	0	0	0	0
U6	0	0	0	0	1	2	3
U7	0	1	2	3	4	5	6
U8	0	1	2	3	4	5	6
U9	0	1	2	3	4	5	6
U10	0	0	0	0	0	0	0
U11	0	0	0	0	0	0	0
U12	0	0	0	0	1	2	3
U13	0	1	2	3	4	5	6
U14	0	1	2	3	4	5	6
U15	0	1	2	3	4	5	6
U16	0	0	0	0	0	0	0
U17	0	0	0	0	0	0	0
U18	0	0	0	0	1	2	3
U19	0	1	2	3	4	5	6
U20	0	1	2	3	4	5	6
U21	0	1	2	3	4	5	6
U22	0.5	1	2	3	3	3	3

21 JUNE - 10:00 AM

21 JUNE - 12:00 PM

21 JUNE - 02:00 PM

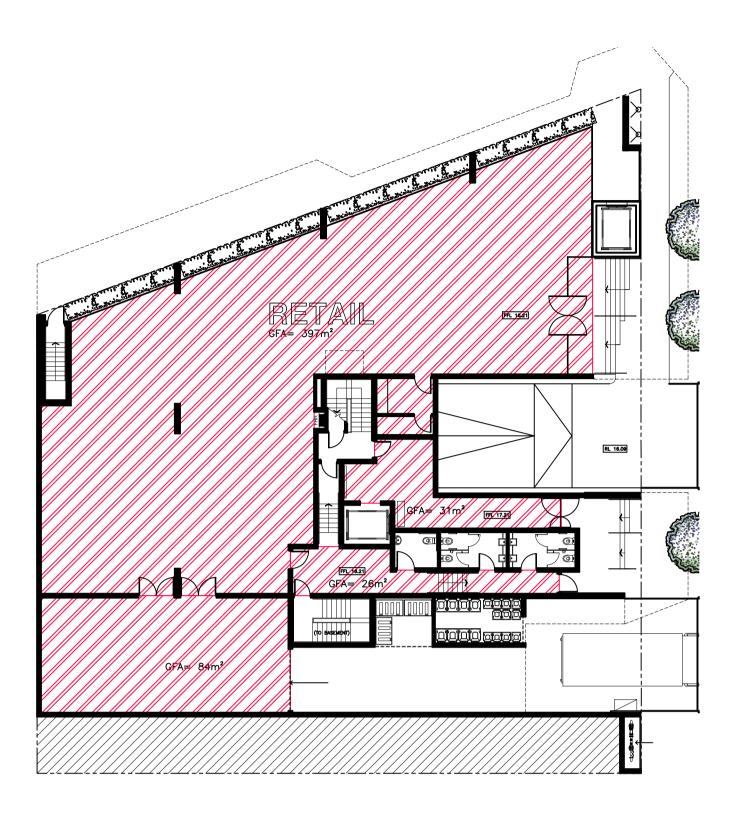
<u>21 JUNE - 03:00 PM</u>

info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

	 CIRCULATION PRE-DA DA CC TENDER CONSTRUCTION AS-BUILT 	A1 ORIGINAL SIZE

С	JAN 2015	COORDINATION	DR
В	JAN 2015	COORDINATION	DR
А	DEC 2014	ISSUE TO CONSULTANTS	DR
ISSUE	DATE	AMENDMENT	BY

OZZY STATES Pty Lt C/O APP CORPORATION Pty LIMITED DWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 125 North Sydney NSW 2060 elise.crameri@app.com.a EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 100 Ultimo, NSW 2007 luke.degioia@ewfw.com.a
DWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 125 North Sydney NSW 2060 elise.crameri@app.com.a EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 100
DWN PLANNER APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 129 North Sydney NSW 2060 elise.crameri@app.com.a EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 100
APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 129 North Sydney NSW 2060 elise.crameri@app.com.d EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 100
APP CORPORATION PTY LIMITED 116 Miller Street Ph: (02) 9956 129 North Sydney NSW 2060 elise.crameri@app.com.d EWFW Suite 5, Level 330 Waltle Street Ph: (02) 9212 100
North Sydney NSW 2060 elise.crameri@app.com.t
Suite 5, Level 330 Waltle Street Ph: (02) 9212 100
Suite 5, Level 330 Waltle Street Ph: (02) 9212 100
GTA Consultants
Level 6,15 Help Street, Ph: (02) 8448 18(Chatswood, NSW 1515 jason.rudd@gta.com.
Paterson design Studi
16a/1-15 Tramore Place Ph: (02) 9922 531 Killarney Heights, NSW 2087 garth@pdsdesign.com.a
ATION
Environmental Investigations (EI)
Suite 6.01, 55 MIller Street Ph: (02) 9516 072 Pyrmont NSW 2009 voula.terlegas@eiasutralia.com.
~

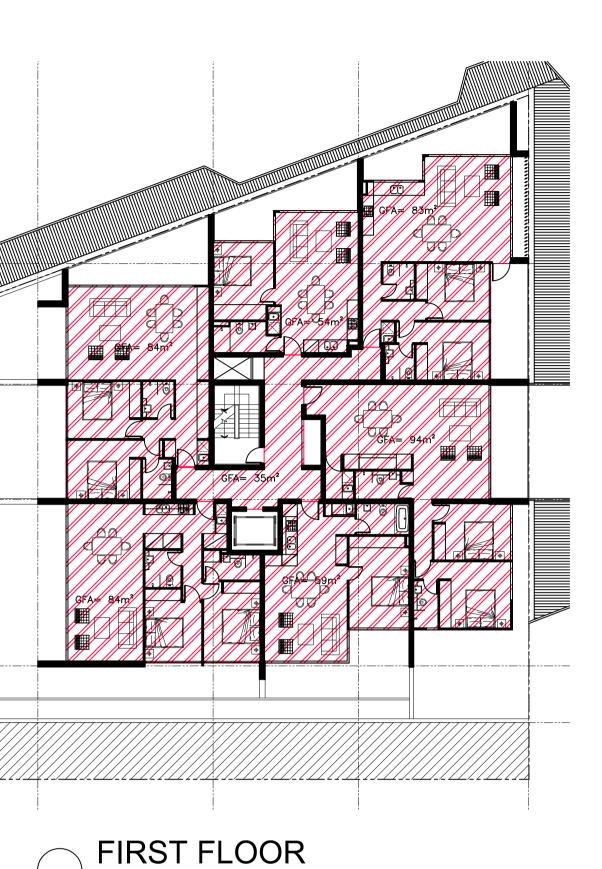

BCA CONSULTANT Vic Lilli & Partners Suite 7 Level 2,1-17 Elsie Street Burwood NSW 2134 Ph: (02) 9715 2555 ntruong@dartechadesign.com.au

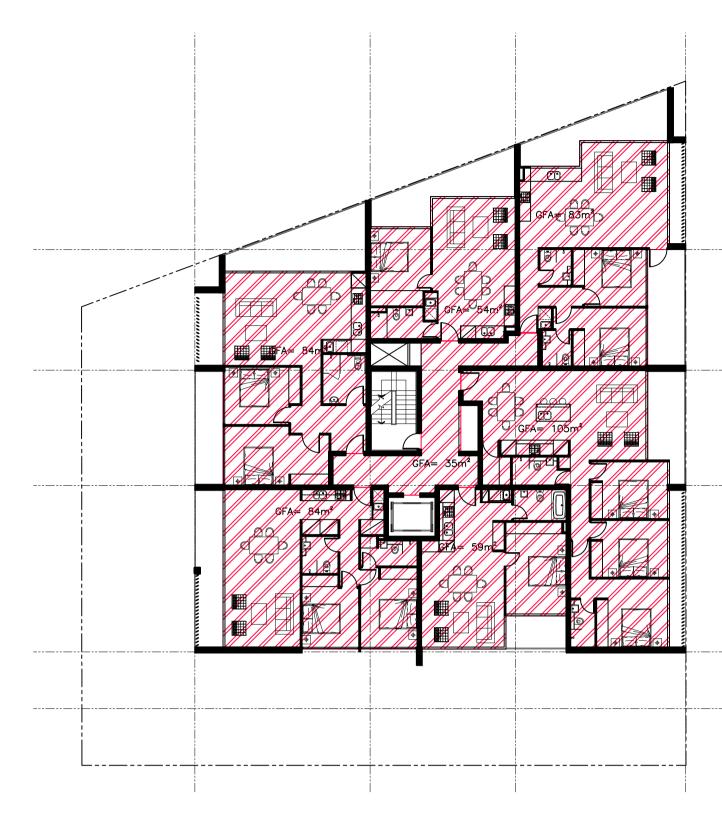
PROJECT

MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW

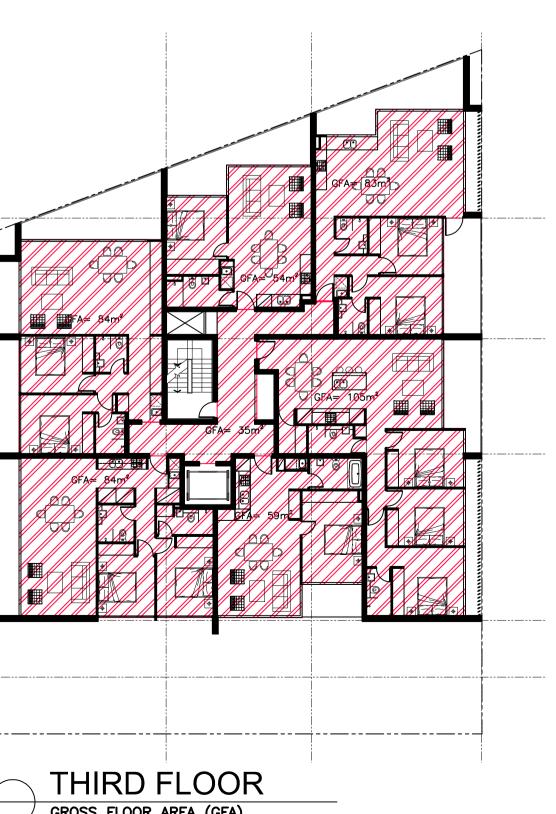
SOLAR ACCESS

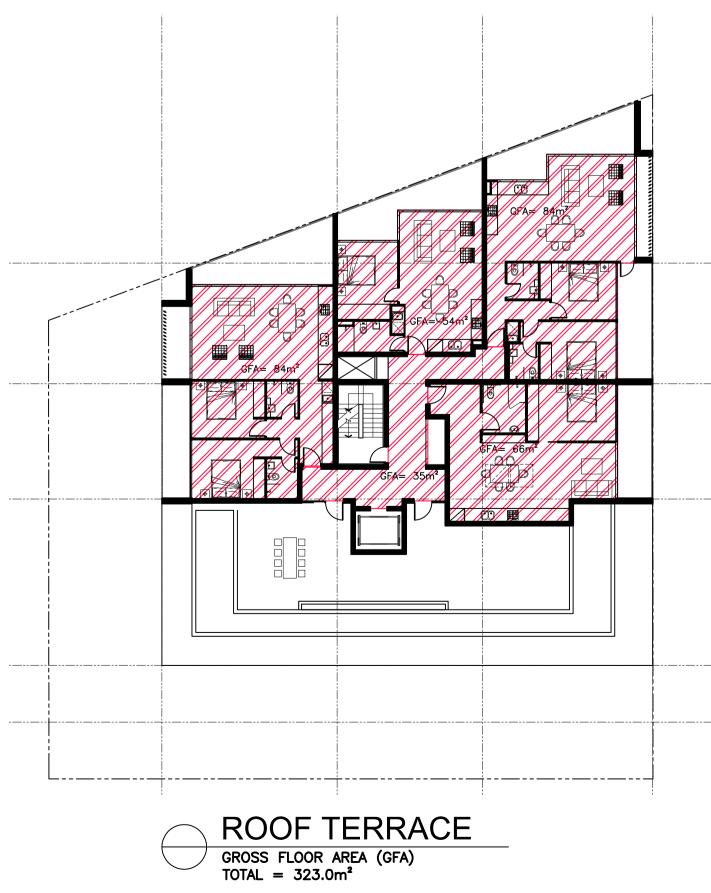
DATE	JAN 2015	DRAWING No.				
SCALE	1:200 @ A1					
JOB No.	D1430	19				
DRAWN BY	DR					
PRELIMINARY						


GROSS FLOOR AREA


- GROUND FLOOR
- FIRST FLOOR

SITE


- SECOND FLOOR
- THIRD FLOORROOF TERRACE
- $= 538.0m^{2}$ = 493.0m² = 504.0m² = 504.0m² = 323.0m²
 - - $= 966.2m^2$


FSR = 2.44:1

GROSS FLOOR AREA (GFA) TOTAL = 504.0m²

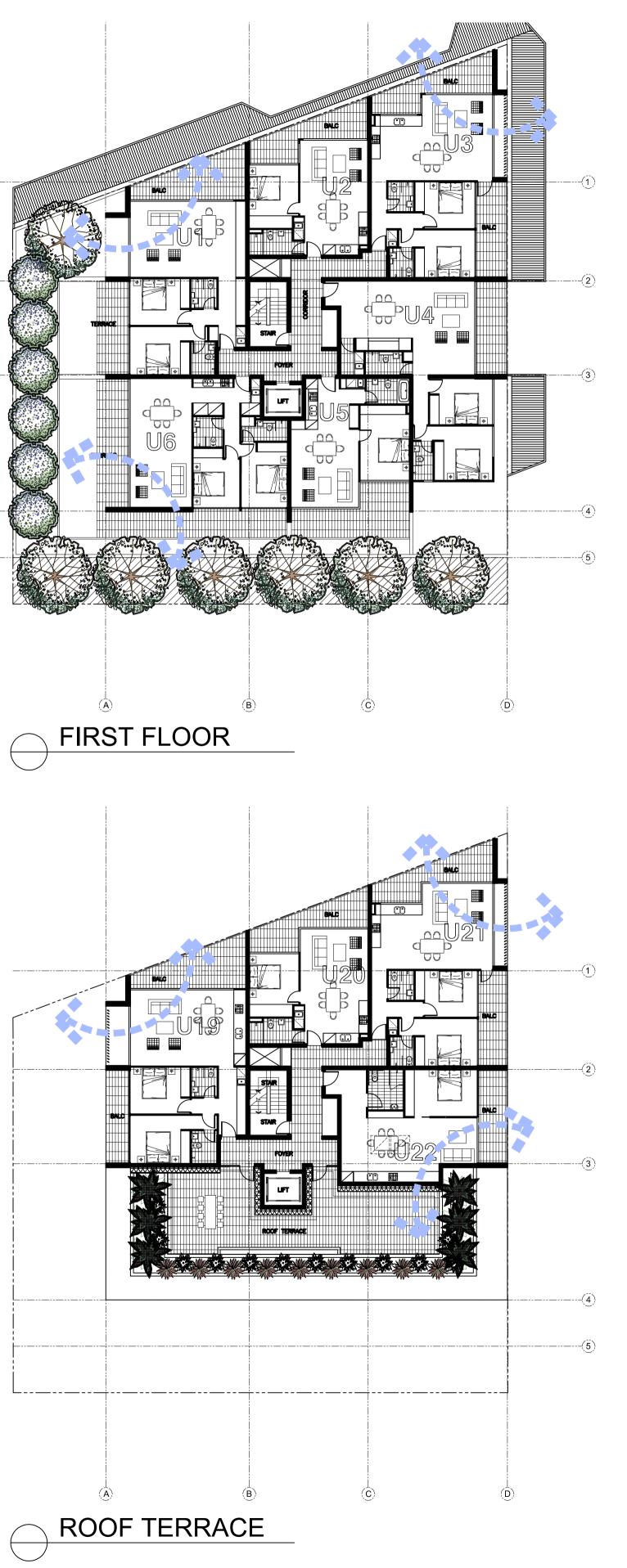
GROSS FLOOR AREA (GFA) $TOTAL = 504.0m^{2}$

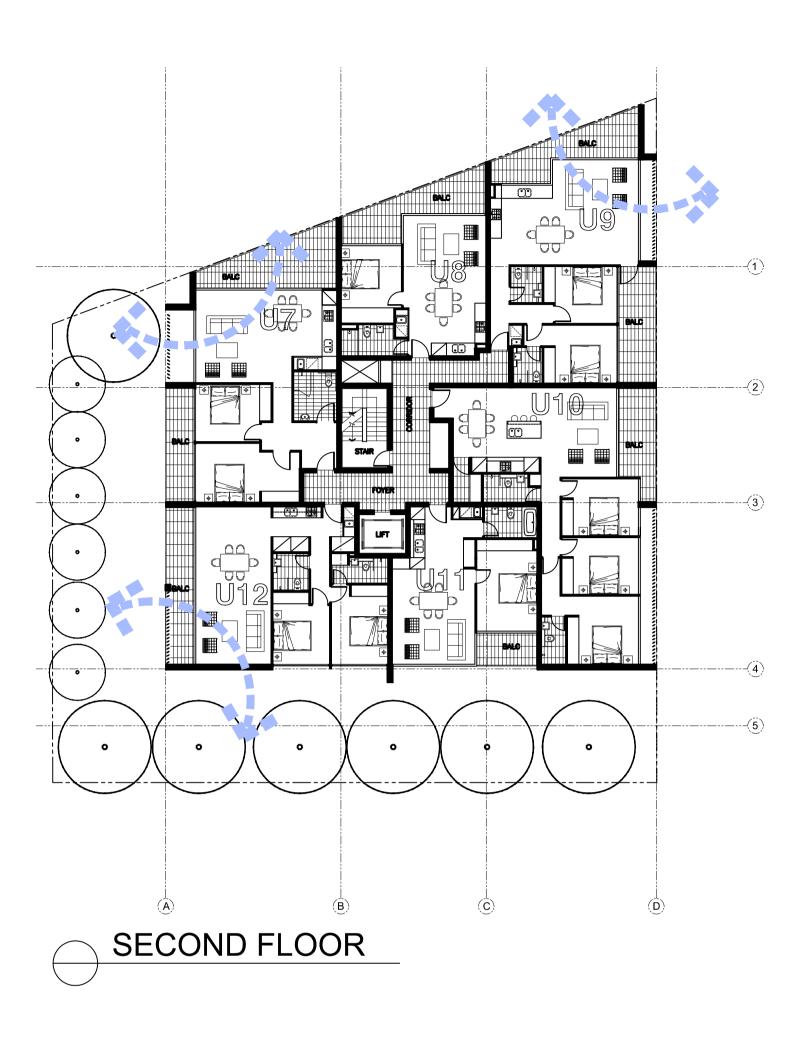
GROSS FLOOR AREA (GFA) TOTAL = $493.0m^2$

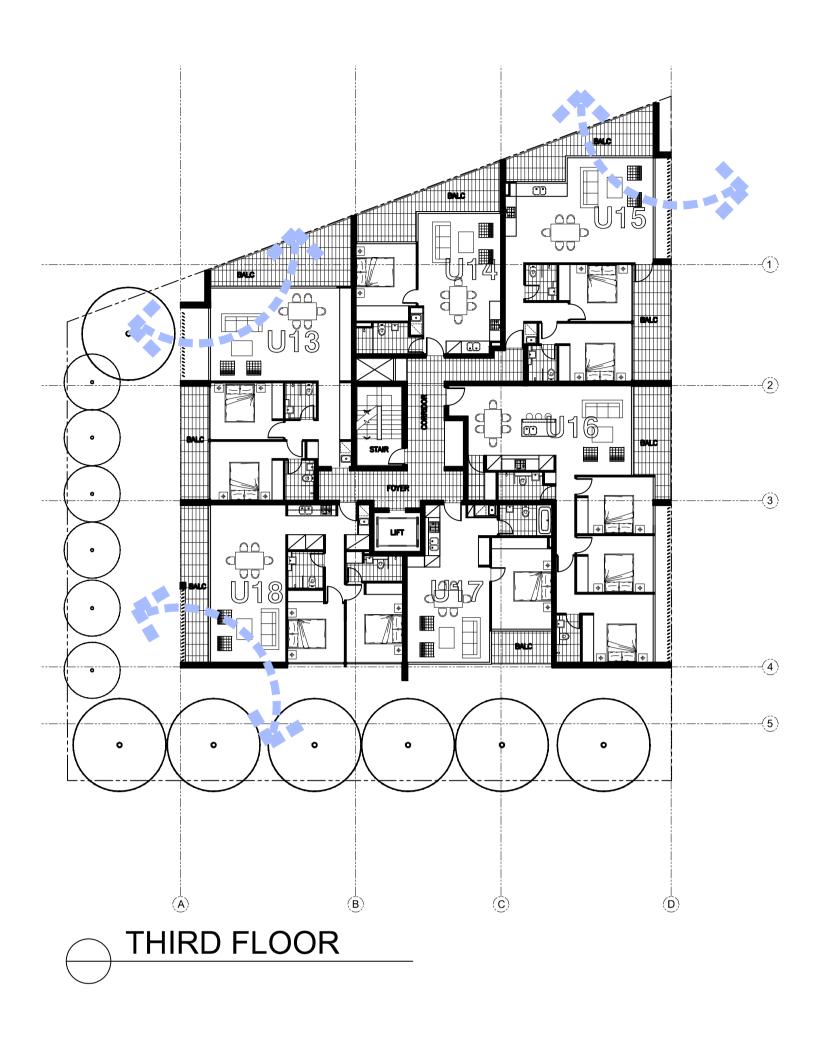
T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

LEICHHARDT NSW 2040

O PRE-DA O DA O CC O TENDER O CONSTRUCTION O AS-BUILT
--


С	JAN 2015	COORDINATION	DR
В	JAN 2015	COORDINATION	DR
A	DEC 2014	ISSUE TO CONSULTANTS	DF
ISSUE	B 4 7 5		
CLIENT	DATE	OZZY STATES P	-
	DATE		ty Li
CLIENT		OZZY STATES P	т у L ∙
CLIENT		OZZY STATES P C/O APP CORPORATION Pt	tу L міті мітер (02) 9956 12
CLIENT		OZZY STATES P C/O APP CORPORATION Pt NT/TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer	tу L міті мітер (02) 9956 12
CLIENT	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt INT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer	(02) 9212 1
CLIENT	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia ((02) 9212 1
CLIENT	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer	(02) 9212 1
CLIENT	CT MANAGEME	O Z Z Y S T A T E S P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia(GTA Consultants Level 6,15 Help Street, Ph: ((02) 9212 1 (02) 9212 1 (02) 9218 1
CLIENT	CT MANAGEME	O Z Z Y S T A T E S P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia(GTA Consultants Level 6,15 Help Street, Ph: ((02) 9212 1 (02) 9212 1 (02) 9218 1
CLIENT	CT MANAGEME	O Z Z Y STATES P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia (GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.rut	(02) 9212 1 (02) 9212 1 (02) 9212 1 (02) 9212 1 (02) 9212 1 (02) 8448 1 (02) 8448 1
CLIENT	CT MANAGEME	O Z Z Y S T A T E S P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia(GTA Consultants Level 6,15 Help Street, Ph: ((02) 9212 1 (02) 9212 1 (02) 9212 1 (02) 9212 1 (02) 9212 1 (02) 8448 1 (02) 8448 1
CLIENT	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt NT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia(GTA Consultants Level 6, 15 Help Street, Ph: (Chatswood, NSW 1515 jason.ruc P aterson design 16a/1-15 Tramore Place Ph: (0	(02) 9212 1 (02) 922 2 (02) 92 2 (02
CLIENT	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt INT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia(GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.rud P aterson design	(02) 9212 1 (02) 922 2 (02) 92 2 (02
CLIENT PROJEC HYDRAU TRAFFI	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt NT/TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia (GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.ruc P at erson design 16a/1-15 Tramore Place Ph: (C Killarney Heights, NSW 2087 garth@p	(02) 9212 1 (02) 922 2 (02) 92 2 (02
CLIENT PROJEC HYDRAU TRAFFI	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt INT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia (GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.rud P a terson design 16a/1-15 Tramore Place Ph: (C Killarney Heights, NSW 2087 garth@p	(02) 9212 1 (02) 9256 1 (02) 9956 1 (02) 9956 1 (02) 9212 1 @ewfw.com (02) 9212 1 @ewfw.com (02) 9212 1 @ewfw.com
CLIENT PROJEC HYDRAU TRAFFI	CT MANAGEME	OZZY STATES P C/O APP CORPORATION Pt NT/TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia (GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.ruc P at erson design 16a/1-15 Tramore Place Ph: (C Killarney Heights, NSW 2087 garth@p	(02) 9212 1 (02) 9256 1 (02) 9956 1 (02) 9956 1 (02) 9212 1 @ewfw.com (02) 9212 1 @ewfw.com (02) 9212 1 @ewfw.com
CLIENT PROJEC HYDRAU TRAFFI	CT MANAGEME	O Z Z Y STATES P C/O APP CORPORATION Pt INT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia(GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.rud P a t e r s o n d e s i g n 16a/1-15 Tramore Place Ph: (0 Killarney Heights, NSW 2087 garth@p	(02) 9212 1 (02) 9956 1 (02) 9956 1 (02) 9956 1 (02) 9956 1 (02) 9212 1 (02) 922 5 (02) 925 5 (02) 95 1 (02) 95 1 (0
CLIENT PROJEC HYDRAU TRAFFI LANDSC	CT MANAGEME	O Z Z Y STATES P C/O APP CORPORATION Pt INT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.rud P at er s o n de sig n 16a/1-15 Tramore Place Ph: (C Killarney Heights, NSW 2087 garth@p	(02) 9212 1 (02) 9956 1 (02) 9956 1 (02) 9956 1 (02) 9956 1 (02) 99512 1 @ewfw.com (02) 9212 1 @ewfw.com (02) 99212 1 @ewfw.com (02) 9922 5 (dsdesign.com (EI) (02) 9922 5 (dsdesign.com (EI) (02) 9516 0 (asutralia.com
CLIENT PROJEC HYDRAU TRAFFI LANDSC	CT MANAGEME	O Z Z Y STATES P C/O APP CORPORATION Pt INT / TOWN PLANNER APP CORPORATION PTY LI 116 Miller Street Ph: (North Sydney NSW 2060 elise.cramer R EWFW Suite 5, Level 330 Waltle Street Ph: (Ultimo, NSW 2007 luke.degioia (GTA Consultants Level 6,15 Help Street, Ph: (Chatswood, NSW 1515 jason.rud P a t e r s o n d e s i g n 16a/1-15 Tramore Place Ph: (C Killarney Heights, NSW 2087 garth@p	(02) 9212 1 (02) 9956 1 (02) 9956 1 (02) 9956 1 (02) 9956 1 (02) 99512 1 (02) 9212 1 (02) 9216 0 (13) (13) (13) (13) (13) (13) (13) (13)


MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW

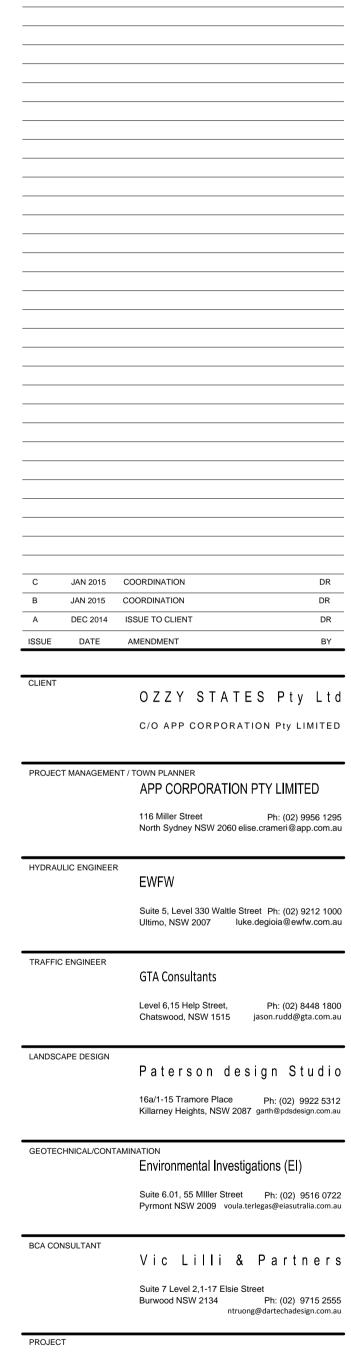

DIAGRAMS

DRAWING TITLE

- GFA		
DATE	JAN 2015	DRAWING No.
SCALE	1:200 @ A1	• •
JOB No.	D1430	20
DRAWN BY	DR	
PF	RELIMI	NARY

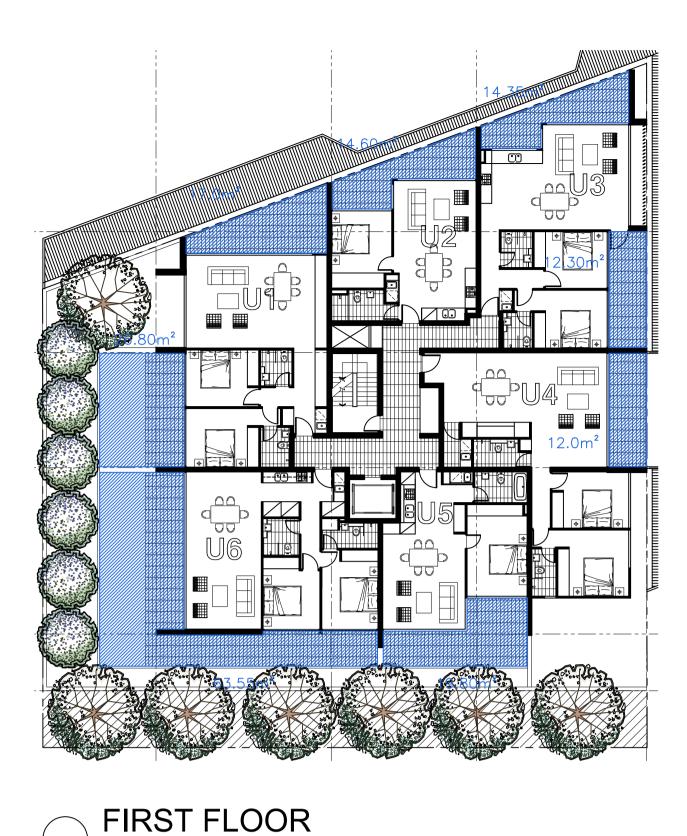
NATURAL VENTILATION

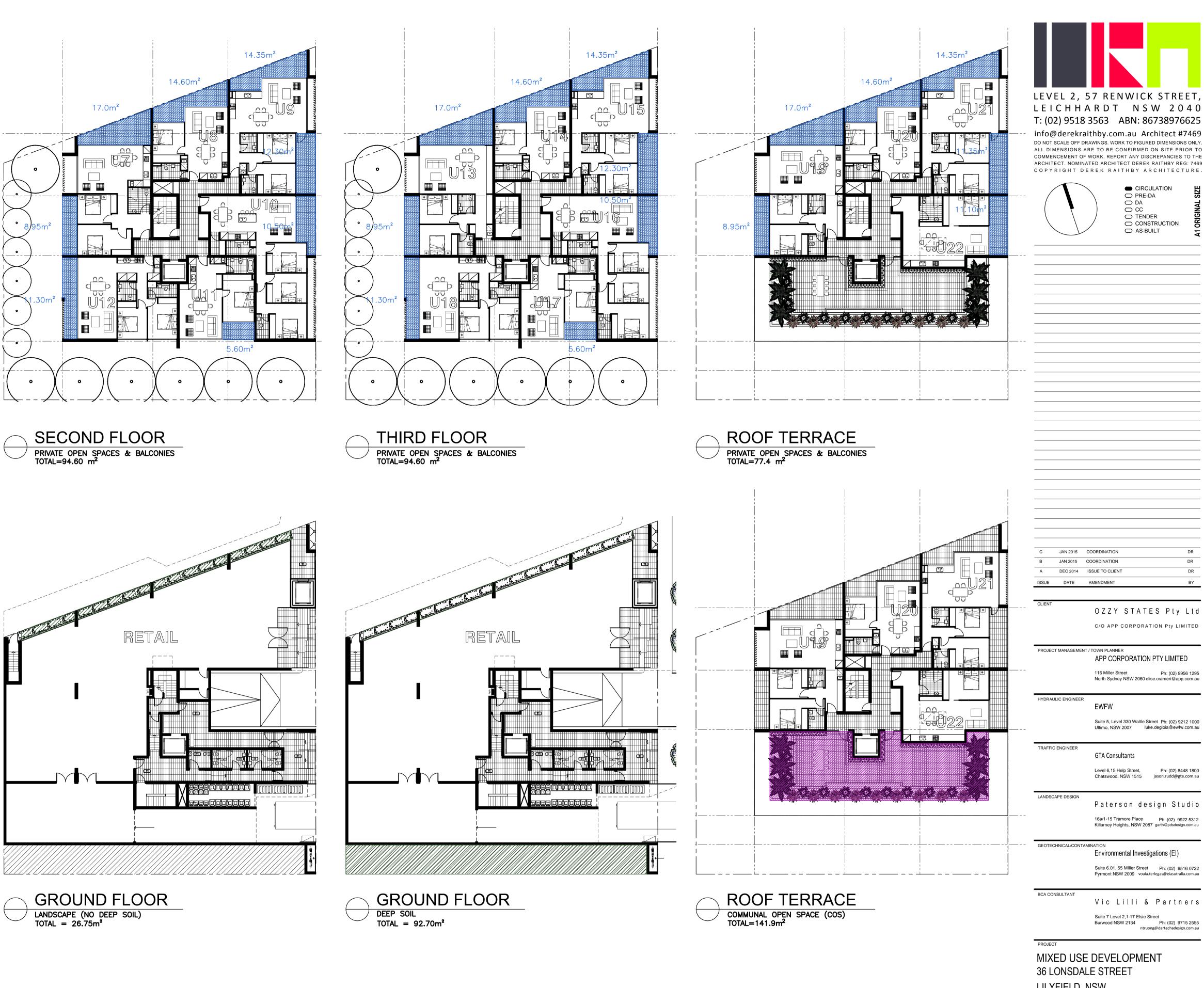
APARTMENTS

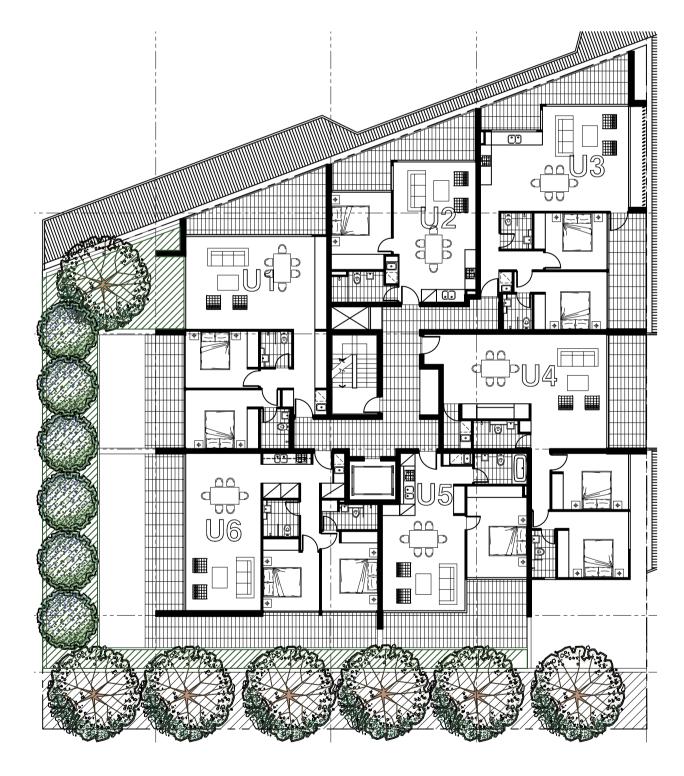

NUMBER OF UNITS WITH CROSS / CORNER VENTILATION 12 OF 22 PERCENTAGE OF UNITS WITH CROSS / CORNER VENTILATION 55% SEPP 65 REQUIREMENT 60%

LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 86738976625 info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

CIRCULATION


\bigcirc	PRE-DA
\bigcirc	DA
\bigcirc	CC
\bigcirc	TENDER
\bigcirc	CONSTRUCTION
\bigcirc	AS-BUILT




MIXED USE DEVELOPMENT 36 LONSDALE STREET LILYFIELD, NSW

DRAWING TITLE

DIAGRAMS								
NATU	ATURAL VENTILATION							
DATE	JAN 2015	DRAWING No.						
SCALE	1:200 @ A1	• (
JOB No.	D1430	21						
DRAWN BY	DR							
PRELIMINARY								

PRIVATE OPEN SPACES & BALCONIES TOTAL=180.4 m²

POS TOTAL = $447m^2$

 \bigcirc DEEP SOIL = 92.70 OR 10%

36 LONSDALE STREET LILYFIELD, NSW DRAWING TITLE

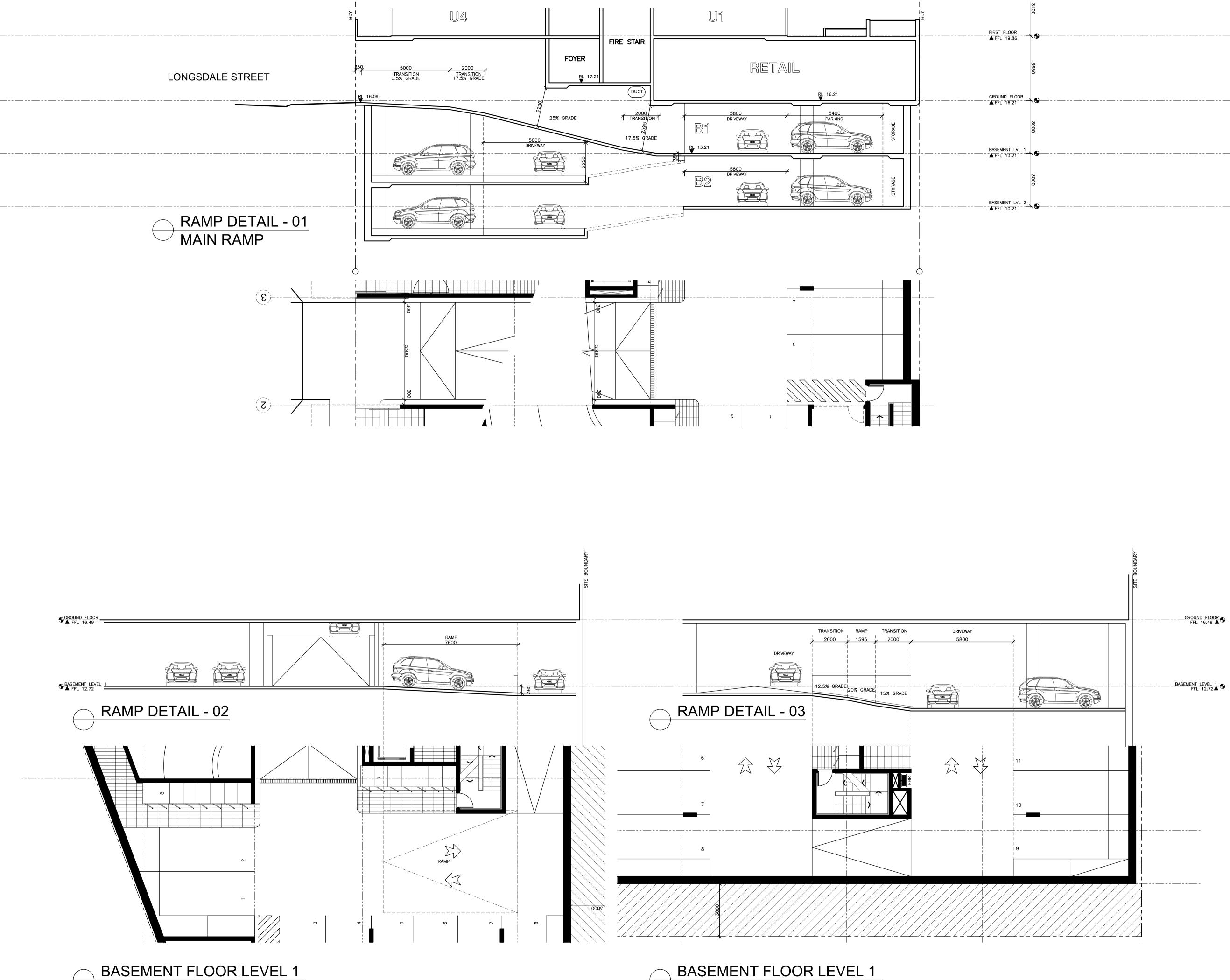
> DIAGRAMS POS / LANDSCAPE / COS JAN 2015 DRAWING No. DATE NTS @ A1 SCALE 22 D1430 JOB No. DR DRAWN BY PRELIMINARY

CIRCULATION

DR

DR

DR BY


Ph: (02) 9956 1295

Ph: (02) 8448 1800

jason.rudd@gta.com.au

 \bigcirc COS TOTAL = 141.9m² OR 15%

BASEMENT FLOOR LEVEL 1

LEVEL 2, 57 RENWICK STREET, LEICHHARDT NSW 2040 T: (02) 9518 3563 ABN: 86738976625

-info@derekraithby.com.au Architect #7469 DO NOT SCALE OFF DRAWINGS. WORK TO FIGURED DIMENSIONS ONLY. ALL DIMENSIONS ARE TO BE CONFIRMED ON SITE PRIOR TO COMMENCEMENT OF WORK. REPORT ANY DISCREPANCIES TO THE ARCHITECT. NOMINATED ARCHITECT DEREK RAITHBY REG: 7469 COPYRIGHT DEREK RAITHBY ARCHITECTURE.

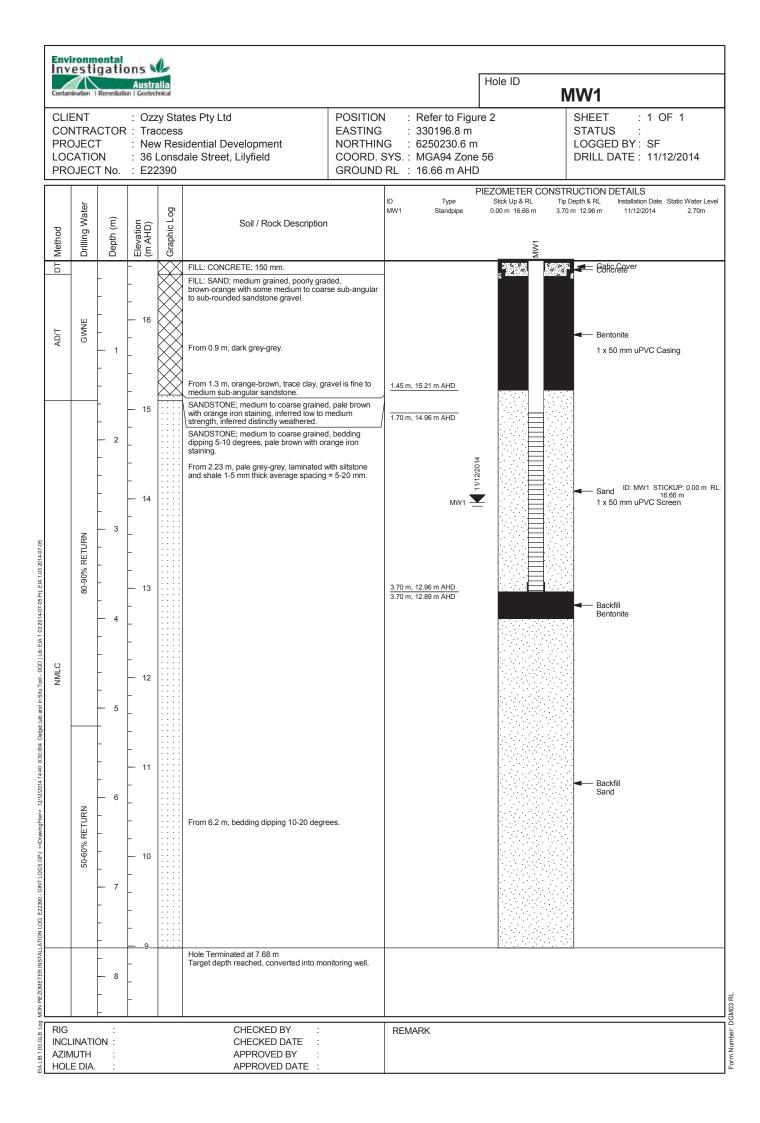
CIRCULATION 🔿 PRE-DA ○ TENDER O CONSTRUCTION O AS-BUILT

	COORDINATION	DR
B JAN 2015 A DEC 2014	COORDINATION ISSUE TO CONSULTANTS	DR
	AMENDMENT	BY
ISSUE DATE CLIENT PROJECT MANAGEMEN	OZZY STATES	-
CLIENT	OZZY STATES C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street	TY LIMITED
CLIENT	OZZY STATES C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.	TY LIMITE TY LIMITED Ph: (02) 9956 12
CLIENT PROJECT MANAGEMEN	OZZY STATES C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P ⁻ 116 Miller Street North Sydney NSW 2060 elise.o	TY LIMITE TY LIMITED Ph: (02) 9956 12 crameri@app.com
CLIENT PROJECT MANAGEMEN	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street	TY LIMITED Ph: (02) 9956 12 prameri@app.com
CLIENT PROJECT MANAGEMEN	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise. EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de	TY LIMITE TY LIMITED Ph: (02) 9956 12 prameri@app.com
CLIENT PROJECT MANAGEMEN	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street,	Ph: (02) 9212 1(agioia@ewfw.com
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEER	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street,	Ph: (02) 9212 10 Ph: (02) 9212 10
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEER	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street,	Ph: (02) 8448 18 Ph: (02) 8448 18 Ph: (02) 8448 18
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEEF	O Z Z Y S T A T E S C/O APP CORPORATIO NT / TOWN PLANNER APP CORPORATION P ⁻¹ 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s j 16a/1-15 Tramore Place	IN Pty LIMITE TY LIMITED Ph: (02) 9956 12 crameri@app.com Ph: (02) 9212 1(agioia@ewfw.com Ph: (02) 8448 18 son.rudd@gta.com g n Studi Ph: (02) 9922 53
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEEF	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s j	IN Pty LIMITE TY LIMITED Ph: (02) 9956 12 crameri@app.com Ph: (02) 9212 10 agioia@ewfw.com Ph: (02) 8448 18 son.rudd@gta.com g n Studi Ph: (02) 9922 53
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEEF	O Z Z Y S T A T E S C/O APP CORPORATIO NT/TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise.c EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g	Ph: (02) 8448 18 Ph: (02) 8448 18 Son.rudd@gta.com g n S t u d i Ph: (02) 9922 53 arth@pdsdesign.com
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEER TRAFFIC ENGINEER LANDSCAPE DESIGN	O Z Z Y S T A T E S C/O APP CORPORATION NT / TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise. EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6, 15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g AMINATION Environmental Investigat Suite 6.01, 55 Miller Street	IN Pty LIMITE FY LIMITED Ph: (02) 9956 12 crameri@app.com * Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 8448 18 son.rudd@gta.com g n St u d i Ph: (02) 9922 53 arth@pdsdesign.com ions (El) Ph: (02) 9516 07
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEER TRAFFIC ENGINEER LANDSCAPE DESIGN	O Z Z Y S T A T E S C/O APP CORPORATION NT / TOWN PLANNER APP CORPORATION P ⁻¹ 116 Miller Street North Sydney NSW 2060 elise. EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s j 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g	IN Pty LIMITE FY LIMITED Ph: (02) 9956 12 crameri@app.com * Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 8448 18 son.rudd@gta.com g n St u d i Ph: (02) 9922 53 arth@pdsdesign.com ions (El) Ph: (02) 9516 07
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEER TRAFFIC ENGINEER LANDSCAPE DESIGN	O Z Z Y S T A T E S C/O APP CORPORATION NT / TOWN PLANNER APP CORPORATION P 116 Miller Street North Sydney NSW 2060 elise. EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6, 15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g AMINATION Environmental Investigat Suite 6.01, 55 Miller Street	IN Pty LIMITE FY LIMITED Ph: (02) 9956 12 crameri@app.com # Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 8448 18 son.rudd@gta.com g n S t u d i Ph: (02) 9922 53 arth@pdsdesign.com ions (EI) Ph: (02) 9516 07 gas@eiasutralia.com
CLIENT PROJECT MANAGEMEN HYDRAULIC ENGINEER TRAFFIC ENGINEER LANDSCAPE DESIGN GEOTECHNICAL/CONT	O Z Z Y S T A T E S C/O APP CORPORATION NT / TOWN PLANNER APP CORPORATION P ⁻¹ 116 Miller Street North Sydney NSW 2060 elise.o EWFW Suite 5, Level 330 Waltle Street Ultimo, NSW 2007 luke.de GTA Consultants Level 6,15 Help Street, Chatswood, NSW 1515 ja: P a t e r s o n d e s i 16a/1-15 Tramore Place Killarney Heights, NSW 2087 g AMINATION Environmental Investigat Suite 6.01, 55 Miller Street Pyrmont NSW 2009 voula.terle	IN Pty LIMITE FY LIMITED Ph: (02) 9956 12 crameri@app.com * Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 9212 11 egioia@ewfw.com Ph: (02) 9212 11 egioia@ewfw.com Ph: (02) 9212 10 egioia@ewfw.com Ph: (02) 8448 18 son.rudd@gta.com g n S t u d i Ph: (02) 9922 53 arth@pdsdesign.com ions (EI) Ph: (02) 9516 07 gas@eiasutralia.com Pa r t n e r

LILYFIELD, NSW

DRAWING TITLE DRIVEWAY PROFILE

DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	
JOB No.	D1430	24
DRAWN BY	DR	
P	RELIMI	



DATE	JAN 2015	DRAWING No.
SCALE	1:100 @ A1	~ -
JOB No.	D1430	25
DRAWN BY	DR	
P	RELIMIR]ARY

Detailed Site Investigation Report 36 Lonsdale Street, Lilyfield, NSW Report No. E22390 AB

> APPENDIX B Borehole Logs

Er	ve	sti	ental gatio	ons							E	BOREHOLE: BH1
Con	taminat	tion	Remediatio	Austr	alia Project Inical Location				estigation eet, Liliyfield			Sheet 1 OF 1
					Position	Refe	r to Fig		2			Date Started 2/3/15
					Job No. Client	E223	390 v State:	e Dhu	Contractor Hart Geo Pty Ltd Drill Rig Ute-Mounted			Date Completed 2/3/15 Logged DS Date: 2/3/15
					Client	OZZy	Siale	Sriy	Inclination -90°	чy		Checked VT Date: 5/3/15
F		Dril	ling		Sampling				Field Material Desc	riptio	on	
	Nощ					Q		30L			₹C√	
QO	TANC	۲	т (s		SAMPLE OR FIELD TEST	VERE	ЧC	SYME	SOIL/ROCK MATERIAL DESCRIPTION	TURE	ISTEN IT	STRUCTURE AND ADDITIONAL
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	OBSERVATIONS
-		_	0.0						FILL: CONCRETE; 200 mm thick.			CONCRETE HARDSTAND
Ы			_							-		
				0.20								
	-	GWNE			BH1_0.2-0.4 ES 0.20-0.40 m		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, poorly graded, brown to dark brown, trace ash, gravel is coarse to fine, angular,		-	FILL
AD/T		0	-				\bigotimes	×	weak hydrocarbon odour.	м		
AL			-				\bigotimes	X				
			-0.5	0.50			\bowtie					
									Hole Terminated at 0.50 m Refusal on sandstone.			
			-									
			-									
			-									
			1.0 —									
			1.0									
			-									
			-									
			-									
2-05			_									
1.03 2014-07-05												
			1.5 —									-
07-05 Pri			-									
03 2014-			-									
ib: EIA 1			-									
DGD L												
itu Tool -			-									
and In S			2.0 —									-
atgel Lat			-									
30.004 L			-									
4:50 8.3			_									
3/2015												
e>> 05/			-	1								
rawingFil			2.5 —									-
l Q V C			-									
390 - 2.G			_									
E 3 E22												
DREHOL			_									
IS AU BC			-									
EA LIB 103.GLB Log IS AU BOREHOLE 3 E2290- 2.GPJ <			3.0 —									
3 1.03.GL	This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.											
EIA LIE												

	1			Austra Austra n Geotec	alia Project	36 L Refe E223	onsdal r to Fig	e Stre jure 2	Contractor Hart Geo Pty L		E	Sheet 1 OF 1 Date Started 2/3/15 Date Completed 2/3/15 Logged DS Date: 2/3/15 Checked VT Date: 5/3/15
			ling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	O DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED		USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	
DT			-	0.18	BH2_0.2-0.4 ES 0.20-0.40 m BH2_0.4-0.6 ES 0.40-0.60 m			-	FILL: CONCRETE; 180 mm thick. FILL: Gravelly SAND; fine to medium grained, poorly graded, brown to dark brown, trace ash, gravel is coarse to fine, angular, weak hydrocarbon odour.	- M	_	FILL
ЪТ	-	GWNE	0.5	0.60	BH2_0.6-0.8 ES 0.60-0.80 m			-	SANDSTONE; Inferred extremely weathered, inferred low strength, yellow grey, no odour.		-	WEATHERED ROCK
AD/T			- 1.0 — - -	1.20	BH2_1.2-1.4 ES 1.20-1.40 m					D		
			- 1.5	1.40				-	FILL: CONCRETE; Hole Terminated at 1.60 m Refusal on burried concrete slab.	-	-	CONCRETE HARDSTAND
			- 2.0									
			- - 2.5 — -									
			- 3.0 —		This borel	nole lo	g shou	ld be	read in conjunction with Environmental Investigations Austr	alia's	acco	mpanying standard notes.

36 Lonsdale Street, Liliyfield

Contractor

Inclination

Drill Rig

Hart Geo Pty Ltd

Ute-Mounted Rig

-90°

Detailed Site Investigation

Refer to Figure 2 E22390

Ozzy States Pty Ltd

Location

Position

Job No.

Client

BOREHOLE: BH3

Sheet	1 OF 1
Date Started	2/3/15
Date Completed	2/3/15
Logged DS	Date: 2/3/15
Checked VT	Date: 5/3/15

DT METHOD PENETRATION	RESISTANCE							Ы			\?	
_	RES	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
_ I			0.0 —					-	FILL: CONCRETE; 120 mm thick.	-		CONCRETE HARDSTAND
	-	GWNE	-	0.12	BH3_0.2-0.4 ES 0.20-0.40 m			SP	SAND; fine to medium grained, poorly graded, yellow to orange, no odour.	м	-	RESIDUAL SOIL
+				0.40					Hole Terminated at 0.40 m			
			0.5						Refusal on sandstone.			
			- 1.0 — -									
			- - 1.5 —									
			- - - 2.5 —									
			-									
			3.0 —						read in conjunction with Environmental Investigations Austra			

Detailed Site Investigation Location 36 Lonsdale Street, Liliyfield Refer to Figure 2 E22390 Ozzy States Pty Ltd

Position

Job No.

Client

BOREHOLE: BH4

Hart Geo Pty Ltd

Ute-Mounted Rig

-90°

Contractor

Inclination

Drill Rig

Sheet	1 OF 1
Date Started	2/3/15
Date Completed	2/3/15
Logged DS	Date: 2/3/15
Checked VT	Date: 5/3/15

			Dri	lling		Sampling				Field Material Desc				
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST		GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	DT			0.0	0.15				-	FILL: CONCRETE; 150 mm thick.	-		CONCRETE HARDSTAND	
_	HA	-	GWNE	-	0.15	BH4_0.2-0.4 ES 0.20-0.40 m		× 4	SP	SAND; fine to medium grained, poorly graded, yellow to orange, no odour.	м	-	RESIDUAL SOIL	
				0.5 —	0.40					Hole Terminated at 0.40 m Refusal on sandstone.				-
				-										-
				-	-									-
				1.0	-									
7-05				-										-
In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				1.5—										-
b: EIA 1.03 2014-07-0				-										-
In Situ Tool - DGD L				- 2.0-										
0.004 Datgel Lab and				-										-
05/03/2015 14:50 8.30.004 Datgel Lab				-										-
< <drawingfile>></drawingfile>				2.5—										-
HOLE 3 E22390 - 2.GPJ				-										-
1.03.GLB Log IS AU BOREHOLE 3				- 3.0 —										-
EIA LIB 1.03.0						This borehole	e log	j shoul	d be	read in conjunction with Environmental Investigations Austr	alia's	acco	mpanying standard notes.	

		N		Austra n Geotec	alia Project	36 Lo Refe E223	onsdale r to Fig	e Stre jure 2	Contractor Hart Geo Pty L			Sheet 1 OF 1 Date Started 2/3/15 Date Completed 2/3/15 Logged DS Date: 2/3/1 Checked VT Date: 5/3/1
		Dril	ling		Sampling				Field Material Desc	-		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED		USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DT			0.0	0.20	BH5_0.2-0.4 ES 0.20-0.40 m			-	FILL: CONCRETE; 200 mm thick. FILL: Clayey SAND; fine to medium grained, poorly graded, brown red grey, clay is medium plasticity, inferred stiff, no odour.	-	-	CONCRETE HARDSTAND
			- 0.5		BH5_0.6-0.8 ES 0.60-0.80 m							
AD/T	-	GWNE	- - 1.0 —	0.90	BH5_1.0-1.2 ES 1.00-1.20 m				From 0.9 m, becoming black, stained, mild hydrocarbon odour.	M	-	
			-	1.20	BH5_1.3-1.5 ES 1.30-1.50 m			-	SANDSTONE; Inferred extremely weathered, inferred low strength, yellow grey, mild hydrocarbon odour.			WEATHERED ROCK
			1.5 —	1.60					Hole Terminated at 1.60 m Refusal on sandstone.			
			- 2.0—									
			-									
			- 2.5 — -									
			-									
			3.0 —		This bore	nole lor	n shoul	d be	read in conjunction with Environmental Investigations Austra	alia's	2000	

	_		ion	Remediatio	Austr Austr n Geotec	alia Project	36 Lo Refer E223	onsdal to Fig	e Stre gure 2	Contractor Hart Geo Pty Lt Ltd Drill Rig Ute-Mounted R Inclination -90°	g		Sheet 1 OF 1 Date Started 2/3/15 Date Completed 2/3/15 Logged DS Date: 2/3/15 Checked VT Date: 5/3/15
			Dril	ling		Sampling	_			Field Material Descr			
	MEIHOU	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F	5			0.0 —				A A A A A A A	-	FILL: CONCRETE; 120 mm thick	-		CONCRETE HARDSTAND
	HA	-	GWNE		0.12	BH6_0.2-0.4 ES 0.20-0.40 m BH6_0.5-0.7 QC ES			- - - -	FILL: Gravelly SAND; fine to medium grained, poorly graded, brown to dark brown, trace ash, gravel is coarse to fine, angular, no odour.	М	-	
				-	0.70	0.50-0.70 m QD1/QT1 ES 0.50-0.70 m		\bigotimes	*	Hole Terminated at 0.70 m			-
g IS AUB OREHOLE 3 E22390 - 26P1 < <drawnpriese -="" 03="" 05="" 05d1="" 07="" 1.03="" 1.03<="" 14:50="" 2014="" 2015="" 8:30.004="" and="" darget="" eia="" insitu="" lab="" lb:="" pf;="" th="" tool=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Refusal on sandstone.</th><th></th><th></th><th></th></drawnpriese>										Refusal on sandstone.			
LALIB 1.03.GLB L		I		3.0 —		This boreh	iole log	l shou	ld be	read in conjunction with Environmental Investigations Austra	ılia's	acco	mpanying standard notes.

٦

05/03/2015 14:50 8.30.004 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

<<DrawingFile>>

IS AU BOREHOLE 3 E22390 - 2.GPJ

8

EIA UB 1.03.GLB

Detailed Site Investigation Location 36 Lonsdale Street, Liliyfield Position Refer to Figure 2 E22390 Ozzy States Pty Ltd

Job No.

Client

Contractor Hart Geo Pty Ltd Drill Rig Ute-Mounted Rig Inclination -90°

1 OF 1 Sheet 2/3/15 Date Started Date Completed 2/3/15 Logged DS Date: 2/3/15 Checked VT Date: 5/3/15

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE USCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 0.0 CONCRETE HARDSTAND FILL: CONCRETE; 150 mm thick. Б 4 GWNE 0.15 ., BH7_0.15-0.3 ES 0.15-0.30 m FILL FILL: SAND; fine to medium grained, yellow, no odour. × ₹H М L 0.30 Hole Terminated at 0.30 m Refusal on burried concrete slab. 0.5 1.0 1.5 2.0 2.5 3.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

BOREHOLE: BH7

Enviror Inves	tigat	al tions Australia			USED O			SOIL DESCR	
Contaminatio	n Remed	liation Geotechnica							
	FILL		.000.		ANIC SO OH or Pt)		 	CLAY (CL, C	CI or CH)
		BLES or _DERS	× × × × × × × × × × × × × × × × × × ×	ILT	(ML or M	H)		SAND (SP o	r SW)
20°20	GRAV GW)	VEL (GP or	Combination: sandy clay	s of t	hese basic s	ymbols may l	be used to	o indicate mixed mater	als such as
Soil is broad	ly classifie	d and described in	STRATIGRAPH Borehole and Test aterial properties are	Pit L				en in AS1726 – 1993, nethods.	(Amdt1 –
		HARACTERISTI		0 400	USCS SY				
Major Divi		Sub Division	Particle Size			Divisions	Symbol	Descrip	tion
	BOULDI		>200 mm					Well graded grave	
	COBBL		63 to 200 mm		ss	% of are	GW	sand mixtures, litt	e or no fines.
	COBBL	Coarse	20 to 63 mm		COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are >2.36mm	GP	Poorly graded grav sand mixtures, littl Silty gravel, grav	e or no fines.
GRAVE	EL 🗌	Medium	6 to 20 mm		than than	e th rse >2.	GM	mixture	
		Fine	2 to 6 mm		6 by di		GC	Clayey gravel, gra mixture	es.
SAND	,	Coarse Medium	0.6 to 2 mm 0.2 to 0.6 mm		SE G n 50% i is gr	More than 50% of coarse grains are <2.36mm	SW	Well graded sand sand, little or	no fines.
0,	·	Fine	0.075 to 0.2mm		AR thai	an (se gi	SP	Poorly graded san sand, little or	
	SILT		0.002 to 0.075 m			re th oars ∍ <2	SM	Silty sand, sand-	silt mixtures.
	CLA		<0.002 to 0.073 m		tha	Mo of c ar	SC	Clayey sand, s mixture	
	-				S ass nan		ML	Inorganic silts of very fine sands, re	ow plasticity,
40			ан		FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	or clayey fine Inorganic clays of I plasticity, gravelly	ow to medium
(%) ×	CL Lowplasti clay	city CI H Medium plastici ty day	CH igh plasticity day		AINED 50% by 3mm is	_iquid <		clays, silty Organic silts and	clays.
- 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01			OH or MH		GR/ an 5 n 63 0 0		OL	clays of low p	plasticity.
sticit			High liquid limit silt		e tha	% n ^	MH CH	Inorganic silts of h Inorganic clays of	
	CL/ML Clay/Silt CL or ML - Low liquid lin	CL or ML Low liquid limits it			F I Mor less	Liquid Limit > than 50%	ОН	Organic clays of m plastici	edium to high
0 0	10 20		60 70 80				PT	Peat muck and organic s	
MOISTUR	E CONDI	TION							
Symbol	Term	Description							
D	Dry		Is are free flowing.						
M	Moist		han in the dry cond		,		nd gravel	s tend to cohere.	
							or liquid lin	nit (WL) [» much greate	er than,
	,	anan, « much less		DE	ENSITY				
Symbol	Term	Undrained S	Shear Strength		Symbol	Term		Density Index %	SPT "N" #
VS	Very So	ft 0. to	12 kPa		VL	Very Loo		< 15	0 to 4
S F	Soft Firm		25 kPa 50 kPa		L MD	Loose Medium De		15 to 35 35 to 65	4 to 10 10 to 30
St	Stiff		100 kPa		D	Dense		65 to 85	30 to 50
VSt	Very Sti	ff 100 to	200 kPa		VD	Very Der	ise	Above 85	Above 50
		esults, consistenc						bserved behaviour of t	
			726 – 1993, and ma	y be	subject to co	rrections for	overburde	n pressure and equipr	nent type.
MINOR CO						1		roportion by Mass	
Term Trace	Presence		/ feel or eye but soi				Coa	roportion by Mass rse grained soils: ≤ 5%	
Some	Presence	e easily detectable	operties of primary by feel or eye but s	soil pi	roperties little	9	Coars	e grained soil: ≤15% e grained soils: 5 - 129	
	or no diff	erent to general pr	operties of primary	com	ponent		Fine	grained soil: 15 - 30%	

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

ontamination Reme	diation Geote	echnical					
DRILLING/EX	CAVATIC	N METHOD					
HA	Hand Auge	r	RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
DTC	Diatube Co	ring	RT	Rotary Tricon	e bit	NMLC	Diamond Core - 52 mm
NDD	Non-destru	ctive digging	RAB	Rotary Air Bla	ast	HQ	Diamond Core - 63 mm
	Auger Scre	00 0	RC	Reverse Circu		HMLC	Diamond Core - 63mm
	Auger Drilli	0	PT	Push Tube		BH	Tractor Mounted Backhoe
	V-Bit		СТ	Cable Tool Ri	ia	EX	Tracked Hydraulic Excavator
	TC-Bit, e.g.	АПТ	JET	Jetting	9	EE	Existing Excavation
	Hollow Aug		WB	Washbore or	Bailer	HAND	Excavated by Hand Methods
					Dalici		
PENEIRAIIO	N/EXCAV	ATION RESIST	ANCE				
L Low r	resistance	. Rapid penetration	n/ excavati	on possible with	little effort fror	n equipment	used.
M Mediu	um resista	ance. Penetration	/ excavatio	n possible at an	acceptable rat	te with moder	ate effort from equipment used.
							ificant effort from equipment used.
-							
						-	acceptable wear to equipment used.
					including equip	ment power a	and weight, condition of
excavation or dr	illing tools a	and experience of t	he operato	r.			
WATER							
	$\overline{}$		11		~		
	¥	Water level at da	te shown		\triangleleft	Partial wat	er loss
	\triangleright	Water inflow				Complete	water loss
						•	
GROUNDWA		-			ent or not, wa	s not possibl	e due to drilling water, surface seepage
NOT OBSER\	/ED	or cave-in of the	borehole/1	test pit.			
GROUNDWA ⁻	TER	Borehole/ test pi	t was dry s	soon after excav	vation. Howeve	r, groundwat	er could be present in less permeable
NOT ENCOUN	NTERED					. 0	n left open for a longer period.
SAMPLING A							
	ND TEST	NG					
SPT		Standard Penet					
4,7,11 N=18		4,7,11 = Blows					following 150mm
seating 30/80mr	m	Where practical Penetration occ				n for that inte	erval are reported
RW HW		Penetration occ				vlac	
HB		Hammer double			na roa weigin e	Jilly	
			bounding	on ann			
Sampling DS		Disturbed Samp					
BDS		Bulk disturbed Samp					
GS		Gas Sample	ampic				
NS		Water Sample					
U63		•	e sample -	number indicate	es nominal sam	nple diameter	n millimetres
Testing							
FP		Field Permeabil	itv test ove	r section noted			
FVS					rected shear st	trenath (sv =	peak value, sr = residual value)
PID		Photoionisation					
PM		Pressuremeter		• • • •			
PP		Pocket Penetro			strument readi	ing in kPa	
WPT		Water Pressure		,		5	
DCP		Dynamic Cone		eter test			
CPT		Static Cone Per					
CPTu		Static Cone Per			ssure (u) meas	urement	
RANKING OF	VISUALL	Y OBSERVABL		MINATION A	ND ODOUR	(for specific	soil contamination assessment
R = 0		ble evidence of cor			R = A		ural odours identified
R = 0		evidence of visible of			R = B		natural odours identified
R = 2	U	contamination			R = C	Ũ	on-natural odours identified
R = 2 R = 3			nation		R = D		
-	0	ant visible contami	nauun		IX = D	Strong non	-natural odours identified
			005	o " · · o =	/		
TCR = Total				= Solid Core Re			RQD = Rock Quality Designation (%)
$=\frac{\text{Length of cor}}{\text{Length of cor}}$	e recevered	x 100	$= \frac{\Sigma \text{ Length}}{\Sigma}$	n ofcylindrical co		100 =	Σ Axial Lenghts of core>100mm x 100
Lengh of o	core run		_	Lengh of core r	un	- 100	Lengh of core run
MATERIAL B		ES					
	erred bound	-		- = probable l	boundarv	-	? ? ? ? ? = possible boundary
- 1110		·····)		r.0000101			

Detailed Site Investigation Report 36 Lonsdale Street, Lilyfield, NSW Report No. E22390 AB

APPENDIX C Field Data Sheets & Calibration Certificates

ENVIRONMENTAL INVESTIGATIONS GROUNDWATER SAMPLING FIELD SHEET

Site Addro	20: 7/	Incel	1 0	114:	el.A		Job Numb	contamination Remediation Geotechnical								
Site Addre Client:	127 4	Styte	Le PTI	myp	0101			73/15								
Field Staff		1410	1 .1-	V			Well ID:									
Vell Locat		Terto	plan				Round No	Mill								
VELL BA		1	prove				Round No									
Vell Instal			111/14			1	Mall Stick	(m)(m) = 610								
				×				up (m): - 0.15								
nitial Well		······································	· T					terval (mbgl): 1.7-3.7								
Previous S		Jate:					Previous S	SVVL (m):								
RE PUR			1													
Vell Head		n: Cro	od	a 1 /				space (ppm): 10								
	Depth (m		3.7+1	.15			284 1 225 6 7 284	asure Device: 0								
SWL (mbt		1-825						= Water Column x 6 (50mm Well)								
Vater Col							Purge Vol	ume (L): 5								
			CARBON	IS(PSH)												
Depth to F			20					ally Confirmed:								
	space (pp						PSH Thick	kness (mm):								
OW FLO	W: PURC	SING & SA														
Depth of F	ump Inlet	: 2.0	om				Fill Timer: CAMBU il									
Pump Pre	ssure Reg	gulator (ps	i): 15-	18	-		Discharge Timer: 3									
Neather (Conditions	: Sun	ny	-			Cycle: 7									
Pump on t	ime:	12pm	1				Pump off	time: 12:20								
	Conditions	5:														
NATER C	UALITY	PARAMET	TERS													
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (mg/L)	рН	Comments (colour, turbidity, odour etc.)								
	1	1.825	27.5	977	-154	C	6.9	dark brown high turkdit								
	1	149 24]	26.9	1132	-160	0	7.1	poor elanity, bu sectiment								
	1		25.1	1485	-50	6	7.33	slight Mr. ochour, sheen								
	1		25.1	1489	- 47.1	0	7.32	present no PSH								
	1	1.925	25.1	1488	-46.5	0	7.33	present, no ren								
		1.100		110	10.0											
							-									
			-				-									
				-			-									
	ال في ال															
3		tion range: ive reading		+/- 3%	+/- 10mV	+/- 10%	+/- 0.05									
OT HER C	OMMEN	TS:	AAC	ac		- 1										

Water Quality Meter Calibration Log

Instrument: Hanna Multi Parameter 9828 - Serial no. 08267834

Sensor (Unit of measure)	Standard Solutions Used	Solution Batch Number	Instrume	ent Reading
			Initial	Post Calibration
	4.01	LJ 1685	4.14	4.01
рН	4.01	LH 2141	6.96	4.01
	9.18	1K2227	9.12	9.18
ORP (mV)	240	4010K	212.9	240.4
Conductivity (μs/cm)	144 B MS/cm	221202	1.511	1438
conductivity (µs/cm)	13255 NS/CM	LC1376	13.02 MS/cm	13.26 MS/Cm
DO (mg/L)	100 % (Air)		112.7	100.1
20 (mg/2)	0%	6276/6275	D	0
Temperature (⁰ C)	25.5	N/A	25.67	25.5

Calibrated by:

.

CY

Calibration Date:

11/2/2015 ue: March 2015 Next Calibration Due:

Notes:

APPENDIX D Chain of Custody and Sample Receipt Forms

1	Sheet	of	2			Sam	nple N	/latrix	trix Analysis														Comments		
	Site: 36 L	Lonsde	ale Sf		roject No: ZZ390			t, etc.)	AHs stos	AHs							exchange)	onductivity)							HM <u>A</u> Arsenic Cadmium Chromium
	Laboratory:	ALEXAN	tralia 33 Maddox S DRIA NSW 2 4 0400 F: 02	015				OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TEX			SC	(cation	pH / EC (electrical conductivity)	S	10		AHs	1M A	IM B	Copper Lead Mercury Nickel
	Sample	Laboratory	Container	Samp	ling	WATER	_	HERS	A A /	HMAN	NAN	CH/B7	TRH/BTEX	PAHs	VOCs	Asbestos	I/CEC	I/EC	sPOCAS	HOF		TCLP PAHs	TCLP HM A	TCLP HM ^B	ZinC
	ID	ID	Туре	Date	Time	WA	SOIL	E	ΞŎ	H	H	TF	H	PA	N	As	/ Hd	hd	SP	Ja .	-	TO	TC	TC	HM ^B Arsenic
1	341-0-2-	0-4	JIZLB	2/3/15			+		×																Cadmium Chromium
2	BH2-0.2-	0.4		- Li					×																Lead
	• 0.4-	0.6	1																		-				Mercury Nickel
3	0-6-	0.8	5							×															
	1.2-	1-4	5																	×					
r	BH3-0-2	-0.4	JIZLB					-	×		-		Г	150		2 2	7775		-					-	LABORATORY
	BH4-0-2		1						×	_				123	61	율붠	WI	BI				-			
20	BH5-0.2								×					0 (2 1	IAR	2015	P							Standard
7		-0.8								×	-			SE	1 -2	\$6	78	3							24 Hours
	- 0-6									~			105	DE)	20	10.			×					X 72 Hours
8			J			-		-		~		-		-		-						-			Other
-	-1.3	-1-5								×	_				-										
1	BH6-0.3		J,ZLB	1			V	Sam	pler's Na	ime (El):			Rece	ived by	(SGS)	:			10 mg	viron	1000			4
			t these sampl ard El field sa			accord	lance	-	Do	HEL,	Car	IMAN	1		202.0		-		-	In	Ves	tic	12	tic	ons Ma
	Sampler's Co	omments:						Pr		MEC (M	I MIAN		Prii	nt				-			115	ju	cite	
								Sig	nature	It	M/	~	_	Siar	nature		· > A		-	Con	taminatio	n L	eme	diatic	Australia Geotechnical
	Container Type:						Da	(00	1			Date	.C	Q.R	pu-	-1		1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	e 6.01, 5	C			in deolectimical	
		ned, acid rins	ed,Teflon seale	d, glass jaR				_			115	-	_		2	031	15	03	3-30	30 PYRMONT NSW 2009					
1	P= natural HDP VC= glass vial, ZLB = Zip-Lock	E plastic both Teflon Septu	tle				IMPORTANT: Ph: 9516 0722 Please e-mail laboratory results to: lab@eiaustralia.com.au lab@eiaustralia.com							COC July 2014 FORM v.2 - SGS											

Sheet _2	of <u>2</u>				Sam	nple N	/latrix									Ana	lysis	-						Comments
Site:	ALEXAN	atralia 33 Maddox S DRIA NSW 2	itreet, 2015	oject No:			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX	TRH/BTEX/Lead					CEC (cation exchange)	pH / EC (electrical conductivity)				2	A	Ø	HM ^A Arsenic Cadmium Chromium Copper Lead Mercury
	P: 02 859	04 0400 F: 02	8594 0499 Sampli	ing	œ		RS (i.e	()	TRH	TRH	/BTE>	THE TEX	0	s	istos	CEC	EC (e	CAS			TCLP PAHs	TCLP HM A	TCLP HM B	Nickel ZinC
Sample ID	Laboratory ID	Container Type	Date	Time	WATER	SOIL	DTHE	HM A OCP/(HMA	HMA,	TRH		PAHs	VOCs	Asbestos	/Hd	/Hd	sPOCAS			TCLI	TCLF	TCLH	HMB
BH6- Q	5-0-7	JIZLB	2/3/15		-			×																Arsenic Cadmium
BH7-015		11	1				1	×																Chromium Lead
ØDI		J				V				×														Mercury Nickel
TBI		VCx2			×							×												
RBI		S.VC-Z.P	V		X					×														
																								LABORATORY TURNAROUND
														-							-	-	-	Standard
				-											-						-	_		24 Hours
					-		-	-	_	-	-	-	-	-	-	-	-	-		-	-	-		48 Hours
		-			-	-	-		_	-	-	-	-	-		-		-				72 Hours		
-					_	-	-																	
							Sam	pler's Na	me (El):	-		Rece	eived by	(SGS)	:			Em	viro	13 173	ant	al	A
Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.					DAN	IEL	Sa	LIM	qN				-		-	Environmental Investigations				ons Ma				
Sampler's C	omments:						Print AM					Print				Australia								
Container Ty)e'		_		_		Dat	nature	01	1	_	_	Dat	Date			Contamination Remediation Geotechnic Suite 6.01, 55 Miller Street				in deotechnica			
J= solvent was S= solvent was	shed, acid rins shed, acid rin	sed,Teflon seale sed glass bottle							2/3	13	_	-	02	20	3/15	- @	3.	30	1	MONT				
P= natural HD VC= glass vial ZLB = Zip-Loc	, Teflon Septi							PORT			ry resi	ults to	lab@	@eia	ustra	lia.co	om.a	u	Ph: lab@	951 eiaustr	6 072 ralia.c		u	COC July 2014 FORM v.2 - SC

Cooling Met	Temp	3.0	Good Order	. (Y/ N	Clearly Labell	()/ N	Correct Pre	(Y)	No Head-spa	(Y/N/I	Sufficient V	D/N	Doc Date	0210:	Doc Type	Complete Doc	Y / N	Requested TAT
Comment	File	~	•	75g	~					1	-		1					
Bottles Supplied By	Sag		0	n					3-0.4								•	
Storage Location	07-10	17 OU	n	ASS	-				2:00								•	
	Sc	e							BH									
						++			25									
					+	-	+	-	L 3	-					_			
200 NaThio STERILE P									le									
500 NaThio STERILE P					_	-			e									
250 UP OPAQUE P						-			be									
40 NaThio GV		2	2	-		-	-		6	-								
100 / 200 UP AG				-	-	é è	11	-		-	_			1		-		
125/250 H.SO. P					-		0	N	te	-					-			
500 deupad			1	-	-	1	21	1 1	++	-	-				1	-		
125 HCI P				-	+		Or	-	50	-	_				-			
125 / 260 Metal Filtered*)	-			1		-	_	_	-	-		-			
125 / 250 Metal Total		-			_	-	57		e	_					_			
125 / 250 UP P						-	3		10	-	-				_			
250 / 500 NaOH BP					-		3		an	-	-				-			
250 ZnAcetate P							6	0	S		_				-			
600 UP P					_	-		_	2	-	_	-	-		-			
1L UP P					-	-		hi	ru	-								
					-	-	-	ĩ	- 1	-	-	-	-	_	-			
BAG			_	1	-	-	-	-	-	-	-	+	-		-			-
125 JAR				_	-				-	-	-	-	-	_	-			-
250 JAR	8	-						-	-	-	-	-	-		-			_
Matrix	lic	ader	h	പ	_													
3	S	Cer	-	5	-	-		-	-	+	-	-	-	-	-			
	2			-11														
SG:	1-12	13	14	4-7,9														

CLIENT DETAIL	S	LABORATORY DETA	NLS
Contact	Daniel Soliman	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Daniel.Soliman@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 - 36 Lonsdale st - Lilyfield	Samples Received	Mon 2/3/2015
Order Number	E22390	Report Due	Thu 5/3/2015
Samples	14	SGS Reference	SE136783

_ SUBMISSION DETAILS

This is to confirm that 14 samples were received on Monday 2/3/2015. Results are expected to be ready by Thursday 5/3/2015. Please quote SGS reference SE136783 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 12 Soils & 2 Waters 2/3/2015 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 3.6°C Three Days Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

3 soil samples have been placed on hold as per client's request.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS , all SGS services are rendered in

accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f

__ CLIENT DETAILS _

Client Environmental Investigations

Project E22390 - 36 Lonsdale st - Lilyfield

		_	_	omatic oil		1etals .om	able oil		_
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil by ICPOES from	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1_0.2-0.4	28	13	25	11	7	10	12	8
002	BH2_0.2-0.4	28	13	25	11	7	10	12	8
003	BH2_0.6-0.8	-	-	25	-	7	10	12	8
004	BH3_0.2-0.4	28	13	25	11	7	10	12	8
005	BH4_0.2-0.4	28	13	25	11	7	10	12	8
006	BH5_0.2-0.4	28	13	25	11	7	10	12	8
007	BH5_0.6-0.8	-	-	25	-	7	10	12	8
008	BH5_1.3-1.5	-	-	25	-	7	10	12	8
009	BH6_0.2-0.4	28	13	25	11	7	10	12	8
010	BH6_0.5-0.7	28	13	25	11	7	10	12	8
011	BH7_0.15-0.3	28	13	25	11	7	10	12	8
012	QD1	_	-	-	-	7	10	12	8

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

__ CLIENT DETAILS _

Client Environmental Investigations

Project E22390 - 36 Lonsdale st - Lilyfield

UMMARY	OF ANALYSIS						
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH1_0.2-0.4	2	1	1	-	-	-
002	BH2_0.2-0.4	2	1	1	-	-	-
003	BH2_0.6-0.8	-	1	1	-	-	-
004	BH3_0.2-0.4	2	1	1	-	-	-
005	BH4_0.2-0.4	2	1	1	-	-	-
006	BH5_0.2-0.4	2	1	1	-	-	-
007	BH5_0.6-0.8	-	1	1	-	-	-
008	BH5_1.3-1.5	-	1	1	-	-	-
009	BH6_0.2-0.4	2	1	1	-	-	-
010	BH6_0.5-0.7	2	1	1	-	-	-
011	BH7_0.15-0.3	2	1	1	-	-	-
012	QD1	-	1	1	-	-	-
013	TB1	-	-	-	-	12	-
014	RB1	-	-	-	9	12	8

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

CLIENT DETAILS .

Client Environmental Investigations

Project E22390 - 36 Lonsdale st - Lilyfield

-	SUMMARY	OF ANALYSIS		
	No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS
	014	RB1	1	7

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

CLIENT DETAILS	S	LABORATORY DETA	NLS
Contact	Voula Terlegas	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Voula.Terlegas@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 -36 Lonsdale Street-Lilyfield-Add	Samples Received	Mon 2/3/2015
Order Number	E22390	Report Due	Wed 11/3/2015
Samples	15	SGS Reference	SE136783A

SUBMISSION DETAILS

This is to confirm that 15 samples were received on Monday 2/3/2015. Results are expected to be ready by Wednesday 11/3/2015. Please quote SGS reference SE136783A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 1 Soil 5/3/15@6:23pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

Email Yes 3.6°C Three Days Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS , all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

t +61 2 8594 0400

___ CLIENT DETAILS .

Client Environmental Investigations

Project E22390 -36 Lonsdale Street-Lilyfield-Add

SUMMARY OF ANALYSIS						
No. Sample ID		Moisture Content	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
015 BH5_1.0-1.	2	1	25	10	12	8

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

AU.SampleReceipt.Sydney (Sydney)

From: Sent: To: Cc: Subject: Voula Terlegas - Environmental Investigations [voula.terlegas@eiaustralia.com.au] Thursday, 5 March 2015 6:23 PM AU.SampleReceipt.Sydney (Sydney) Crawford, Huong (Sydney) RE: Report Job SE136783, your reference E22390 - 36 Lonsdale Street - Lilyfield

Hi Team,

555 Reg: 50 136787A Bute the : 11/3/15 747 2 3 day Could I have sample BH5_1.0-1.2 tested for TPH/BTEX, PAH on a 72Hr TAT?

Should you have any queries, do not hesitate to contact me.

Kind regards,

Voula Terlegas | Environmental & Geotechnical Engineer Environmental Investigations Australia Pty Ltd Suite 6.01, 55 Miller Street, Pyrmont NSW 2009 T 02 9516 0722 | F 02 9518 5088 W www.eiaustralia.com.au | E voula.terlegas@eiaustralia.com.au

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

-----Original Message-----From: AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.com] Sent: Thursday, 5 March 2015 5:46 PM To: Daniel Soliman - Environmental Investigations; Laboratory Results - Environmental Investigations Subject: Report Job SE136783, your reference E22390 - 36 Lonsdale Street - Lilyfield

Dear Daniel,

Please find attached the report for SGS job SE136783, your reference E22390 - 36 Lonsdale Street - Lilyfield, order number E22390.

-IMPORTANT INFORMATION ABOUT YOUR REPORT-To align with NEPM 1999 (2013), SGS Environmental has changed the way Silica Gel Clean-up of TRH extracts is reported. TPH Silica Gel has now become TRH - Silica. NEPM 1999(2013) seeks to clarify TRH and TPH in Schedule B3, 10.2.7.

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

Regards, Huong Crawford

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:		
Environmental Investigations	ph:	9516 0722
Suite 6.01, 55 Miller Street	Fax:	9518 5088
Pyrmont NSW 2009		

Attention: Daniel Soliman

Sample log in details:	
Your reference:	E22390, Lilyfield
Envirolab Reference:	124396
Date received:	02/03/15
Date results expected to be reported:	9/03/15
Samples received in appropriate condition for analysis:	YES
No. of samples provided	1 Soil
Turnaround time requested:	Standard
Temperature on receipt (°C)	16.2

Comments:

Cooling Method:

Sampling Date Provided:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Ice Pack

YES

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Sheet	of	(Sam	nple N	latrix		_							Ana	lysis								Comments
Site: Bb		le St	-	Project No: EZZ390			nt, etc.) .	PAHs stos	AHs							change)	onductivity)								HM <u>A</u> Arsenic Cadmium Chromium
Laboratory:	Envirolab 12 Ashley CHATSW P: 02 991	Street	2067				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ ^А /ТКН/ВТЕХ/РАНs	НМ ^Δ /ТКН/ВТЕХ	TRH/BTEX/Lead	TEX			so	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	SI					TCLP PAHs	HM ^B	Copper Lead Mercury Nickel ZinC
Sample	Laboratory	Container	Samp	oling	WATER	ہے ا	HER	M ≜ CP/C	MΑΓ	MΔ/	SH/B	TRH/BTEX	PAHs	vocs	Asbestos	1 CE	Т Щ	sPOCAS					CLPF	TCLP	
ID	ID	Туре	Date	Time	Š	SOIL	5	ΞŎ	Ī	Ī			<u>a</u>	Š	Ř	a 	ā	<u>д</u>					τ	Ĭ	HM ^B Arsenic
QTI		J	2/3/15			×				×						·									Cadmium Chromium
			/																						Lead
																			ENVI	BRJOS		virolab 12	Ashley	St	Mercury Nickel
																				No:	Chat Pi	wood a: (02) 9	910 62	67 00	
																			Date	Recei	12	5/	59 R / I	40	
																			Time	Recei		75	14	Ś.	LABORATORY
				_		·													Reco Tem	ivier b Cool	r Ambie		16.	N [†]	
· ·				-															Cooi Secu	ng: tce rity: In	act/Br	ken/N			K Standard
				-																					24 Hours
				<u>·</u>																					48 Hours
			·	_		<u> </u>																			72 Hours
					<u> </u>		-																		Other
														<u> </u>	<u> </u>				,						
Investigator:		these samp rd El field sa			ccord	ance		ler's Na					Rece	ived by		olab):			En	vir	on	me	nt	al	ns M
							(()ANTEL SOLIMAN									•		In	Ve	es:	tig	ja [.]	CIÇ	
Sampler's Co	omments:						Prīl	Print JYH													·	Australia			
							Sigr	Signature Signature											-			n Geotechnical			
	Container Type: J= solvent washed, acid nnsed, Teflon sealed, glass jaR					Date 2/3/13 Date 2/3/15								Suite 6.01, 55 Miller Street											
S= solvent was S= solvent was P= natural HDP	hed, acid rins	ed glass bottle					IMP		<u> </u>		·		L'	49	12				PYRMONT NSW 2009 Ph: 9516 0722						
VC= glass vial, ZLB = Zip-Lock	Teflon Septu							IPORTANT: lease e-mail laboratory results to: lab@eiaustralia.com.au								lah @ajayatralia.com ay			COC July 2014 FORM v.2 - Envirolab						

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	Emmanuel Woelders	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22390 - 36 Lonsdale St - Lilyfield	Samples Received	Mon 9/3/2015	
Order Number	E22390	Report Due	Thu 12/3/2015	
Samples	3	SGS Reference	SE137034	

_ SUBMISSION DETAILS

This is to confirm that 3 samples were received on Monday 9/3/2015. Results are expected to be ready by Thursday 12/3/2015. Please quote SGS reference SE137034 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 3 Waters 9/3/2015 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 3.8°C Three Days Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400

SAMPLE RECEIPT ADVICE

___ CLIENT DETAILS .

Client Environmental Investigations

Project E22390 - 36 Lonsdale St - Lilyfield

- SUMMARY	OF ANALYSIS		1	1	1		
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	MW1	1	22	7	9	79	8
002	GWQD1	1	-	7	9	12	8
003	GWQTB1	-	-	-	-	12	-

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

source:NFPN630_111443.pdf page: 6 SGS Ref: SE137034_COC

Sheet	of	/		_	Sam	nple N	Aatrix	< Contract of the second secon								Ana	alysis							Comments
Site: 36 Lily	Lonid	ele st, l NSI		roject No:			etc.)	AHS OS	Hs							tange)	conductivity)							HM A Arsenic Cadmium
Laboratory:	Unit 16, 3 ALEXAN	stralia 33 Maddox S DRIA NSW 2 94 0400 F: 02	2015				OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ [≜] /ТКН/ВТЕХ/РАНs	НМ [≜] /ТКН/ВТЕХ	TRH/BTEX/Lead	EX			s	pH / CEC (cation exchange)	pH / EC (electrical cor	0			AHs	MA	HMB	Chromium Copper Lead Mercury Nickel
Sample	Laboratory		Sampl	1	WATER	SOIL	THERS	MA /	MAT	M A /TF	TRH/BTEX	PAHs	VOCs	Asbestos	H / CE(H / CE	sPOCAS	BTEX		TCLP PAHs	TCLP HM	TCLP H	ZinC	
NWI	ID N	Type J F, VC×2	Date 9/3/15	Time	M	S	0	τo	T	I	-	-	۵.	>	4	đ	ā	S	4		-	F	F	HM ^B Arsenic Cadmium
GWQDI	2	V	1	1	1					1											-			Chromium
GWGTBI	3	VL×2			V														~					Mercury Nickel
		_				-											_							
																								LABORATORY TURNAROUND
																								Standard
											L		10		C	EI	V1							24 Hours
				-	SE1	37034	COC				-		8	5	91	MAR	2015	Ľ						48 Hours
				-	Rec	eived	: 09 -	-Mar-	-2015		-		-	SP	13	70	34			_		-		72 Hours
-				-		I	1	1	1	1	1 -	-									+		_	Other
Investigator:	I attest tha	t these samp	les were coll	ected in a	ccorda	ance	Sam	pler's Na	ame (El):			Rece	ived by	(SGS):				En	viron	ime	ent	al	4
		ard El field sa	ampling proce	edures.										_					In	ves	tig	a	tio	ns 🇤
Sampler's C	omments:							mau	nver	1 4	Joela	levs	Prir		_						1			Australia
						_	Fin	hature	de	n				ature of		Bu	Lf			aminatio 6.01, 5				n Geotechnical
Container Typ J= solvent was S= solvent was	hed, acid rins						Dat	13/	15				Date	pal	03	15	e	4.20		MONT				
P= natural HDF VC= glass vial,	E plastic bot Teflon Septu	tle						ORT			VICE	ilts to:	lab@	Deia	istral	ia co	mai		Ph:		0722			
ZLB = Zip-Lock	k Bag	1					1 ledi	50 G-III	aniab	Jator	, 1030	10.	inne	solat	oudi		mau		lab@)eiaustra	ma.co	m.au	1	COC July 2014 FORM v.2 - SGS

Detailed Site Investigation Report 36 Lonsdale Street, Lilyfield, NSW Report No. E22390 AB

APPENDIX E Laboratory Analytical Reports

- CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Daniel Soliman	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Daniel.Soliman@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 - 36 Lonsdale Street - Lilyfield	SGS Reference	SE136783 R0
Order Number	E22390	Report Number	0000104335
Samples	14	Date Reported	05 Mar 2015
Date Started	04 Mar 2015	Date Received	02 Mar 2015

COMMENTS _

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique. Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Ady Sitte

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

Duoms

Deanne Norris Organic Chemist

kmln

Ly Kim Ha Organic Section Head

funz

Huong Crawford Production Manager

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

t +61 2 8594 0400 f +61 2 8594 0499

9 www.au.sgs.com

Member of the SGS Group 05-March-2015

		ample Number Sample Matrix Sample Date Sample Name	Soil 02 Mar 2015	SE136783.002 Soil 02 Mar 2015 BH2_0.2-0.4	SE136783.003 Soil 02 Mar 2015 BH2_0.6-0.8	SE136783.004 Soil 02 Mar 2015 BH3_0.2-0.4
Parameter	Units	LOR				
VOC's in Soil Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	90	83	92	83
d4-1,2-dichloroethane (Surrogate)	%	-	101	91	103	99
d8-toluene (Surrogate)	%	-	97	90	101	95
Bromofluorobenzene (Surrogate)	%	-	95	86	97	92
Totals						
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN43	34/AN410					
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						

Dibromofluoromethane (Surrogate)	%	-	90	83	92	83
d4-1,2-dichloroethane (Surrogate)	%	-	101	91	103	99
d8-toluene (Surrogate)	%	-	97	90	101	95
Bromofluorobenzene (Surrogate)	%	-	95	86	97	92

	S	mple Number Sample Matrix Sample Date Sample Name	SE136783.001 Soil 02 Mar 2015 BH1_0.2-0.4	SE136783.002 Soil 02 Mar 2015 BH2_0.2-0.4	SE136783.003 Soil 02 Mar 2015 BH2_0.6-0.8	SE136783.004 Soil 02 Mar 2015 BH3_0.2-0.4
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN4 VPH F Bands	134/AN410 (cc	ontinued)				
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN40)3					
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	120	580	<45	<45
TRH C29-C36	mg/kg	45	150	1000	<45	<45
TRH C37-C40	mg/kg	100	<100	280	<100	<100
TRH C10-C36 Total	mg/kg	110	270	1600	<110	<110
TRH C10-C40 Total	mg/kg	210	270	1900	<210	<210
TRH F Bands						
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	220	1300	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	590	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: A						
Naphthalene	mg/kg	0.1	<0.1	0.5	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.5	0.2 <0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	0.3	0.3	<0.1
Fluorene Phenanthrene	mg/kg mg/kg	0.1	0.3	6.4	2.0	<0.1
Anthracene	mg/kg	0.1	<0.1	1.7	0.4	<0.1
Fluoranthene	mg/kg	0.1	0.6	8.1	2.6	0.1
Pyrene	mg/kg	0.1	0.5	7.1	2.5	0.1
Benzo(a)anthracene	mg/kg	0.1	0.4	3.7	1.2	<0.1
Chrysene	mg/kg	0.1	0.4	3.6	1.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.5	4.6	1.0	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.4	2.3	0.9	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.5	4.0	1.3	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	2.7	0.7	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0.4	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.5	2.3	0.6	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>0.7</td><td>5.8</td><td>1.8</td><td><0.2</td></lor=0*<>	TEQ	0.2	0.7	5.8	1.8	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.8</td><td>5.8</td><td>1.8</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	0.8	5.8	1.8	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.7</td><td>5.8</td><td>1.8</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.7	5.8	1.8	<0.2
Total PAH	mg/kg	0.8	4.4	49	15	<0.8

	Sa	nple Number ample Matrix Sample Date ample Name	SE136783.001 Soil 02 Mar 2015 BH1_0.2-0.4	SE136783.002 Soil 02 Mar 2015 BH2_0.2-0.4	SE136783.003 Soil 02 Mar 2015 BH2_0.6-0.8	SE136783.004 Soil 02 Mar 2015 BH3_0.2-0.4
Parameter	Units	LOR				
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: A Surrogates	N420 (continu	ed)				
d5-nitrobenzene (Surrogate)	%	-	110	82	84	86
2-fluorobiphenyl (Surrogate)	%	-	80	82	82	82
d14-p-terphenyl (Surrogate)	%	-	94	94	94	112
OC Pesticides in Soil Method: AN400/AN420						
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	-	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	-	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	-	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	-	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	-	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	-	<0.1

	S	mple Number sample Matrix Sample Date Sample Name	SE136783.001 Soil 02 Mar 2015 BH1_0.2-0.4	SE136783.002 Soil 02 Mar 2015 BH2_0.2-0.4	SE136783.003 Soil 02 Mar 2015 BH2_0.6-0.8	SE136783.004 Soil 02 Mar 2015 BH3_0.2-0.4
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN400/AN420 (continued) Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	101	107	-	111
OP Pesticides in Soil Method: AN400/AN420						
Dichlorvos	mg/kg	0.5	<0.5	<0.5	-	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	-	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	-	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	-	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	-	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	-	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	-	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	<0.2
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	80	82	-	82
d14-p-terphenyl (Surrogate)	%	-	94	94	-	112
PCBs in Soil Method: AN400/AN420						
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arachlor 1232	ma/ka	0.2	<0.2	<0.2		<0.2

Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	<1

SE136783 R0

	Sar	nple Number	SE136783.001	SE136783.002	SE136783.003	SE136783.0
		ample Matrix	Soil	Soil	Soil	Soil
		Sample Date	02 Mar 2015	02 Mar 2015	02 Mar 2015	02 Mar 201
	S	ample Name	BH1_0.2-0.4	BH2_0.2-0.4	BH2_0.6-0.8	BH3_0.2-0
Parameter	Units	LOR				
PCBs in Soil Method: AN400/AN420 (continued)						
Surrogates						
Fetrachloro-m-xylene (TCMX) (Surrogate)	%	-	101	107	-	111
Total Recoverable Metals in Soil by ICPOES from EPA 20	0.8 Digest Method	I: AN040/AN	320			
Arsenic, As	mg/kg	3	6	6	<3	<3
Cadmium, Cd	mg/kg	0.3	1.1	1.8	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	7.7	8.4	4.7	6.9
Copper, Cu	mg/kg	0.5	120	89	5.2	68
ead, Pb	mg/kg	1	230	220	14	17
Jickel, Ni	mg/kg	0.5	15	9.7	0.7	7.1
linc, Zn	mg/kg	0.5	330	480	49	33
Mercury in Soil Method: AN312	mg/kg	0.01	0.37	0.10	0.01	0.04
Moisture Content Method: AN002						
% Moisture	%	0.5	14	12	4.7	13
Fibre Identification in soil Method: AN602 FibreID						
Asbestos Detected	No unit	-	No	No	-	No
SemiQuant						
	%w/w	0.01	<0.01	<0.01	-	<0.01
stimated Fibres	,0					
VOCs in Water Method: AN433/AN434		, , , , , , , , , , , , , , , , , , ,				
VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons	μg/L	0.5	-	-	-	
Estimated Fibres VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons Benzene Toluene		0.5	-	- -	-	-

µg/L

µg/L

1

0.5

-

-

-

-

-

-

m/p-xylene

o-xylene

	S	ample Number Sample Matrix Sample Date Sample Name	SE136783.001 Soil 02 Mar 2015 BH1_0.2-0.4	SE136783.002 Soil 02 Mar 2015 BH2_0.2-0.4	SE136783.003 Soil 02 Mar 2015 BH2_0.6-0.8	SE136783.004 Soil 02 Mar 2015 BH3_0.2-0.4
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 (continued)						
Polycyclic VOCs						
Naphthalene	µg/L	0.5	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
Totals						
Total Xylenes	µg/L	1.5	-	-	-	-
Total BTEX	µg/L	3	-	-	-	-
Volatile Petroleum Hydrocarbons in Water Method: AN433/AN	434/AN410					
TRH C6-C10	µg/L	50	-	-	-	-
TRH C6-C9	µg/L	40	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
VPH F Bands						
Benzene (F0)	µg/L	0.5	-	-	-	-
TRH C6-C10 minus BTEX (F1)	µg/L	50	-	-	-	-
TRH (Total Recoverable Hydrocarbons) in Water Method: AN4	03					

TRH C10-C14	µg/L	50	-	-	-	-
TRH C15-C28	µg/L	200	-	-	-	-
TRH C29-C36	µg/L	200	-	-	-	-
TRH C37-C40	µg/L	200	-	-	-	-
TRH C10-C36	µg/L	450	-	-	-	-
TRH C10-C40	µg/L	650	-	-	-	-

SE136783 R0

	s	mple Number Sample Matrix Sample Date Sample Name	SE136783.001 Soil 02 Mar 2015 BH1_0.2-0.4	SE136783.002 Soil 02 Mar 2015 BH2_0.2-0.4	SE136783.003 Soil 02 Mar 2015 BH2_0.6-0.8	SE136783.004 Soil 02 Mar 2015 BH3_0.2-0.4
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Water Method: AN TRH F Bands F	403 (continue	ed)				
TRH >C10-C16 (F2)	µg/L	60	-	-	-	-
TRH >C16-C34 (F3)	µg/L	500	-	-	-	-
TRH >C34-C40 (F4)	µg/L	500	-	-	-	-
Trace Metals (Dissolved) in Water by ICPMS Method: AN318						
Arsenic, As	µg/L	1	-	-	-	-
Cadmium, Cd	µg/L	0.1	-	-	-	-
Chromium, Cr	µg/L	1	-	-	-	-
Copper, Cu	µg/L	1	-	-	-	-
Lead, Pb	µg/L	1	-	-	-	-
Nickel, Ni	µg/L	1	-	-	-	-
Zinc, Zn	µg/L	5	-	-	-	-

Mercury (dissolved) in Water Method: AN311/AN312

Mercury	mg/L	0.0001	-	-	-	-

	S	nple Number ample Matrix Sample Date ample Name	SE136783.005 Soil 02 Mar 2015 BH4_0.2-0.4	SE136783.006 Soil 02 Mar 2015 BH5_0.2-0.4	SE136783.007 Soil 02 Mar 2015 BH5_0.6-0.8	SE136783.008 Soil 02 Mar 2015 BH5_1.3-1.5
Parameter	Units	LOR				
VOC's in Soil Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	79	83	84	85
d4-1,2-dichloroethane (Surrogate)	%	-	92	95	96	96
d8-toluene (Surrogate)	%	-	88	90	92	93
Bromofluorobenzene (Surrogate)	%	-	86	92	88	90
Totals						
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN43	3/AN434/AN410					
				05		
TRH C6-C10	mg/kg	25	<25	<25	<25	<25

Dibromofluoromethane (Surrogate)	%	-	79	83	84	85
d4-1,2-dichloroethane (Surrogate)	%	-	92	95	96	96
d8-toluene (Surrogate)	%	-	88	90	92	93
Bromofluorobenzene (Surrogate)	%	-	86	92	88	90

PanderUnitUnitWarden Bartoneum Hydrocarbons In SU Method: AttA33AAB80.10.10.010.010.010.01Bancer (9)myla0.10.10.010.010.010.010.01Tell GoC10mus BTEX (F)myla0.10.010.010.010.010.01TEll GOC10mus BTEX (F)myla0.10.010.010.010.010.01TELI GOC10mus BTEX (F)myla0.10.010.010.010.010.01TELI GOC10Amyla0.10.010.010.010.010.010.01TELI GOC10Amyla0.10.010.010.010.010.010.010.01TELI GOC10Amyla1.00.010.010.010.010.010.010.010.01TELI GOC10Amyla1.00.010.010.010.010.010.010.010.01TELI GOC10Amyla1.00.010.010.010.010.010.010.010.01TELI GOC10Amyla1.00.010.010.010.010.010.010.010.01TELI GOC10Amyla1.010.010.010.010.010.010.010.010.01TELI GOC10Amyla1.010.010.010.010.010.010.010.010.010.010.01TELI Fandamyla1.010.01		S	nple Number ample Matrix Sample Date Sample Name	SE136783.005 Soil 02 Mar 2015 BH4_0.2-0.4	SE136783.006 Soil 02 Mar 2015 BH5_0.2-0.4	SE136783.007 Soil 02 Mar 2015 BH5_0.6-0.8	SE136783.008 Soil 02 Mar 2015 BH5_1.3-1.5
VP FieldsNM MM 	Parameter	Units	LOR				
TRH C06 C10 minus BTEX (F1)mg/q25<25<26<25<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<2	-	34/AN410 (co	ntinued)				
TRH C06 C10 minus BTEX (F1)mg/q25<25<26<25<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<26<2	Benzene (F0)	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1
TRH (Total Recoverable Hydrocarbons) in Soll Method: SN403 TRM C10-C14 mg/kg 20 4-210 4-210 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
TRH CIS C28 mg/ng 45 445 445 445 445 TRH C25 C36 mg/ng 100 4100	TRH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3					
TRH C2S-G36mg/kg45445445445445445TRH C3C-G30mg/kg10041004100410041004100TRH C10-C50 IcJmg/kg20042104210421042104210TRH C10-C40 Tolutmg/kg21042104210421042104210TRH F Bandsmg/kg25425425425425425TRH >C10-C16 ICJ Nepthalammg/kg2042004100410041004100TRH >C10-C16 ICJ Nepthalammg/kg2042004200420042004200TRH >C10-C16 ICJ Nepthalammg/kg2014010401401401401401Parentrasemg/kg01401140140140	TRH C10-C14	mg/kg	20	<20	<20	<20	<20
INH C37-C40mmmmmm100<	TRH C15-C28	mg/kg	45	<45	<45	47	<45
TRN C10 C20 Totalmg/kg110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<110<1	TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TH C 10-C40 Total mg/g 210 <10 <210 <210 <210 <210 <210 <210 TH F Dands mg/g 25 <25	TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH F Bands mg/kg 25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <t< td=""><td>TRH C10-C36 Total</td><td>mg/kg</td><td>110</td><td><110</td><td><110</td><td><110</td><td><110</td></t<>	TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TH >C10-C16 (F2) mg/kg 25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25	TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210
TRH >C10-C16 (F2) - Naphthalene mg/kg 25 <25 <25 <25 <25 <25 TRH >C16-C34 (F3) mg/kg 90 <60	TRH F Bands						
TRH >C16-C34 (F3) mg/kg 90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90 <90	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C34-C40 (F4) mg/g 120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ANU20 Naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
Naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 2-methylnaphthalene mg/kg 0.1 <0.1	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
2-methylapathlalene mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 1-methylapathlalene mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Acenaphthylene mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Acenaphthene mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Acenaphthene mg/kg 0.1 -0.1 <td< th=""><th></th><th>N420</th><th></th><th></th><th></th><th></th><th></th></td<>		N420					
1-methylnaphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 Acenaphthylene mg/kg 0.1 <0.1		-					
Acenaphtylene ng/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		mg/kg					
Acenaphhene mg/kg 0.1 <0.1 <0.1 <0.1 Fluorene mg/kg 0.1 <0.1		mg/kg					
Fluorene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 Phenanthrene mg/kg 0.1 <0.1							
Phenanthrene mg/kg 0.1 4.0.1 0.3 1.0 <0.1 Anthracene mg/kg 0.1 <0.1							
Anthracene Mg/kg 0.1 <0.1 <0.1 0.2 <0.1 Fluoranthene Mg/kg 0.1 <0.1							
Fluoranthene mg/kg 0.1 <0.1 0.7 1.8 <0.1 Pyrene mg/kg 0.1 <0.1							
Pyrene mg/kg 0.1 <0.1 0.7 1.9 <0.1 Benzo(a)anthracene mg/kg 0.1 <0.1							
Benzo(a)anthracene mg/kg 0.1 <0.1 0.4 1.5 <0.1 Chrysene mg/kg 0.1 <0.1							
Chrysene mg/kg 0.1 <0.1 0.4 1.2 <0.1 Benzo(b&)fluoranthene mg/kg 0.1 <0.1							
Benzo(b&)iftuoranthene Mode O.1 <0.1 0.5 1.1 <0.1 Benzo(b&)iftuoranthene mg/kg 0.1 <0.1							
Benzo(kluoranthene mg/kg 0.1 <0.1 0.4 0.8 <0.1 Benzo(a)pyrene mg/kg 0.1 <0.1							
Benzo(a)pyrene mg/kg 0.1 <0.1 0.6 1.3 <0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1							
Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 0.2 0.6 <0.1 Dibenzo(a&h)anthracene mg/kg 0.1 <0.1							
Dibenzo(a&h)anthracene mg/kg 0.1 <0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1							
Benzo(ghi)perylene mg/kg 0.1 <0.1 0.2 0.5 <0.1 Carcinogenic PAHs, BaP TEQ <lor=0*< td=""> TEQ 0.2 <0.2</lor=0*<>							
Carcinogenic PAHs, BaP TEQ <lor=0*< th=""> TEQ 0.2 <0.2 0.8 1.8 <0.2 Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""> TEQ (mg/kg) 0.3 <0.3</lor=lor*<></lor=0*<>							
Carcinogenic PAHs, BaP TEQ <lor=lor*< th=""> TEQ (mg/kg) 0.3 <0.3 0.9 1.8 <0.3 Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""> TEQ (mg/kg) 0.2 <0.2</lor=lor></lor=lor*<>							
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" th=""> TEQ (mg/kg) 0.2 <0.2 0.8 1.8 <0.2</lor=lor>							
	-						

	Sa	nple Number ample Matrix Sample Date ample Name	SE136783.005 Soil 02 Mar 2015 BH4_0.2-0.4	SE136783.006 Soil 02 Mar 2015 BH5_0.2-0.4	SE136783.007 Soil 02 Mar 2015 BH5_0.6-0.8	SE136783.008 Soil 02 Mar 2015 BH5_1.3-1.5
Parameter	Units	LOR				
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: A Surrogates	N420 (continu	ed)				
d5-nitrobenzene (Surrogate)	%	-	86	86	82	84
2-fluorobiphenyl (Surrogate)	%	-	80	80	82	80
d14-p-terphenyl (Surrogate)	%	-	96	92	94	94
OC Pesticides in Soil Method: AN400/AN420						
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
Lindane	mg/kg	0.1	<0.1	<0.1	-	-
Heptachlor	mg/kg	0.1	<0.1	<0.1	-	-
Aldrin	mg/kg	0.1	<0.1	<0.1	-	-
Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
Delta BHC	mg/kg	0.1	<0.1	<0.1	-	-
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
Dieldrin	mg/kg	0.2	<0.2	<0.2	-	-
Endrin	mg/kg	0.2	<0.2	<0.2	-	-
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
Mirex	mg/kg	0.1	<0.1	<0.1	-	-

	Si	nple Number ample Matrix Sample Date ample Name	SE136783.005 Soil 02 Mar 2015 BH4_0.2-0.4	SE136783.006 Soil 02 Mar 2015 BH5_0.2-0.4	SE136783.007 Soil 02 Mar 2015 BH5_0.6-0.8	SE136783.008 Soil 02 Mar 2015 BH5_1.3-1.5
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN400/AN420 (continued) Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	117	109	-	-
OP Pesticides in Soil Method: AN400/AN420						
Dichlorvos	mg/kg	0.5	<0.5	<0.5	-	-
Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	-	-
Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
Malathion	mg/kg	0.2	<0.2	<0.2	-	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	-	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
Ethion	mg/kg	0.2	<0.2	<0.2	-	-
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	80	80	-	-
d14-p-terphenyl (Surrogate)	%	-	96	92	-	-
PCBs in Soil Method: AN400/AN420						
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-

mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	0.2	<0.2	<0.2	-	-
mg/kg	1	<1	<1	-	-
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.2 mg/kg 0.2	mg/kg 0.2 <0.2 mg/kg 0.2 <0.2	mg/kg 0.2 <0.2 <0.2 mg/kg 0.2 <0.2	mg/kg 0.2 <0.2 <0.2 <0.2 . mg/kg 0.2 <0.2

SE136783 R0

		nple Number ample Matrix	SE136783.005 Soil	SE136783.006 Soil	SE136783.007 Soil	SE136783.00 Soil
		Sample Date	02 Mar 2015	02 Mar 2015	02 Mar 2015	02 Mar 2015
		ample Name	BH4_0.2-0.4	BH5_0.2-0.4	BH5_0.6-0.8	BH5_1.3-1.5
Parameter	Units	LOR				
PCBs in Soil Method: AN400/AN420 (continued)						
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	117	109	-	-
Total Recoverable Metals in Soil by ICPOES from EPA 2	00.8 Digest Method	i: AN040/AN	320			
Arsenic, As	mg/kg	3	<3	39	29	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.4	<0.3
Chromium, Cr	mg/kg	0.3	14	8.8	14	4.6
Copper, Cu	mg/kg	0.5	85	37	79	2.9
Lead, Pb	mg/kg	1	2	32	34	4
Nickel, Ni	mg/kg	0.5	7.0	1.1	9.6	<0.5
Zinc, Zn	mg/kg	0.5	7.7	29	230	6.0
Mercury in Soil Method: AN312						
Mercury	mg/kg	0.01	<0.01	0.16	0.16	0.01
Moisture Content Method: AN002						
% Moisture	%	0.5	14	12	12	9.1
Fibre Identification in soil Method: AN602 FibreID Asbestos Detected	No unit		No	Νο		
SemiQuant				10		
Estimated Fibres	%w/w	0.01	<0.01	<0.01	-	-
Estimated Fibres						
VOCs in Water Method: AN433/AN434	I					
VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons	μg/L	0.5	-	-	-	-
	μg/L μg/L	0.5	-	-	-	-

µg/L

µg/L

1

0.5

-

-

-

-

-

-

m/p-xylene

o-xylene

SE136783 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE136783.005 Soil 02 Mar 2015 BH4_0.2-0.4	SE136783.006 Soil 02 Mar 2015 BH5_0.2-0.4	SE136783.007 Soil 02 Mar 2015 BH5_0.6-0.8	SE136783.008 Soil 02 Mar 2015 BH5_1.3-1.5
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 (continued)						
Polycyclic VOCs						
Naphthalene	μg/L	0.5	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
Totals						
Total Xylenes	µg/L	1.5	-	-	-	-
Total BTEX	µg/L	3	-	-	-	-
Volatile Petroleum Hydrocarbons in Water Method: AN433/AN	434/AN41()				
TRH C6-C10	µg/L	50	-	-	-	-
TRH C6-C9	µg/L	40	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
VPH F Bands						
Benzene (F0)	µg/L	0.5	-	-	-	-
TRH C6-C10 minus BTEX (F1)	µg/L	50	-	-	-	-
TRH (Total Recoverable Hydrocarbons) in Water Method: AN4	03					

μg/L 50 -TRH C10-C14

TRH C10-C14	µg/L	50	-	-	-	-
TRH C15-C28	µg/L	200	-	-	-	-
TRH C29-C36	µg/L	200	-	-	-	-
TRH C37-C40	µg/L	200	-	-	-	-
TRH C10-C36	µg/L	450	-	-	-	-
TRH C10-C40	µg/L	650	-	-	-	-

SE136783 R0

	\$	mple Number Sample Matrix Sample Date Sample Name	SE136783.005 Soil 02 Mar 2015 BH4_0.2-0.4	SE136783.006 Soil 02 Mar 2015 BH5_0.2-0.4	SE136783.007 Soil 02 Mar 2015 BH5_0.6-0.8	SE136783.008 Soil 02 Mar 2015 BH5_1.3-1.5
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Water Method: AN TRH F Bands	N403 (continue	ed)				
TRH >C10-C16 (F2)	µg/L	60	-	-	-	-
TRH >C16-C34 (F3)	µg/L	500	-	-	-	-
TRH >C34-C40 (F4)	µg/L	500	-	-	-	-
Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Arsenic, As		1				
	µg/L				-	-
Cadmium, Cd	µg/L	0.1	-	-	-	-
Chromium, Cr	µg/L	1	-	-	-	-
Copper, Cu	µg/L	1	-	-	-	-
Lead, Pb	µg/L	1	-	-	-	-
Nickel, Ni	µg/L	1	-	-	-	-
Zinc, Zn	µg/L	5	-	-	-	-

Mercury (dissolved) in Water Method: AN311/AN312

Mercury	mg/L	0.0001	-	-	-	-

		imple Number Sample Matrix Sample Date Sample Name	Soil 02 Mar 2015	SE136783.010 Soil 02 Mar 2015 BH6_0.5-0.7	SE136783.011 Soil 02 Mar 2015 BH7_0.15-0.3	SE136783.012 Soil 02 Mar 2015 QD1
Parameter	Units	LOR				
VOC's in Soil Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	0.1	<0.1	0.2
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	83	82	80	80
d4-1,2-dichloroethane (Surrogate)	%	-	94	95	94	92
d8-toluene (Surrogate)	%	-	91	89	92	88
Bromofluorobenzene (Surrogate)	%	-	87	83	85	83
Totals						
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN43	34/AN410					
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						

Dibromofluoromethane (Surrogate)	%	-	83	82	80	80
d4-1,2-dichloroethane (Surrogate)	%	-	94	95	94	92
d8-toluene (Surrogate)	%	-	91	89	92	88
Bromofluorobenzene (Surrogate)	%	-	87	83	85	83

SE136783 R0

	Sa	nple Number Imple Matrix Sample Date ample Name	Soil 02 Mar 2015	SE136783.010 Soil 02 Mar 2015 BH6_0.5-0.7	SE136783.011 Soil 02 Mar 2015 BH7_0.15-0.3	SE136783.012 Soil 02 Mar 2015 QD1
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN43 VPH F Bands	84/AN410 (cor	ntinued)				
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	3					
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	81	120	<45	310
TRH C29-C36	mg/kg	45	91	100	<45	220
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	170	220	<110	520
TRH C10-C40 Total	mg/kg	210	<210	220	<210	520
TRH F Bands						
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	160	210	<90	470
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN		0.1	<0.1	0.2	<0.1	
Naphthalene 2-methylnaphthalene	mg/kg	0.1	<0.1	0.2	<0.1	-
1-methylnaphthalene	mg/kg	0.1	<0.1	0.2	<0.1	
Acenaphthylene	mg/kg mg/kg	0.1	0.2	0.3	<0.1	
Acenaphthene	mg/kg	0.1	<0.1	0.0	<0.1	
Fluorene	mg/kg	0.1	<0.1	0.1	<0.1	
Phenanthrene	mg/kg	0.1	0.7	1.7	<0.1	_
Anthracene	mg/kg	0.1	0.2	0.5	<0.1	-
Fluoranthene	mg/kg	0.1	1.3	4.2	<0.1	-
Pyrene	mg/kg	0.1	1.3	4.1	<0.1	-
Benzo(a)anthracene	mg/kg	0.1	0.7	2.4	<0.1	-
Chrysene	mg/kg	0.1	0.8	2.3	<0.1	-
Benzo(b&j)fluoranthene	mg/kg	0.1	0.9	2.6	<0.1	-
Benzo(k)fluoranthene	mg/kg	0.1	0.6	2.0	<0.1	-
Benzo(a)pyrene	mg/kg	0.1	0.9	3.0	<0.1	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.6	1.8	<0.1	-
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0.2	<0.1	-
Benzo(ghi)perylene	mg/kg	0.1	0.7	1.6	<0.1	-
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>1.2</td><td>4.1</td><td><0.2</td><td>-</td></lor=0*<>	TEQ	0.2	1.2	4.1	<0.2	-
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.3</td><td>4.1</td><td><0.3</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	1.3	4.1	<0.3	-

TEQ (mg/kg)

mg/kg

0.2

0.8

1.3

8.8

4.1

28

<0.2

<0.8

Carcinogenic PAHs, BaP TEQ <LOR=LOR/2*

Total PAH

-

-

	s	nple Number ample Matrix Sample Date Sample Name	Soil 02 Mar 2015	SE136783.010 Soil 02 Mar 2015 BH6_0.5-0.7	SE136783.011 Soil 02 Mar 2015 BH7_0.15-0.3	SE136783.012 Soil 02 Mar 2015 QD1
Parameter	Units	LOR				
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: Surrogates	: AN420 (continu	ied)				
d5-nitrobenzene (Surrogate)	%	-	80	86	82	-
2-fluorobiphenyl (Surrogate)	%	-	82	78	96	-
d14-p-terphenyl (Surrogate)	%	-	92	92	88	-
OC Pesticides in Soil Method: AN400/AN420						
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	-
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	-
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	-
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	-
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	-
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	-
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	-
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	-
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	-

	s	mple Numbe sample Matrix Sample Date Sample Name	c Soil e 02 Mar 2015	SE136783.010 Soil 02 Mar 2015 BH6_0.5-0.7	SE136783.011 Soil 02 Mar 2015 BH7_0.15-0.3	SE136783.012 Soil 02 Mar 2015 QD1
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN400/AN420 (continued)						
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	110	112	113	-
OP Pesticides in Soil Method: AN400/AN420						1
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	-
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	-
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	-
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	-
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	-
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	-
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	-
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	-
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	82	78	96	-
d14-p-terphenyl (Surrogate)	%	-	92	92	88	-
PCBs in Soil Method: AN400/AN420						
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	-

		0.2	-0.2	-0.2	0.2	
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	-

SE136783 R0

Sample Matrix Soil Soil Of Soi							
Sample Date 02 Mar 2016 BH6_0.2-0.4 02 Mar 2016 BH6_0.2-0.7 02 Mar 2016 BH7_0.15-0.3 02 Mar 2016 OD1 Parameter LOR ************************************							SE136783.012
Sample Name BH6_0.2-0.1 BH6_0.5-0.7 BH7_0.15-0.3 OD1 Parameter LOR CPCBs in Soli Method: AN400/AN420 (continued) Surrogates 110 112 113 . Vestrogates % . 110 112 113 . . Vestrogates mgkg 3 0 9 3 69 . <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>02 Mar 2015</th>							02 Mar 2015
PCBS in Soil Method: AN400/AN420 (continued) Surrogates % 1 112 113 . Continued (CMX) (Surogate) % . 110 112 113 . Continued (CMX) (Surogate) % . 110 112 113 . Continued (CMX) (Surogate) mg/kg 3 8 9 . . . Continued (CMX) (Surogate) mg/kg 3 8 9 .							
PCBS in Soil Method: AN400/AN420 (continued) Surrogates % 1 112 113 . Continued (CMX) (Surogate) % . 110 112 113 . Continued (CMX) (Surogate) % . 110 112 113 . Continued (CMX) (Surogate) mg/kg 3 8 9 . . . Continued (CMX) (Surogate) mg/kg 3 8 9 .	Parameter	Unite					
Burggets % 100 112 113 . Terachtoro m-syteme (TCMX0 (Surngate) % . 110 112 113 . Colal Recoverable Metals in Soil by ICPOES from EPA 200.8 Diget Method: AN302 Strandin, Cd mg/kg 0.3 0.4 0.5 .		Onits	LOIN				
Cotal Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: AN440/AN320 Varanic, As mg/kg 3 8 9 3 69 Sadmium, Od mg/kg 0.3 0.4 0.5 3 40.3 Somper, Cu mg/kg 0.3 10 7.7 1.7 10 Sopper, Cu mg/kg 0.5 3.3 30 2.8 2.9 seed, Fb mg/kg 0.5 4.0 3.7 2.6 7.20 sideal, NI mg/kg 0.5 4.0 3.7 2.6 7.3 Sine, Zn mg/kg 0.5 18.0 140 6.9 7.6 Wercury in Soil Method: AN312	Surrogates						
wase, As mg/kg 3 8 9 -3 59 Badhum, Cd mg/kg 0.3 0.4 0.5 -40.3 -40.3 Dymmum, Cr mg/kg 0.3 100 7.7 1.7 10 Dyper, Cu mg/kg 0.5 33 30 23 23 ad, Pb mg/kg 0.5 4.0 3.7 2.5 7.3 Bank, Zh mg/kg 0.5 4.0 3.7 2.5 7.3 Bank, Zh mg/kg 0.5 180 140 5.8 78 Warcury in Soil Method: AN312 mg/kg 0.5 180 0.61 3.7 2.5 7.3 Koisture Content Method: AN602 mg/kg 0.5 12 13 16 15 Fibre Identification in soil Method: AN602 mg/kg 0.5 12 13 16 1 Sameda Elevista %w/w 0.5 12 13 16 1 Cibro Method: AN602 <td< td=""><td>Tetrachloro-m-xylene (TCMX) (Surrogate)</td><td>%</td><td>-</td><td>110</td><td>112</td><td>113</td><td>-</td></td<>	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	110	112	113	-
Cadmium, Cd mpkg 0.3 0.4 0.5 <0.3 <0.3 Chromium, Cr mg/kg 0.3 10 7.7 1.7 10 Copper, Cu mg/kg 0.5 33 30 28 29 ad, Pb mg/kg 0.5 4.0 3.7 2.5 7.3 Inke, Ni mg/kg 0.5 4.0 3.7 2.5 7.3 Inke, Zn mg/kg 0.5 4.0 3.7 2.5 7.3 Inke, Zn mg/kg 0.5 180 140 5.6 76 Wercury in Soil Method: AN312 Method: AN312	Total Recoverable Metals in Soil by ICPOES from EPA 200.8	B Digest Method	1: AN040/AN	320			
Chromium, Cr mpkq 0.3 10 7.7 1.7 10 Dopper, Ou mpkq 0.5 33 30 28 29 aad, Pb mpkq 1 100 110 2 720 kele, Ni mpkq 0.5 4.0 3.7 2.5 7.3 dice, Zn mgkq 0.5 180 140 5.8 76 Wercury in Soil Method: AN312 mgkq 0.5 180 140 5.8 76 Wercury in Soil Method: AN312 mgkq 0.1 0.24 0.51 <0.01	Arsenic, As	mg/kg	3	8	9	<3	59
Cou mg/kg 0.5 33 30 28 29 aad, Pb mg/kg 1 1000 110 2 720 idekel, Ni mg/kg 0.5 4.0 3.7 2.5 7.3 idekel, Ni mg/kg 0.5 180 140 5.6 7.6 Warcury in Soil Method: AN312 Method: AN312 Method: AN402 0.51 0.51 4.00 5.6 7.6 Woisture Content Method: AN602 Method: AN60 No No No No No A A Mo A A Mo A A No No A A A A A A A A A <th< td=""><td>Cadmium, Cd</td><td>mg/kg</td><td>0.3</td><td>0.4</td><td>0.5</td><td><0.3</td><td><0.3</td></th<>	Cadmium, Cd	mg/kg	0.3	0.4	0.5	<0.3	<0.3
ead, Pb mg/kg 1 100 110 2 720 kickel, Ni mg/kg 0.5 4.0 3.7 2.5 7.3 fine, Zn mg/kg 0.5 180 140 5.6 7.6 Mercury in Soil Method: AN312 mg/kg 0.1 0.24 0.51 <0.01	Chromium, Cr	mg/kg	0.3	10	7.7	1.7	10
No No<	Copper, Cu	mg/kg	0.5	33	30	28	29
Inc. 2n mg/kg 0.5 180 140 5.6 76 Wercury in Soil Method: AN312 mg/kg 0.01 0.24 0.51 <0.01	Lead, Pb	mg/kg	1	100	110	2	720
Nercury in Soil Method: AN312 Atercury mg/kg 0.01 0.24 0.51 <0.01	Nickel, Ni	mg/kg	0.5	4.0	3.7	2.5	7.3
Aercury mg/kg 0.01 0.24 0.61 <0.01 0.82 Woisture Content Method: AN002 % 0.5 12 13 16 15 Kolosture % 0.5 12 13 16 15 Fibre Identification in soil Method: AN602	Zinc, Zn	mg/kg	0.5	180	140	5.6	76
% Moisture % 0.5 12 13 16 15 Fibre Identification in soil Method: AN602	Mercury	mg/kg	0.01	0.24	0.51	<0.01	0.82
Fibre Identification in soil Method: AN602 FibreID Sabestos Detected No unit - No No - SemiQuant Estimated Fibres %w/w 0.01 <0.01 <0.01 <0.01 - VOCs in Water Method: AN433/AN434 Wonocyclic Aromatic Hydrocarbons - - - SemiQuene µg/L 0.5 - - - - - Issues %w/w 0.01 <0.01 <0.01 <0.01 -	% Moisture % Moisture %	%	0.5	12	13	16	15
FibreID Nsbestos Detected No unit - No No - SemiQuant Estimated Fibres %w/w 0.01 <0.01							
SemiQuant %w/w 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	Fibre Identification in soil Method: AN602 FibreID						
Estimated Fibres%w/w0.01<0.01<0.01<0.01<0.01<0.01.VOCs in Water Method: AN433/AN434 Monocyclic Aromatic HydrocarbonsSenzeneµg/L0.5 <td< td=""><td>Asbestos Detected</td><td>No unit</td><td>-</td><td>No</td><td>No</td><td>No</td><td>-</td></td<>	Asbestos Detected	No unit	-	No	No	No	-
VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbonsµg/L0.5Benzeneµg/L0.5Stylbenzeneµg/L0.5	SemiQuant						
Monocyclic Aromatic Hydrocarbons μg/L 0.5 - - -	Estimated Fibres	%w/w	0.01	<0.01	<0.01	<0.01	-
Image: Note of the second se	VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons						
Ethylbenzene 0.5	Benzene	μg/L	0.5	-	-	-	-
	Toluene	µg/L	0.5	-	-	-	-
n/p-xylene µg/L 1	Ethylbenzene		0.5	-	-	-	-
	m/p-xylene	µg/L	1	-	-	-	-

0.5

-

-

-

-

µg/L

o-xylene

SE136783 R0

		ample Number Sample Matrix Sample Date Sample Name	SE136783.009 Soil 02 Mar 2015 BH6_0.2-0.4	SE136783.010 Soil 02 Mar 2015 BH6_0.5-0.7	SE136783.011 Soil 02 Mar 2015 BH7_0.15-0.3	SE136783.012 Soil 02 Mar 2015 QD1
Parameter	Units	LOR				
VOCs in Water Method: AN433/AN434 (continued)						
Polycyclic VOCs						
Naphthalene	µg/L	0.5	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
Totals	1					
Total Xylenes	µg/L	1.5	-	-	-	-
Total BTEX	µg/L	3	-	-	-	-
Volatile Petroleum Hydrocarbons in Water Method: AN433/AN	I434/AN410					
TRH C6-C10	µg/L	50	-	-	-	-
TRH C6-C9	µg/L	40	-	-	-	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-	-	-
VPH F Bands						
Benzene (F0)	µg/L	0.5	-	-	-	-
TRH C6-C10 minus BTEX (F1)	µg/L	50	-	-	-	-
TRH (Total Recoverable Hydrocarbons) in Water Method: AN4	403				'	

TRH (Total Recoverable Hydrocarbons) in Water Method: AN403

TRH C10-C14	µg/L	50	-	-	-	-
TRH C15-C28	µg/L	200	-	-	-	-
TRH C29-C36	µg/L	200	-	-	-	-
TRH C37-C40	µg/L	200	-	-	-	-
TRH C10-C36	µg/L	450	-	-	-	-
TRH C10-C40	µg/L	650	-	-	-	-

SE136783 R0

	S	nple Number ample Matrix Sample Date Sample Name	SE136783.009 Soil 02 Mar 2015 BH6_0.2-0.4	SE136783.010 Soil 02 Mar 2015 BH6_0.5-0.7	SE136783.011 Soil 02 Mar 2015 BH7_0.15-0.3	SE136783.012 Soil 02 Mar 2015 QD1
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Water Method: AN TRH F Bands	403 (continue	d)				
TRH >C10-C16 (F2)	µg/L	60	-	-	-	-
TRH >C16-C34 (F3)	µg/L	500	-	-	-	-
TRH >C34-C40 (F4)	µg/L	500	-	-	-	-
Trace Metals (Dissolved) in Water by ICPMS Method: AN318						
Arsenic, As	µg/L	1	-	-	-	-
Cadmium, Cd	µg/L	0.1	-	-	-	-
Chromium, Cr	µg/L	1	-	-	-	-
Copper, Cu	µg/L	1	-	-	-	-
Lead, Pb	µg/L	1	-	-	-	-
Nickel, Ni	µg/L	1	-	-	-	-
Zinc, Zn	µg/L	5	-	-	-	-

Mercury (dissolved) in Water Method: AN311/AN312

Mercury	mg/L	0.0001	-	-	-	-

	Si	nple Number ample Matrix Sample Date ample Name	SE136783.013 Water 02 Mar 2015 TB1	SE136783.014 Water 02 Mar 2015 RB1
Parameter	Units	LOR		
VOC's in Soil Method: AN433/AN434				
Monocyclic Aromatic Hydrocarbons				
Benzene	mg/kg	0.1	-	-
Toluene	mg/kg	0.1	-	-
Ethylbenzene	mg/kg	0.1	-	-
m/p-xylene	mg/kg	0.2	-	-
o-xylene	mg/kg	0.1	-	-
Polycyclic VOCs				
Naphthalene	mg/kg	0.1	-	-
Surrogates				
Dibromofluoromethane (Surrogate)	%	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-
d8-toluene (Surrogate)	%	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-

Total Xylenes*	mg/kg	0.3	-	-
Total BTEX*	mg/kg	0.6	-	-

Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN434/AN410

TRH C6-C10	mg/kg	25	-	-
TRH C6-C9	mg/kg	20	-	-

Surrogates

Dibromofluoromethane (Surrogate)	%	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-
d8-toluene (Surrogate)	%	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-

		Sa	mple Number	SE136783.013	SE136783.014
		S	ample Matrix	Water	Water
			Sample Date	02 Mar 2015	02 Mar 2015
			Sample Name	TB1	RB1
Parameter		Units	LOR		
Volatile Petroleum Hydrocarbons in Soil	Method: AN433/AN434/A	N410 (cc	ntinued)		
VPH F Bands					

Benzene (F0)	mg/kg	0.1	-	-
TRH C6-C10 minus BTEX (F1)	mg/kg	25	-	-

TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403

TRH C10-C14	mg/kg	20	-	-
TRH C15-C28	mg/kg	45	-	-
TRH C29-C36	mg/kg	45	-	-
TRH C37-C40	mg/kg	100	-	-
TRH C10-C36 Total	mg/kg	110	-	-
TRH C10-C40 Total	mg/kg	210	-	-

TRH F Bands

TRH >C10-C16 (F2)	mg/kg	25	-	-
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	-	-
TRH >C16-C34 (F3)	mg/kg	90	-	-
TRH >C34-C40 (F4)	mg/kg	120	-	-

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420

Naphthalene	mg/kg	0.1	-	-
2-methylnaphthalene	mg/kg	0.1	-	-
1-methylnaphthalene	mg/kg	0.1	-	-
Acenaphthylene	mg/kg	0.1	-	-
Acenaphthene	mg/kg	0.1	-	-
Fluorene	mg/kg	0.1	-	-
Phenanthrene	mg/kg	0.1	-	-
Anthracene	mg/kg	0.1	-	-
Fluoranthene	mg/kg	0.1	-	-
Pyrene	mg/kg	0.1	-	-
Benzo(a)anthracene	mg/kg	0.1	-	-
Chrysene	mg/kg	0.1	-	-
Benzo(b&j)fluoranthene	mg/kg	0.1	-	-
Benzo(k)fluoranthene	mg/kg	0.1	-	-
Benzo(a)pyrene	mg/kg	0.1	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-	-
Dibenzo(a&h)anthracene	mg/kg	0.1	-	-
Benzo(ghi)perylene	mg/kg	0.1	-	-
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ	0.2	-	-
Carcinogenic PAHs, BaP TEQ <lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td>-</td></lor*<>	TEQ (mg/kg)	0.3	-	-
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	-	-
Total PAH	mg/kg	0.8	-	-

-

	S	nple Numbe ample Matr Sample Dat ample Nam	ix Water te 02 Mar 2015	SE136783.014 Water 02 Mar 2015 RB1
Parameter	Units	LOR		
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Meth Surrogates	od: AN420 (continu	ied)		
d5-nitrobenzene (Surrogate)	%	-	-	-
2-fluorobiphenyl (Surrogate)	%	-	-	-

%

OC Pesticides in Soil Method: AN400/AN420

d14-p-terphenyl (Surrogate)

Hexachlorobenzene (HCB)	mg/kg	0.1	-	-
Alpha BHC	mg/kg	0.1	-	-
Lindane	mg/kg	0.1	-	-
Heptachlor	mg/kg	0.1	-	-
Aldrin	mg/kg	0.1	-	-
Beta BHC	mg/kg	0.1	-	-
Delta BHC	mg/kg	0.1	-	-
Heptachlor epoxide	mg/kg	0.1	-	-
o,p'-DDE	mg/kg	0.1	-	-
Alpha Endosulfan	mg/kg	0.2	-	-
Gamma Chlordane	mg/kg	0.1	-	-
Alpha Chlordane	mg/kg	0.1	-	-
trans-Nonachlor	mg/kg	0.1	-	-
p,p'-DDE	mg/kg	0.1	-	-
Dieldrin	mg/kg	0.2	-	-
Endrin	mg/kg	0.2	-	-
o,p'-DDD	mg/kg	0.1	-	-
o,p'-DDT	mg/kg	0.1	-	-
Beta Endosulfan	mg/kg	0.2	-	-
p,p'-DDD	mg/kg	0.1	-	-
p,p'-DDT	mg/kg	0.1	-	-
Endosulfan sulphate	mg/kg	0.1	-	-
Endrin Aldehyde	mg/kg	0.1	-	-
Methoxychlor	mg/kg	0.1	-	-
Endrin Ketone	mg/kg	0.1	-	-
Isodrin	mg/kg	0.1	-	-
Mirex	mg/kg	0.1	-	-

	S	nple Number ample Matrix Sample Date ample Name	Water 02 Mar 2015	SE136783.014 Water 02 Mar 2015 RB1
Parameter	Units	LOR		
OC Pesticides in Soil Method: AN400/AN420 (continued) Surrogates				
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	-
OP Pesticides in Soil Method: AN400/AN420 Dichlorvos	mg/kg	0.5	-	-
Dimethoate	mg/kg	0.5	-	-
Diazinon (Dimpylate)	mg/kg	0.5	-	-
Fenitrothion	mg/kg	0.2	-	-
Malathion	mg/kg	0.2	-	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	-	-
Parathion-ethyl (Parathion)	mg/kg	0.2	-	-
Bromophos Ethyl	mg/kg	0.2	-	-
Methidathion	mg/kg	0.5	-	-
Ethion	mg/kg	0.2	-	-
Azinphos-methyl (Guthion)	mg/kg	0.2	-	-

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	-	-
d14-p-terphenyl (Surrogate)	%	-	-	-

PCBs in Soil Method: AN400/AN420

Arochlor 1016	mg/kg	0.2	-	-
Arochlor 1221	mg/kg	0.2	_	
		0.2		
Arochlor 1232	mg/kg	0.2	-	-
Arochlor 1242	mg/kg	0.2	-	-
Arochlor 1248	mg/kg	0.2	-	-
Arochlor 1254	mg/kg	0.2	-	-
Arochlor 1260	mg/kg	0.2	-	-
Arochlor 1262	mg/kg	0.2	-	-
Arochlor 1268	mg/kg	0.2	-	-
Total PCBs (Arochlors)	mg/kg	1	-	-

		ample Number Sample Matrix Sample Date Sample Name	SE136783.013 Water 02 Mar 2015 TB1	SE136783.014 Water 02 Mar 2015 RB1
Parameter	Units	LOR		
PCBs in Soil Method: AN400/AN420 (continued) Surrogates				
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	-
Total Recoverable Metals in Soil by ICPOES from EPA 200.	3 Digest Metho	d: AN040/AN	320	
Arsenic, As	mg/kg	3	-	-
Cadmium, Cd	mg/kg	0.3	-	-
Chromium, Cr	mg/kg	0.3	-	-
Copper, Cu	mg/kg	0.5	-	-
Lead, Pb	mg/kg	1	-	-
Nickel, Ni	mg/kg	0.5	-	-
Zinc, Zn	mg/kg	0.5	-	-
Mercury in Soil Method: AN312				
Mercury	mg/kg	0.01	-	-
Moisture Content Method: AN002				
% Moisture	%	0.5	-	-
Fibre Identification in soil Method: AN602 FibreID				
Asbestos Detected	No unit	-	-	-
SemiQuant				
Estimated Fibres	%w/w	0.01	-	-
VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons				
		0.5	-0.5	-0.5

Benzene	µg/L	0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5

SE136783 R0

	Sample Number Sample Matrix Sample Date Sample Name		x Water e 02 Mar 2015	SE136783.014 Water 02 Mar 2015 RB1	
Parameter	Units	LOR			
VOCs in Water Method: AN433/AN434 (continued) Polycyclic VOCs					
Naphthalene	µg/L	0.5	<0.5	<0.5	
Surrogates					
Dibromofluoromethane (Surrogate)	%	-	108	106	
d4-1,2-dichloroethane (Surrogate)	%	-	111	107	
d8-toluene (Surrogate)	%	-	97	94	
Bromofluorobenzene (Surrogate)	%	-	89	88	
Totals	1				
Total Xylenes	µg/L	1.5	<1.5	<1.5	
Total BTEX	µg/L	3	<3	<3	
Volatile Petroleum Hydrocarbons in Water Method: AN433/AN	I434/AN410				
TRH C6-C10	µg/L	50	-	<50	
TRH C6-C9	µg/L	40	-	<40	
Surrogates					
Dibromofluoromethane (Surrogate)	%	-	-	106	

Dibromofluoromethane (Surrogate)	%	-	-	106
d4-1,2-dichloroethane (Surrogate)	%	-	-	107
d8-toluene (Surrogate)	%	-	-	94
Bromofluorobenzene (Surrogate)	%	-	-	88

VPH F Bands

Benzene (F0)	µg/L	0.5	-	<0.5
TRH C6-C10 minus BTEX (F1)	µg/L	50	-	<50

	Sample Numbe Sample Matri: Sample Dat Sample Nam		SE136783.013 Water 02 Mar 2015 TB1	SE136783.014 Water 02 Mar 2015 RB1
Parameter	Units	LOR		
TRH (Total Recoverable Hydrocarbons) in Water Method:	AN403			
TRH C10-C14	μg/L	50	-	<50
TRH C15-C28	µg/L	200	-	<200
TRH C29-C36	µg/L	200	-	<200
TRH C37-C40	μg/L	200	-	<200
TRH C10-C36	µg/L	450	-	<450
TRH C10-C40	μg/L	650	-	<650
TRH F Bands				
TRH >C10-C16 (F2)	µg/L	60	-	<60

TRH >C10-C16 (F2)	µg/L	60	-	<60
TRH >C16-C34 (F3)	µg/L	500	-	<500
TRH >C34-C40 (F4)	µg/L	500	-	<500

Trace Metals (Dissolved) in Water by ICPMS Method: AN318

Arsenic, As	µg/L	1	-	<1
Cadmium, Cd	µg/L	0.1	-	<0.1
Chromium, Cr	µg/L	1	-	<1
Copper, Cu	µg/L	1	-	<1
Lead, Pb	µg/L	1	-	<1
Nickel, Ni	µg/L	1	-	<1
Zinc, Zn	µg/L	5	-	79

Mercury (dissolved) in Water Method: AN311/AN312

	Mercury	mg/L	0.0001	-	<0.0001
1					

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB073294	mg/L	0.0001	<0.0001	0%	104%	106%

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB073148	mg/kg	0.01	<0.01	0 - 14%	120%	90%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC	Units	LOR	DUP %RPD
	Reference			
% Moisture	LB073187	%	0.5	1 - 8%

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Hexachlorobenzene (HCB)	LB073161	mg/kg	0.1	<0.1	0%	NA
Alpha BHC	LB073161	mg/kg	0.1	<0.1	0%	NA
Lindane	LB073161	mg/kg	0.1	<0.1	0%	NA
Heptachlor	LB073161	mg/kg	0.1	<0.1	0%	110%
Aldrin	LB073161	mg/kg	0.1	<0.1	0%	107%
Beta BHC	LB073161	mg/kg	0.1	<0.1	0%	NA
Delta BHC	LB073161	mg/kg	0.1	<0.1	0%	103%
Heptachlor epoxide	LB073161	mg/kg	0.1	<0.1	0%	NA
o,p'-DDE	LB073161	mg/kg	0.1	<0.1	0%	NA
Alpha Endosulfan	LB073161	mg/kg	0.2	<0.2	0%	NA
Gamma Chlordane	LB073161	mg/kg	0.1	<0.1	0%	NA
Alpha Chlordane	LB073161	mg/kg	0.1	<0.1	0%	NA
trans-Nonachlor	LB073161	mg/kg	0.1	<0.1	0%	NA
p,p'-DDE	LB073161	mg/kg	0.1	<0.1	0%	NA
Dieldrin	LB073161	mg/kg	0.2	<0.2	0%	104%
Endrin	LB073161	mg/kg	0.2	<0.2	0%	111%
o,p'-DDD	LB073161	mg/kg	0.1	<0.1	0%	NA
o,p'-DDT	LB073161	mg/kg	0.1	<0.1	0%	NA
Beta Endosulfan	LB073161	mg/kg	0.2	<0.2	0%	NA
p,p'-DDD	LB073161	mg/kg	0.1	<0.1	0%	NA
p,p'-DDT	LB073161	mg/kg	0.1	<0.1	0%	104%
Endosulfan sulphate	LB073161	mg/kg	0.1	<0.1	0%	NA
Endrin Aldehyde	LB073161	mg/kg	0.1	<0.1	0%	NA
Methoxychlor	LB073161	mg/kg	0.1	<0.1	0%	NA
Endrin Ketone	LB073161	mg/kg	0.1	<0.1	0%	NA
Isodrin	LB073161	mg/kg	0.1	<0.1	0%	NA
Mirex	LB073161	mg/kg	0.1	<0.1	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB073161	%	-	113%	1%	107%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Dichlorvos	LB073161	mg/kg	0.5	<0.5	0%	103%
Dimethoate	LB073161	mg/kg	0.5	<0.5	0%	NA
Diazinon (Dimpylate)	LB073161	mg/kg	0.5	<0.5	0%	94%
Fenitrothion	LB073161	mg/kg	0.2	<0.2	0%	NA
Malathion	LB073161	mg/kg	0.2	<0.2	0%	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB073161	mg/kg	0.2	<0.2	0%	79%
Parathion-ethyl (Parathion)	LB073161	mg/kg	0.2	<0.2	0%	NA
Bromophos Ethyl	LB073161	mg/kg	0.2	<0.2	0%	NA
Methidathion	LB073161	mg/kg	0.5	<0.5	0%	NA
Ethion	LB073161	mg/kg	0.2	<0.2	0%	111%
Azinphos-methyl (Guthion)	LB073161	mg/kg	0.2	<0.2	0%	NA

Surrogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
2-fluorobiphenyl (Surrogate)	LB073161	%	-	90%	5%	82%
d14-p-terphenyl (Surrogate)	LB073161	%	-	102%	2%	94%

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Naphthalene	LB073161	mg/kg	0.1	<0.1	22%	106%	115%
2-methylnaphthalene	LB073161	mg/kg	0.1	<0.1	79%	NA	NA
1-methylnaphthalene	LB073161	mg/kg	0.1	<0.1	111%	NA	NA
Acenaphthylene	LB073161	mg/kg	0.1	<0.1	27%	107%	119%
Acenaphthene	LB073161	mg/kg	0.1	<0.1	0%	112%	113%
Fluorene	LB073161	mg/kg	0.1	<0.1	26%	NA	NA
Phenanthrene	LB073161	mg/kg	0.1	<0.1	41%	111%	110%
Anthracene	LB073161	mg/kg	0.1	<0.1	40%	115%	135%
Fluoranthene	LB073161	mg/kg	0.1	<0.1	47%	101%	80%
Pyrene	LB073161	mg/kg	0.1	<0.1	47%	106%	80%
Benzo(a)anthracene	LB073161	mg/kg	0.1	<0.1	44%	NA	NA
Chrysene	LB073161	mg/kg	0.1	<0.1	43%	NA	NA
Benzo(b&j)fluoranthene	LB073161	mg/kg	0.1	<0.1	39%	NA	NA
Benzo(k)fluoranthene	LB073161	mg/kg	0.1	<0.1	44%	NA	NA
Benzo(a)pyrene	LB073161	mg/kg	0.1	<0.1	41%	114%	116%
Indeno(1,2,3-cd)pyrene	LB073161	mg/kg	0.1	<0.1	44%	NA	NA
Dibenzo(a&h)anthracene	LB073161	mg/kg	0.1	<0.1	49%	NA	NA
Benzo(ghi)perylene	LB073161	mg/kg	0.1	<0.1	45%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>LB073161</td><td>TEQ</td><td>0.2</td><td><0.2</td><td>42%</td><td>NA</td><td>NA</td></lor=0*<>	LB073161	TEQ	0.2	<0.2	42%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>LB073161</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>42%</td><td>NA</td><td>NA</td></lor=lor*<>	LB073161	TEQ (mg/kg)	0.3	<0.3	42%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>LB073161</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>42%</td><td>NA</td><td>NA</td></lor=lor>	LB073161	TEQ (mg/kg)	0.2	<0.2	42%	NA	NA
Total PAH	LB073161	mg/kg	0.8	<0.8	45%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d5-nitrobenzene (Surrogate)	LB073161	%	-	76%	5%	72%	94%
2-fluorobiphenyl (Surrogate)	LB073161	%	-	78%	5%	74%	90%
d14-p-terphenyl (Surrogate)	LB073161	%	-	98%	2%	78%	104%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PCBs in Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Arochlor 1016	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1221	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1232	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1242	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1248	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1254	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1260	LB073161	mg/kg	0.2	<0.2	0%	119%
Arochlor 1262	LB073161	mg/kg	0.2	<0.2	0%	NA
Arochlor 1268	LB073161	mg/kg	0.2	<0.2	0%	NA
Total PCBs (Arochlors)	LB073161	mg/kg	1	<1	0%	NA

Surrogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB073161	%	-	113%	1%	105%

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB073144	mg/kg	3	<3	14 - 15%	100%	106%
Cadmium, Cd	LB073144	mg/kg	0.3	<0.3	0 - 5%	98%	102%
Chromium, Cr	LB073144	mg/kg	0.3	<0.3	1 - 9%	97%	105%
Copper, Cu	LB073144	mg/kg	0.5	<0.5	2 - 13%	99%	111%
Lead, Pb	LB073144	mg/kg	1	<1	2 - 22%	98%	102%
Nickel, Ni	LB073144	mg/kg	0.5	<0.5	7 - 38%	96%	102%
Zinc, Zn	LB073144	mg/kg	0.5	<0.5	5 - 9%	99%	117%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Arsenic, As	LB073152	µg/L	1	<1	0%	98%
Cadmium, Cd	LB073152	µg/L	0.1	<0.1	0%	101%
Chromium, Cr	LB073152	µg/L	1	<1	0%	101%
Copper, Cu	LB073152	µg/L	1	<1	0%	106%
Lead, Pb	LB073152	µg/L	1	<1	0%	100%
Nickel, Ni	LB073152	µg/L	1	<1	0%	104%
Zinc, Zn	LB073152	µg/L	5	<5	13%	106%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB073161	mg/kg	20	<20	0%	88%	98%
TRH C15-C28	LB073161	mg/kg	45	<45	25%	85%	98%
TRH C29-C36	LB073161	mg/kg	45	<45	21%	78%	78%
TRH C37-C40	LB073161	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB073161	mg/kg	110	<110	23%	NA	NA
TRH C10-C40 Total	LB073161	mg/kg	210	<210	6%	NA	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH >C10-C16 (F2)	LB073161	mg/kg	25	<25	0%	88%	98%
TRH >C10-C16 (F2) - Naphthalene	LB073161	mg/kg	25	<25	0%	NA	NA
TRH >C16-C34 (F3)	LB073161	mg/kg	90	<90	25%	83%	88%
TRH >C34-C40 (F4)	LB073161	mg/kg	120	<120	0%	80%	NA

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH C10-C14	LB073162	µg/L	50	<50	84%
TRH C15-C28	LB073162	µg/L	200	<200	95%
TRH C29-C36	LB073162	µg/L	200	<200	96%
TRH C37-C40	LB073162	µg/L	200	<200	NA
TRH C10-C36	LB073162	µg/L	450	<450	NA
TRH C10-C40	LB073162	µg/L	650	<650	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH >C10-C16 (F2)	LB073162	µg/L	60	<60	89%
TRH >C16-C34 (F3)	LB073162	µg/L	500	<500	99%
TRH >C34-C40 (F4)	LB073162	µg/L	500	<500	94%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Benzene	LB073167	mg/kg	0.1	<0.1	0%	103%	91%
Toluene	LB073167	mg/kg	0.1	<0.1	10 - 13%	99%	88%
Ethylbenzene	LB073167	mg/kg	0.1	<0.1	0%	83%	93%
m/p-xylene	LB073167	mg/kg	0.2	<0.2	0%	88%	99%
o-xylene	LB073167	mg/kg	0.1	<0.1	0%	88%	99%

Polycyclic VOCs

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Naphthalene	LB073167	mg/kg	0.1	<0.1	0 - 38%	NA	NA

Surrogates							
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB073167	%	-	108%	0 - 2%	93%	79%
d4-1,2-dichloroethane (Surrogate)	LB073167	%	-	114%	2 - 3%	100%	89%
d8-toluene (Surrogate)	LB073167	%	-	113%	0 - 2%	101%	87%
Bromofluorobenzene (Surrogate)	LB073167	%	-	110%	2 - 5%	101%	111%

Totals

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Xylenes*	LB073167	mg/kg	0.3	<0.3	0%	NA	NA
Total BTEX*	LB073167	mg/kg	0.6	<0.6	0%	NA	NA

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene	LB073232	µg/L	0.5	<0.5	110%
Toluene	LB073232	µg/L	0.5	<0.5	110%
Ethylbenzene	LB073232	µg/L	0.5	<0.5	108%
m/p-xylene	LB073232	µg/L	1	<1	107%
o-xylene	LB073232	μg/L	0.5	<0.5	108%

Polycyclic VOCs

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Naphthalene	LB073232	µg/L	0.5	<0.5	NA

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB073232	%	-	104%	99%
d4-1,2-dichloroethane (Surrogate)	LB073232	%	-	106%	105%
d8-toluene (Surrogate)	LB073232	%	-	94%	95%
Bromofluorobenzene (Surrogate)	LB073232	%	-	89%	89%

Totals

10(2)5				
Parameter	QC	Units	LOR	MB
	Reference			
Total Xylenes	LB073232	µg/L	1.5	<1.5
Total BTEX	LB073232	µg/L	3	<3

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB073167	mg/kg	25	<25	0%	89%	91%
TRH C6-C9	LB073167	mg/kg	20	<20	0%	86%	87%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB073167	%	-	108%	0 - 2%	93%	79%
d4-1,2-dichloroethane (Surrogate)	LB073167	%	-	114%	2 - 3%	100%	89%
d8-toluene (Surrogate)	LB073167	%	-	113%	0 - 2%	101%	87%
Bromofluorobenzene (Surrogate)	LB073167	%	-	110%	2 - 5%	101%	111%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB073167	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB073167	mg/kg	25	<25	0%	84%	82%

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH C6-C10	LB073232	µg/L	50	<50	92%
TRH C6-C9	LB073232	µg/L	40	<40	100%

Surrogates

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Dibromofluoromethane (Surrogate)	LB073232	%	-	104%	99%
d4-1,2-dichloroethane (Surrogate)	LB073232	%	-	106%	105%
d8-toluene (Surrogate)	LB073232	%	-	94%	95%
Bromofluorobenzene (Surrogate)	LB073232	%	-	89%	89%

VPH F Bands

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene (F0)	LB073232	µg/L	0.5	<0.5	NA
TRH C6-C10 minus BTEX (F1)	LB073232	µg/L	50	<50	90%

METHOD SUMMARY

METHOD	
- METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN083	Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.
AN088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

METHOD SUMMARY

METHOD	
	METHODOLOGY SUMMARY
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependant on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
	 (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

SE136783 R0

FOOTNOTES

- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- * This analysis is not covered by the scope of
- accreditation.
- ** Indicative data, theoretical holding time exceeded.
- Performed by outside laboratory.
- LOR Limit of Reporting
- $\uparrow \downarrow \qquad \text{Raised or Lowered Limit of Reporting}$
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte Not Validated
- NVL Not Validate

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Daniel Soliman	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Daniel.Soliman@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 - 36 Lonsdale Street - Lilyfield	SGS Reference	SE136783 R0
Order Number	E22390	Report Number	0000104336
Samples	14	Date Reported	05 Mar 2015

COMMENTS

Duplicate

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

PAH (Polynuclear Aromatic Hydrocarbons) in Soil	15 items
Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest	1 item

Sample counts by matrix	12 Soils & 2 Waters	Type of documentation received	COC	
Date documentation received	2/3/2015	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	3.6°C	
Sample container provider	SGS	Turnaround time requested	Three Days	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 A

5 Australia 5 Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

HOLDING TIME SUMMARY

Method: ME-(AU)-[ENV]AN311/AN312

Method: ME-(AU)-[ENV]AN312

Method: ME_(ALI)_JENV/JAN002

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Fibre Identification in soil Method: ME-									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1_0.2-0.4	SE136783.001	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH2_0.2-0.4	SE136783.002	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH3_0.2-0.4	SE136783.004	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH4_0.2-0.4	SE136783.005	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH5_0.2-0.4	SE136783.006	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH6_0.2-0.4	SE136783.009	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH6_0.5-0.7	SE136783.010	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	
BH7_0.15-0.3	SE136783.011	LB073195	02 Mar 2015	02 Mar 2015	01 Mar 2016	04 Mar 2015	01 Mar 2016	05 Mar 2015	

Mercury (dissolved) in Water

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RB1	SE136783.014	LB073294	02 Mar 2015	02 Mar 2015	30 Mar 2015	05 Mar 2015	30 Mar 2015	05 Mar 2015

Mercury in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.2-0.4	SE136783.001	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH2_0.2-0.4	SE136783.002	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH2_0.6-0.8	SE136783.003	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH3_0.2-0.4	SE136783.004	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH4_0.2-0.4	SE136783.005	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH5_0.2-0.4	SE136783.006	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH5_0.6-0.8	SE136783.007	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH5_1.3-1.5	SE136783.008	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH6_0.2-0.4	SE136783.009	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH6_0.5-0.7	SE136783.010	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
BH7_0.15-0.3	SE136783.011	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015
QD1	SE136783.012	LB073148	02 Mar 2015	02 Mar 2015	30 Mar 2015	03 Mar 2015	30 Mar 2015	05 Mar 2015

Moleture Content

Moisture Content							Method. 1	VIE-(AU)-[EINV]ANUU2
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.2-0.4	SE136783.001	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH2_0.2-0.4	SE136783.002	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH2_0.6-0.8	SE136783.003	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH3_0.2-0.4	SE136783.004	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH4_0.2-0.4	SE136783.005	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH5_0.2-0.4	SE136783.006	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH5_0.6-0.8	SE136783.007	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH5_1.3-1.5	SE136783.008	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH6_0.2-0.4	SE136783.009	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH6_0.5-0.7	SE136783.010	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
BH7_0.15-0.3	SE136783.011	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015
QD1	SE136783.012	LB073187	02 Mar 2015	02 Mar 2015	16 Mar 2015	04 Mar 2015	09 Mar 2015	05 Mar 2015

OC Posticidos in Soil

OC Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.2-0.4	SE136783.001	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH2_0.2-0.4	SE136783.002	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH2_0.6-0.8	SE136783.003	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH3_0.2-0.4	SE136783.004	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH4_0.2-0.4	SE136783.005	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_0.2-0.4	SE136783.006	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_0.6-0.8	SE136783.007	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_1.3-1.5	SE136783.008	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH6_0.2-0.4	SE136783.009	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH6_0.5-0.7	SE136783.010	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH7_0.15-0.3	SE136783.011	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
QD1	SE136783.012	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015

OP Pesticides in Soil

Sample Name	Sample No.	QC Ref

Method: ME-(AU)-[ENV]AN400/AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN400/AN420 Sample Name Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due BH1 0 2-0 4 SE136783.001 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH2_0.2-0.4 SE136783.002 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH2 0.6-0.8 SE136783.003 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH3_0.2-0.4 SE136783.004 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH4 0.2-0.4 SE136783.005 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 02 Mar 2015 05 Mar 2015 BH5_0.2-0.4 SE136783.006 LB073161 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 03 Mar 2015 BH5 0.6-0.8 SE136783.007 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 12 Apr 2015 05 Mar 2015 BH5 1.3-1.5 SE136783.008 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6_0.2-0.4 SE136783.009 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6 0.5-0.7 SE136783.010 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH7_0.15-0.3 SE136783.011 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 12 Apr 2015 QD1 SE136783.012 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 05 Mar 2015 Method: ME-(AU)-[ENVIAN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soi Sample Name Sample No. Sampled Received Analysed QC Ref Extraction Due Extracted Analysis Due BH1_0.2-0.4 SE136783.001 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH2 0.2-0.4 SE136783.002 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH2 0 6-0 8 SE136783 003 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH3_0.2-0.4 SE136783.004 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH4 0.2-0.4 SE136783.005 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH5_0.2-0.4 SE136783.006 02 Mar 2015 02 Mar 2015 03 Mar 2015 12 Apr 2015 LB073161 16 Mar 2015 05 Mar 2015 BH5_0.6-0.8 SE136783.007 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH5_1.3-1.5 SE136783.008 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6_0.2-0.4 SE136783.009 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6_0.5-0.7 02 Mar 2015 02 Mar 2015 03 Mar 2015 SE136783.010 LB073161 16 Mar 2015 12 Apr 2015 05 Mar 2015 BH7 0.15-0.3 SE136783.011 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 QD1 SE136783.012 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 Method: ME-(AU)-IENVIAN400/AN420 PCBs in Soil Analysis Due Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed BH1_0.2-0.4 SE136783.001 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 02 Mar 2015 02 Mar 2015 16 Mar 2015 BH2_0.2-0.4 SE136783.002 LB073161 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH2_0.6-0.8 SE136783.003 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 LB073161 BH3 0.2-0.4 SE136783.004 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH4 0.2-0.4 SE136783.005 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH5_0.2-0.4 SE136783.006 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 02 Mar 2015 SE136783.007 12 Apr 2015 BH5 0.6-0.8 LB073161 02 Mar 2015 16 Mar 2015 03 Mar 2015 05 Mar 2015 BH5 1.3-1.5 SE136783.008 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6_0.2-0.4 SE136783.009 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6 0.5-0.7 SE136783.010 LB073161 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 SE136783.011 02 Mar 2015 02 Mar 2015 03 Mar 2015 05 Mar 2015 BH7 0.15-0.3 LB073161 16 Mar 2015 12 Apr 2015 02 Mar 2015 LB073161 02 Mar 2015 03 Mar 2015 QD1 SE136783.012 16 Mar 2015 12 Apr 2015 05 Mar 2015 Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Analysis Due Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed BH1_0.2-0.4 SE136783.001 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 BH2 0.2-0.4 SE136783.002 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 02 Mar 2015 BH2 0.6-0.8 SE136783.003 LB073144 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 BH3_0.2-0.4 SE136783.004 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 BH4 0.2-0.4 SE136783.005 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 BH5_0.2-0.4 SE136783.006 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 02 Mar 2015 BH5_0.6-0.8 02 Mar 2015 03 Mar 2015 SE136783.007 LB073144 29 Aug 2015 29 Aug 2015 05 Mar 2015 BH5_1.3-1.5 SE136783.008 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 BH6 0.2-0.4 SE136783.009 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 BH6 0.5-0.7 SE136783.010 LB073144 02 Mar 2015 02 Mar 2015 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 02 Mar 2015 02 Mar 2015 BH7_0.15-0.3 SE136783.011 LB073144 29 Aug 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 QD1 LB073144 02 Mar 2015 29 Aug 2015 SE136783.012 02 Mar 2015 29 Aug 2015 03 Mar 2015 05 Mar 2015 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENVIAN318 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due RB1 SE136783.014 LB073152 02 Mar 2015 02 Mar 2015 03 Mar 2015 29 Aug 2015 05 Mar 2015 29 Aug 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soi

TRH (Total Recoverable H	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.2-0.4	SE136783.001	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH2_0.2-0.4	SE136783.002	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH2_0.6-0.8	SE136783.003	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH3_0.2-0.4	SE136783.004	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH4_0.2-0.4	SE136783.005	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_0.2-0.4	SE136783.006	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_0.6-0.8	SE136783.007	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_1.3-1.5	SE136783.008	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH6_0.2-0.4	SE136783.009	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH6_0.5-0.7	SE136783.010	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH7_0.15-0.3	SE136783.011	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
QD1	SE136783.012	LB073161	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RB1	SE136783.014	LB073162	02 Mar 2015	02 Mar 2015	09 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015

VOC's in Soil							Method: ME-(AU)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.2-0.4	SE136783.001	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH2_0.2-0.4	SE136783.002	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH2_0.6-0.8	SE136783.003	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH3_0.2-0.4	SE136783.004	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH4_0.2-0.4	SE136783.005	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_0.2-0.4	SE136783.006	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_0.6-0.8	SE136783.007	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH5_1.3-1.5	SE136783.008	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH6_0.2-0.4	SE136783.009	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH6_0.5-0.7	SE136783.010	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
BH7_0.15-0.3	SE136783.011	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015
QD1	SE136783.012	LB073167	02 Mar 2015	02 Mar 2015	16 Mar 2015	03 Mar 2015	12 Apr 2015	05 Mar 2015

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB1	SE136783.013	LB073232	02 Mar 2015	02 Mar 2015	09 Mar 2015	04 Mar 2015	13 Apr 2015	05 Mar 2015
RB1	SE136783.014	LB073232	02 Mar 2015	02 Mar 2015	09 Mar 2015	04 Mar 2015	13 Apr 2015	05 Mar 2015

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410 Analysis Due Sample Name Sample No. QC Ref Sampled Received Extraction Due Analysed BH1 0.2-0.4 12 Apr 2015 SE136783.001 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 05 Mar 2015 BH2_0.2-0.4 SE136783.002 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH2_0.6-0.8 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 05 Mar 2015 SE136783.003 LB073167 12 Apr 2015 BH3 0.2-0.4 SE136783.004 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH4 0.2-0.4 SE136783.005 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH5 0.2-0.4 SE136783.006 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 LB073167 BH5_0.6-0.8 SE136783.007 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH5_1.3-1.5 SE136783.008 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6 0.2-0.4 SE136783.009 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH6_0.5-0.7 SE136783.010 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 BH7 0.15-0.3 SE136783.011 02 Mar 2015 LB073167 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 QD1 SE136783.012 LB073167 02 Mar 2015 02 Mar 2015 16 Mar 2015 03 Mar 2015 12 Apr 2015 05 Mar 2015 Method: ME-(AU)-[ENV]AN433/AN434/AN410 Volatile Petroleum Hydrocarbons in Water QC Ref Sample Name Sampled Extraction Due Analysis Due Analysed Sample No. Received Extracted TB1 SE136783.013 LB073232 02 Mar 2015 02 Mar 2015 09 Mar 2015 04 Mar 2015 13 Apr 2015 05 Mar 2015 RB1 SE136783.014 02 Mar 2015 02 Mar 2015 09 Mar 2015 04 Mar 2015 05 Mar 2015 LB073232 13 Apr 2015

VOCs in Water

Method: ME-(AU)-[ENV]AN433/AN434

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME-(AU)-[ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	101
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	107
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	111
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	117
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	109
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	110
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	112
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	113
P Pesticides in Soil				Method: ME-(AU)-[ENVIAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	- Recovery %
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	80
	BH2 0.2-0.4	SE136783.002	%	60 - 130%	82
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	82
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	80
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	80
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	82
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	78
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	96
d14-p-terphenyl (Surrogate)	BH1 0.2-0.4	SE136783.001	%	60 - 130%	94
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	94
	BH3 0.2-0.4	SE136783.004	%	60 - 130%	112
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	96
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	92
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	92
		SE136783.010	%	60 - 130%	92
	BH6_0.5-0.7 BH7_0.15-0.3	SE136783.010	%	60 - 130%	88
	BH7_0.13-0.3	3E130783.011	/0		
AH (Polynuclear Aromatic Hydrocarbons) in Soil					- / ^ \ - - - - - - - -
				Method: ME	
Parameter	Sample Name	Sample Number	Units	Criteria	
Parameter 2-fluorobiphenyl (Surrogate)	Sample Name BH1_0.2-0.4	Sample Number SE136783.001	Units %		
				Criteria	Recovery
	BH1_0.2-0.4	SE136783.001	%	Criteria 70 - 130%	Recovery ⁶ 80
	BH1_0.2-0.4 BH2_0.2-0.4	SE136783.001 SE136783.002	%	Criteria 70 - 130% 70 - 130%	Recovery 80 82
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8	SE136783.001 SE136783.002 SE136783.003	% % %	Criteria 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004	% % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 82
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005	% % % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 82 82 82 80
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006	% % % % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 82 80 80
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007	% % % % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 82 80 80 82 80 80 80 80 80 80 80 80 82
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8 BH5_1.3-1.5	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008	% % % % %	Criteria 70 - 130% 70 - 130%	Recovery 80 82 82 82 80 80 82 80 80 80 80 80 80 80 80
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8 BH5_1.3-1.5 BH6_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009	% % % % % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 82 80 80 80 80 82 80 82 80 82 80 82 80 82 80 82
	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8 BH5_1.3-1.5 BH6_0.2-0.4 BH6_0.5-0.7	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.010	% % % % % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 80 80 80 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 83 84 85 86 87 88 89 80 81 82 82 83 84 85 86 87
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8 BH5_1.3-1.5 BH6_0.2-0.4 BH6_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.010 SE136783.011	% % % % % % %	Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	Recovery 80 82 82 82 80 80 80 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 83 84 85 86 86 87 88 96
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8 BH5_1.3-1.5 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.010 SE136783.011 SE136783.001	% % % % % % %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 82 80 82 80 82 80 82 80 82 80 82 96 94
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.6-0.8 BH5_0.6-0.8 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.010 SE136783.010 SE136783.010 SE136783.011 SE136783.001 SE136783.002	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 80 82 80 82 80 82 80 82 80 82 96 94
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.6-0.8 BH5_0.6-0.8 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.010 SE136783.010 SE136783.011 SE136783.001 SE136783.002 SE136783.003	% %	Criteria 70 - 130%	Recovery 80 82 82 80 82 80 82 80 82 80 82 80 82 78 96 94 94
2-fluorobiphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.010 SE136783.010 SE136783.011 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 80 80 82 80 82 78 96 94 94 94 112
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH1_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH4_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.009 SE136783.009 SE136783.010 SE136783.011 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 80 80 80 80 80 80 80 80 82 80 82 96 94 94 94 94 96
2-fluorobiphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.009 SE136783.009 SE136783.011 SE136783.001 SE136783.002 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.004 SE136783.005 SE136783.005 SE136783.006	% %	Criteria 70 - 130%	Recovery 80 82 82 80 80 80 80 80 80 80 80 82 80 82 96 94 94 94 96 92
2-fluorobiphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.6-0.8 BH5_0.6-0.8 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.009 SE136783.009 SE136783.001 SE136783.001 SE136783.002 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007	% %	Criteria 70 - 130%	Recovery 80 82 82 80 80 80 80 80 80 80 80 82 80 82 80 82 96 94 94 94 94 94 94 92 94
2-fluorobiphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.1-3-1.5	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.010 SE136783.011 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.008	% %	Criteria 70 - 130%	Recovery 80 82 82 80 80 80 80 80 82 80 82 80 82 96 94
2-fluorobiphenyl (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.010 SE136783.010 SE136783.011 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 84 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94
2-fluorobiphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.010 SE136783.010 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.009 SE136783.010	% %	Criteria 70 - 130%	Recovery 80 82 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 84 94 94 92 94 92 92 92
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.7 BH7_0.15-0.3	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.010 SE136783.011 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.009 SE136783.009 SE136783.010 SE136783.010 SE136783.011	% %	Criteria 70 - 130%	Recovery 80 82 82 80 82 80 80 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 96 94 94 94 94 94 92 92 92 92 92 88
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH5_0.6-0.8 BH5_0.8-0.8 BH5_0.2-0.4 BH5_0.6-0.8 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.7 BH7_0.15-0.3 BH1_0.2-0.4 BH2_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.010 SE136783.010 SE136783.011 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.009 SE136783.009 SE136783.010 SE136783.010 SE136783.011 SE136783.011 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.001	% %	Criteria 70 - 130%	Recovery 80 82 82 80 82 80 82 80 82 78 96 94 92 94 94 94 94 94 94 92 94 94 94 94 94 94 94 94 94 94 94 94 92 98 110
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6.0.8 BH3_0.2.0.4 BH4_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH6_0.5.0.7 BH7_0.15-0.3 BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH5_0.2.0.4 BH6_0.5.0.7 BH7_0.15-0.3 BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.008 SE136783.009 SE136783.010 SE136783.010 SE136783.011 SE136783.002 SE136783.003 SE136783.004 SE136783.004 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.001 SE136783.010 SE136783.011 SE136783.011 SE136783.011 SE136783.011 SE136783.011 SE136783.011 SE136783.001 SE136783.002 SE136783.003	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 80 80 82 80 82 78 96 94 94 92 94 92 92 88 110 82 84
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH5_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.007 SE136783.007 SE136783.009 SE136783.010 SE136783.011 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.009 SE136783.009 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.003	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 80 80 80 80 82 80 82 80 82 96 94 94 92 92 88 110 82 84 86
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH4_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.007 SE136783.007 SE136783.007 SE136783.009 SE136783.009 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.006 SE136783.007 SE136783.006 SE136783.007 SE136783.007 SE136783.009 SE136783.001 SE136783.001 SE136783.011 SE136783.011 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.004 SE136783.005	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 80 82 80 82 80 82 96 94 94 94 92 92 92 92 92 92 92 92 92 92 92 92 92 92 88 110 82 84 86 86
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH4_0.2-0.4 BH4_0.2-0.4 BH4_0.2-0.4 BH4_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.007 SE136783.009 SE136783.009 SE136783.009 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.000 SE136783.001 SE136783.002 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.004 SE136783.005 SE136783.005 SE136783.005 SE136783.005 SE136783.006	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 96 94 94 94 92 94 92 92 92 88 110 82 84 86 86 86 86
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.6.0.8 BH3_0.2.0.4 BH4_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH6_0.5.0.7 BH7_0.15.0.3 BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH4_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH6_0.5.0.7 BH7_0.15.0.3 BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH2_0.2.0.4 BH4_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0.2.0.4 BH5_0	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.007 SE136783.009 SE136783.009 SE136783.009 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.001 SE136783.002 SE136783.003 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.006 SE136783.006 SE136783.007	% %	Criteria 70 - 130%	Recovery 80 82 82 82 80 82 80 80 82 80 82 80 82 80 82 80 82 80 82 80 82 96 94 94 94 92 92 92 92 92 88 110 82 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	BH1_0.2.0.4 BH2_0.2.0.4 BH2_0.6-0.8 BH3_0.2-0.4 BH4_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH5_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH6_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH4_0.2-0.4 BH4_0.2-0.4 BH4_0.2-0.4 BH4_0.2-0.4	SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.007 SE136783.007 SE136783.009 SE136783.009 SE136783.009 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.006 SE136783.007 SE136783.008 SE136783.009 SE136783.000 SE136783.001 SE136783.002 SE136783.001 SE136783.001 SE136783.001 SE136783.001 SE136783.002 SE136783.003 SE136783.004 SE136783.005 SE136783.004 SE136783.005 SE136783.005 SE136783.005 SE136783.005 SE136783.006	% %	Criteria 70 - 130%	Recovery 6 80 82 82 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 80 82 96 94 94 92 94 92 94 92 92 88 110 82 84 86 86 86 86

Page 5 of 21

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				WELIOG. WE	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	BH7_0.15-0.3	SE136783.011	%	70 - 130%	82
CBs in Soil				Method: ME-(AU)-[ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	101
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	107
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	111
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	117
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	109
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	110
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	112
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	113
OC's in Soil				Method: ME-(AU)-[ENVJAN433/AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	95
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	86
	 BH2_0.6-0.8	SE136783.003	%	60 - 130%	97
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	92
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	86
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	92
	BH5_0.6-0.8	SE136783.007	%	60 - 130%	88
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	90
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	87
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	83
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	85
	QD1	SE136783.012	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	101
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	91
	BH2_0.6-0.8	SE136783.003	%	60 - 130%	103
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	99
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	92
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	95
	BH5_0.6-0.8	SE136783.007	%	60 - 130%	96
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	96
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	94
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	95
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	94
	QD1	SE136783.012	%	60 - 130%	92
d8-toluene (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	97
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	90
	BH2_0.6-0.8	SE136783.003	%	60 - 130%	101
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	95
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	88
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	90
	BH5_0.6-0.8	SE136783.007	%	60 - 130%	92
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	93
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	91
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	89
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	92
	QD1	SE136783.012	%	60 - 130%	88
Dibromofluoromethane (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	90
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	83
	BH2_0.6-0.8	SE136783.003	%	60 - 130%	92
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	83
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	79
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	83
	BH5_0.6-0.8	SE136783.007	%	60 - 130%	84
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	85
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	83
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	82
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	80

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soll (continued)				Method: ME-(AU)-[I	ENVJAN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	QD1	SE136783.012	%	60 - 130%	80
VOCs in Water				Method: ME-(AU)-[I	ENV/14N433/4N434
	Sample Name	Sample Number	Units		
Parameter	Sample Name	Sample Number SE136783.013		Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TB1 RB1		%	40 - 130%	89
d4.1.2 diableresthere (Surregets)	TB1	SE136783.014 SE136783.013	%	40 - 130% 40 - 130%	88
d4-1,2-dichloroethane (Surrogate)	RB1	SE136783.014	%	40 - 130%	107
d8-toluene (Surrogate)	TB1	SE136783.013	%	40 - 130%	97
do tolache (ourrogate)	RB1	SE136783.014	%	40 - 130%	94
Dibromofluoromethane (Surrogate)	TB1	SE136783.013	%	40 - 130%	108
	RB1	SE136783.014	%	40 - 130%	106
Volatile Petroleum Hydrocarbons in Soil				od: ME-(AU)-[ENV]AN	1433/AN/434/AN/41
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	95
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	86
	BH2_0.6-0.8	SE136783.003	%	60 - 130%	97
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	92
	BH4_0.2-0.4 BH5_0.2-0.4	SE136783.005 SE136783.006	%	60 - 130% 60 - 130%	86 92
	BH5_0.2-0.4 BH5_0.6-0.8	SE136783.006 SE136783.007	%	60 - 130%	88
	BH5_U.0-U.8 BH5_1.3-1.5	SE136783.007	%	60 - 130%	90
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	87
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	83
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	85
	QD1	SE136783.012	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	101
· , · · · · · · · · · · · · · · · · · ·	BH2_0.2-0.4	SE136783.002	%	60 - 130%	91
	BH2_0.6-0.8	SE136783.003	%	60 - 130%	103
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	99
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	92
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	95
	BH5_0.6-0.8	SE136783.007	%	60 - 130%	96
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	96
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	94
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	95
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	94
	QD1	SE136783.012	%	60 - 130%	92
d8-toluene (Surrogate)	BH1_0.2-0.4	SE136783.001	%	60 - 130%	97
	BH2_0.2-0.4	SE136783.002	%	60 - 130%	90
	BH2_0.6-0.8	SE136783.003	%	60 - 130%	101
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	95
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	88
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	90
	BH5_0.6-0.8	SE136783.007	%	60 - 130%	92
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	93
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	91
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	89
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	92
Dibromofluoromethane (Surrogate)	QD1 8H1 0 2 0 4	SE136783.012 SE136783.001	%	60 - 130% 60 - 130%	88
Dibromofluoromethane (Surrogate)	BH1_0.2-0.4 BH2_0.2-0.4	SE136783.001 SE136783.002	%	60 - 130%	90 83
	BH2_0.2-0.4 BH2_0.6-0.8	SE136783.002	%	60 - 130%	92
	BH3_0.2-0.4	SE136783.004	%	60 - 130%	83
	BH4_0.2-0.4	SE136783.005	%	60 - 130%	79
	BH5_0.2-0.4	SE136783.006	%	60 - 130%	83
	BH5_0.2-0.4 BH5_0.6-0.8	SE136783.007	%	60 - 130%	84
	BH5_1.3-1.5	SE136783.008	%	60 - 130%	85
	BH6_0.2-0.4	SE136783.009	%	60 - 130%	83
	BH6_0.5-0.7	SE136783.010	%	60 - 130%	82
	BH7_0.15-0.3	SE136783.011	%	60 - 130%	80
	5111_0.10 0.0	62.00.000	70	00 10070	

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soli (continued)			Metho	d: ME-(AU)-[ENV]A	N433/AN434/AN41
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	QD1	SE136783.012	%	60 - 130%	80
Volatile Petroleum Hydrocarbons in Water			Metho	d: ME-(AU)-[ENV]A	N433/AN434/AN410
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	RB1	SE136783.014	%	40 - 130%	88
d4-1,2-dichloroethane (Surrogate)	RB1	SE136783.014	%	60 - 130%	107
d8-toluene (Surrogate)	RB1	SE136783.014	%	40 - 130%	94
Dibromofluoromethane (Surrogate)	RB1	SE136783.014	%	40 - 130%	106

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-((AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB073294.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			м	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB073148.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil

Pesticides in Soll			Method: ME-	(AU)-[ENV]AN400/
nple Number	Parameter	Units	LOR	Result
/3161.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	113

OP Pesticides in Soil			Method: ME-	(AU)-[ENV]AN400/AN42
Sample Number	Parameter	Units	LOR	Result
LB073161.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	90
	d14-p-terphenyl (Surrogate)	%	-	102
PAH (Polynuclear Aromatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB073161.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1

Phenanthrene Anthracene

<0.1

<0.1

mg/kg

mg/kg

0.1

0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number	· ·	(continued) Parameter	Units	LOR	Result
.B073161.001					
B073161.001		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	76
		2-fluorobiphenyl (Surrogate)	%	-	78
		d14-p-terphenyl (Surrogate)	%	-	98
CBs in Soil				Method: ME-	(AU)-[ENV]AN400/AI
ample Number		Parameter	Units	LOR	Result
3073161.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%		113
tel Deceverable Met	tals in Soil by ICPOES from			Methods ME	
	tais in Soil by ICPOES from	-			(AU)-[ENV]AN040/AI
ample Number		Parameter	Units	LOR	Result
3073144.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
naa Matala (Dissolut	ad) in Water by ICDNS				
	ed) in Water by ICPMS				od: ME-(AU)-[ENV]AI
ample Number		Parameter	Units	LOR	Result
3073152.001		Arsenic, As	μg/L	1	<1
		Cadmium, Cd	μg/L	0.1	<0.1
		Chromium, Cr	μg/L	1	<1
		Copper, Cu	μg/L	1	<1
		Lead, Pb	µg/L	1	<1
		Nickel, Ni	µg/L	1	<1
		Zinc, Zn	µg/L	5	<5
RH (Total Recoverab	le Hydrocarbons) in Soil		· -	Methy	od: ME-(AU)-[ENV]A
•		Devenuedau	11		
ample Number		Parameter	Units	LOR	Result
B073161.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverab	le Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B073162.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	µg/L	200	<200
C's in Soil				Method: ME-	(AU)-[ENV]AN433/A

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OC's in Soil (continu	ied)			Method: ME-	(AU)-[ENV]AN433/AN4
Sample Number		Parameter	Units	LOR	Result
LB073167.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	108
		d4-1,2-dichloroethane (Surrogate)	%	-	114
		d8-toluene (Surrogate)	%	-	113
		Bromofluorobenzene (Surrogate)	%	-	110
	Totals	Total BTEX*	mg/kg	0.6	<0.6
OCs in Water				Method: ME-	(AU)-[ENV]AN433/AN4
Sample Number		Parameter	Units	LOR	Result
_B073232.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	104
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	94
		Bromofluorobenzene (Surrogate)	%	-	89
/olatile Petroleum Hy	drocarbons in Soil			Method: ME-(AU)-[E	NV]AN433/AN434/AN
Sample Number		Parameter	Units	LOR	Result
B073167.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	108
	, i i i i i i i i i i i i i i i i i i i	d4-1,2-dichloroethane (Surrogate)	%	-	114
		d8-toluene (Surrogate)	%	-	113
olatile Petroleum Hy	drocarbons in Water			Method: ME-(AU)-[E	NV]AN433/AN434/AN
Sample Number		Parameter	Units	LOR	Result
_B073232.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	104
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	94
		Bromofluorobenzene (Surrogate)	%		89

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	[ENV]AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE136783.007	LB073148.014	Mercury	mg/kg	0.01	0.16	0.16	61	0
SE136783.012	LB073148.020	Mercury	mg/kg	0.01	0.82	0.95	36	14

Moisture Content

Moisture Content	t					Metho	od: ME-(AU)-[ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE136745.002	LB073187.011	% Moisture	%w/w	0.5	26.488095238	@5.4545454545	34	4
SE136783.001	LB073187.022	% Moisture	%	0.5	14	15	37	8
SE136783.011	LB073187.033	% Moisture	%	0.5	16	16	36	2
SE136813.003	LB073187.042	% Moisture	%	0.5	17.084282460	17.3267326732	36	1

OC Pesticides in S	Soil					Method: ME	-(AU)-[ENV]AI	N400/AN420
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE136783.004	LB073161.009	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Lindane	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
		Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.17	30	1
OP Pesticides in S	Soil					Method: ME	-(AU)-[ENV]AI	N400/AN420

riginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E136783.010	LB073161.016	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	5
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2

Original Duplicate Parameter Units LOR

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE136783.010	LB073161.017		Naphthalene	mg/kg	0.1	0.2	0.1	104	22
130703.010	20073101.017		2-methylnaphthalene	mg/kg	0.1	0.2	<0.1	99	79
			1-methylnaphthalene	mg/kg	0.1	0.4	<0.1	81	111 (
			Acenaphthylene	mg/kg	0.1	0.3	0.3	63	27
			Acenaphthene	mg/kg	0.1	0.1	<0.1	173	0
			Fluorene	mg/kg	0.1	0.1	<0.1	1/3	26
			Phenanthrene	mg/kg	0.1	1.7	1.1	37	41 @
			Anthracene		0.1	0.5	0.3	57	40
			Fluoranthene	mg/kg	0.1	4.2	2.6	33	40
				mg/kg					
			Pyrene	mg/kg	0.1	4.1	2.6	33	47 (
			Benzo(a)anthracene	mg/kg	0.1	2.4	1.5	35	44 (
			Chrysene	mg/kg	0.1	2.3	1.5	35	43 (
			Benzo(b&j)fluoranthene	mg/kg	0.1	2.6	1.8	35	39 (
			Benzo(k)fluoranthene	mg/kg	0.1	2.0	1.3	36	44 (
			Benzo(a)pyrene	mg/kg	0.1	3.0	1.9	34	41 (
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	1.8	1.2	37	44 (
			Dibenzo(a&h)anthracene	mg/kg	0.1	0.2	0.1	84	49
			Benzo(ghi)perylene	mg/kg	0.1	1.6	1.0	38	45 (
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>4.1</td><td>2.7</td><td>16</td><td>42 (</td></lor=0*<>	TEQ	0.2	4.1	2.7	16	42 (
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.1</td><td>2.7</td><td>19</td><td>42 (</td></lor=lor*<>	TEQ (mg/kg)	0.3	4.1	2.7	19	42 (
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.1</td><td>2.7</td><td>16</td><td>42 (</td></lor=lor>	TEQ (mg/kg)	0.2	4.1	2.7	16	42 (
			Total PAH	mg/kg	0.8	28	17	34	45 (
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	30	5
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5	30	2
De la Call				0.0					
CBs in Soil							Method: ME-		
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
E136783.004	LB073161.009		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)			0	0	30	1
tel Receverable I									
iai Necoverable r	Motole in Soil by ICB	-		mg/kg					N040/A
	Metals in Soil by ICP	-	00.8 Digest				Method: ME-		
Driginal	Duplicate	-	10.8 Digest Parameter	Units	LOR	Original	Method: ME- Duplicate	Criteria %	RPD
	-	-	00.8 Digest			Original 29	Method: ME-		RPD 15
Driginal	Duplicate	-	10.8 Digest Parameter	Units	LOR		Method: ME- Duplicate	Criteria %	RPD
Priginal	Duplicate	-	00.8 Digest Parameter Arsenic, As	Units mg/kg	LOR 3	29	Method: ME- Duplicate 25	Criteria % 34	RPD 15
Driginal	Duplicate	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd	Units mg/kg mg/kg	LOR 3 0.3	29 0.4	Method: ME- Duplicate 25 0.4	Criteria % 34 109	RPD 15 5
Driginal	Duplicate	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr	Units mg/kg mg/kg mg/kg	LOR 3 0.3 0.3	29 0.4 14	Method: ME- Duplicate 25 0.4 13	Criteria % 34 109 34	RPD 15 5 9
Driginal	Duplicate	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	Units mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.3 0.5	29 0.4 14 79	Method: ME- Duplicate 25 0.4 13 81	Criteria % 34 109 34 31	RPD 15 5 9 2 2
Priginal	Duplicate	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.3 0.5 1	29 0.4 14 79 34	Method: ME- Duplicate 25 0.4 13 81 35	Criteria % 34 109 34 31 33	RPD 15 5 9 2 2 38 (
original E136783.007	Duplicate	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.3 0.5 1 0.5	29 0.4 14 79 34 9.6	Method: ME- Duplicate 25 0.4 13 81 35 6.5	Criteria % 34 109 34 31 33 33 36	RPD 15 5 9 2 2 2 38 (5
riginal E136783.007	Duplicate LB073144.014	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5	29 0.4 14 79 34 9.6 230	Method: ME- Duplicate 25 0.4 13 81 35 6.5 220	Criteria % 34 109 34 31 33 36 31	RPD 15 5 9 2 2 2 38 (5 5 14
riginal E136783.007	Duplicate LB073144.014	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3	29 0.4 14 79 34 9.6 230 59	Method: ME- Duplicate 25 0.4 13 81 35 6.5 220 52	Criteria % 34 109 34 31 33 36 31 32	RPD 15 5 9 2 2 2 38 (5 5 14
riginal E136783.007	Duplicate LB073144.014	-	00.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3	29 0.4 14 79 34 9.6 230 59 <0.3 10	Method: ME- Duplicate 25 0.4 13 35 6.5 220 52 <0.3 10	Criteria % 34 109 34 31 33 36 31 32 175 35	RPD 15 5 9 2 2 2 38 (5 14 0 0
original E136783.007	Duplicate LB073144.014	-	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5	29 0.4 14 79 34 9.6 230 59 <0.3 10 29	Method: ME- Duplicate 25 0.4 13 35 6.5 220 52 <0.3 10 32	Criteria % 34 109 34 31 33 36 31 32 175 35 32	RPD 15 5 9 2 2 38 (5 5 14 0 1 13
original E136783.007	Duplicate LB073144.014	-	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5 1	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720	Method: ME- Duplicate 25 0.4 13 81 81 6.5 6.5 220 52 <0.3 10 32 580	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30	RPD 15 5 9 2 2 38 (5 5 14 0 0 1 1 3 22
Priginal	Duplicate LB073144.014	-	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5 1 0.5 1 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720 7.3	Method: ME- Duplicate 25 0.4 13 81 35 6.5 220 52 <0.3 10 32 580 7.8	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30 37	RPD 15 5 9 2 2 2 2 38 (5 5 14 0 1 1 3 22 2 7
riginal E136783.007 E136783.012	Duplicate LB073144.014	OES from EPA 20	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5 1	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720	Method: ME- Duplicate 25 0.4 13 35 6.5 220 52 <0.3 10 32 580 7.8 84	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30 37 32	RPD 15 5 9 2 2 38 (5 5 14 0 1 1 13 22 7 7 9
riginal E136783.007 E136783.012	Duplicate LB073144.014	OES from EPA 20	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5 1 0.5 1 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720 7.3	Method: ME- Duplicate 25 0.4 13 35 6.5 220 52 <0.3 10 32 580 7.8 84	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30 37	RPD 15 5 9 2 2 38 (5 5 14 0 1 1 13 22 7 7 9
riginal E136783.007 E136783.012 E136783.012	Duplicate LB073144.014	OES from EPA 20	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5 1 0.5 1 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720 7.3	Method: ME- Duplicate 25 0.4 13 35 6.5 220 52 <0.3 10 32 580 7.8 84	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30 37 32 od: ME-(AU)-	RPD 15 5 9 2 2 38 (5 5 14 0 1 1 13 22 7 7 9
riginal E136783.007 E136783.012	Duplicate LB073144.014 LB073144.020	OES from EPA 20	D0.8 Digest Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720 7.3 76	Method: ME- Duplicate 25 0.4 13 35 6.5 220 52 <0.3 10 32 580 7.8 84 Method	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30 37 32 od: ME-(AU)-	RPD 15 5 9 2 2 2 2 38 0 5 14 0 1 1 3 22 7 7 9 9
riginal E136783.007 E136783.012 E136783.012 ace Metals (Disso riginal	Duplicate LB073144.014 LB073144.020 LB073144.020	OES from EPA 20	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Parameter	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 1 0.5 0.5 3 0.3 0.5 1 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	29 0.4 14 79 34 9.6 230 59 <0.3 10 29 720 7.3 76 Original	Method: ME- Duplicate 25 0.4 13 13 35 6.5 220 52 <0.3 10 32 580 7.8 84 Metho Duplicate	Criteria % 34 109 34 31 33 36 31 32 175 35 32 30 37 32 criteria %	RPD 15 5 9 2 2 38 (5 14 0 1 13 22 7 9 (ENV)A

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	
SE136783.014	LB073152.021		Copper, Cu	μg/L	1	<1	<1	200	0
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	µg/L	1	<1	<1	200	0
			Zinc, Zn	µg/L	5	79	69	22	13
RH (Total Recov	erable Hydrocarbons	i) in Soll					Meth	nod: ME-(AU)-	[ENV]AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE136783.010	LB073161.017		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	120	95	71	25
			TRH C29-C36	mg/kg	45	100	83	79	21
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	220	180	85	23
			TRH C10-C40 Total	mg/kg	210	220	<210	134	6
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	210	160	78	25
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
/OC's in Soil							Method: ME	-(AU)-[ENV]A	N433/A
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE136783.010	LB073167.014	Managualia	Benzene		0.1	<0.1	<0.1	200	0 NPD
SE130/03.010	LB073107.014	Monocyclic Aromatic	Toluene	mg/kg	0.1	0.1	0.1	125	10
		Aromatic	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
		Balvavalia	o-xylene Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic Surrogates		mg/kg		4.1	4.2	50	2
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		4.1	4.2	50	3
			d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg	-	4.5	4.9	50	2
			Bromofluorobenzene (Surrogate)	mg/kg		4.5	4.0	50	5
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
SE136783.012	LB073167.017	Monocyclic	Benzene	mg/kg	0.0	<0.0	<0.0	200	0
SE 130703.012	ED013101.011	Aromatic	Toluene	mg/kg	0.1	0.1	0.2	93	13
		Alomatic	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.1	<0.1	<0.1	200	0
			o-xylene	mg/kg	0.2	<0.2	<0.2	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	0.1	0.2	93	38
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	4.0	50	0
		Gunogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	_	4.6	4.7	50	2
			d8-toluene (Surrogate)	mg/kg	_	4.4	4.4	50	0
			Bromofluorobenzene (Surrogate)	mg/kg	_	4.2	4.3	50	2
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
		1 ottalo	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Dirext		0.0				
volatile Petroleum	Hydrocarbons in So					Metho	а: ме-(AU)-[t	ENVJAN433/A	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE136783.010	LB073167.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.2	30	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	4.9	30	3
			d8-toluene (Surrogate)	mg/kg	-	4.5	4.6	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.4	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE136783.012	LB073167.017		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	4.0	30	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.7	30	2
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.4	30	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.3	30	2

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum	Hydrocarbons in Soil	(continued)				Metho	1: ME-(AU)-[E	NVJAN433/AI	N434/AN410
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE136783.012	LB073167.017	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					I	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB073148.002	Mercury	mg/kg	0.01	0.24	0.2	70 - 130	120

ос	Pesticides in Soil	

B073161.002 Heptachlor mg/g 0.1 0.2 0.2 60 - 140 110 Afcin mg/g 0.1 0.2 0.2 60 - 140 107 Delta BHC mg/g 0.1 0.2 0.2 60 - 140 107 Delta BHC mg/g 0.2 0.2 0.2 0.1 101 Delta BHC mg/g 0.2 0.2 0.2 0.1 101 Delta BHC mg/g 0.2 0.2 0.2 0.1 101 Delta BHC mg/g 0.2 0.2 0.1 101 Surogates Tetachore-m-sylene (TCMX) (Surogate) mg/g 0.2 0.2 0.1 0.10 Smg/b Mumber Parameter Units LOR Result Expected Criteria % Recover % Dichoron Chrophtabi Dichoron Chrophtabi mg/g 0.5 1.9 2 60 - 140 101 Burgates Parameter mg/g 0.5 1.6 2 60 - 140 101 Dichoron Chrophtabi (Surogate) mg/g 0.5 1.6 2 60 - 140 101 Burgates Parameter mg/g 0.5 1.6 2 60 - 140 101 <th>OC Pesticides in So</th> <th>bil</th> <th></th> <th></th> <th></th> <th></th> <th>Method:</th> <th>ME-(AU)-[EN</th> <th>/JAN400/AN42</th>	OC Pesticides in So	bil					Method:	ME-(AU)-[EN	/JAN400/AN42
Addrin mg/hg 0.1 0.2 0.2 0.0 0.1 Delekin mg/hg 0.1 0.2 0.2 0.0 101 Delekin mg/hg 0.2 0.2 0.2 0.0 101 Deplexin mg/hg 0.2 0.2 0.2 0.0 101 Deplexin mg/hg 0.1 0.2 0.2 0.0 101 Deplexin mg/hg 0.1 0.2 0.2 0.0 101 Deplexin Tetachors-m-xylene (TCMX) (Surogale) mg/hg 0.1 0.16 0.15 0.15 0.10 101 Deplexin Parameter mg/hg 0.5 1.9 2 0.0 103 103 Deplexin mg/hg 0.2 1.9 2 0.0 103 103 Deplexine mg/hg 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Deta BHC mg/kg 0.1 0.2 0.2 0.2 0.1 0.1 Defa/m mg/kg 0.2 0.2 0.2 0.2 0.1 0.1 Burdgate mg/kg 0.1 0.2 0.2 0.2 0.1 0.1 Burdgate mg/kg 0.1 0.2 0.2 0.1 0.1 Petatolons-mylene (TCM) (Surogate) mg/kg 0.1 0.2 0.2 0.1 0.1 Petatolons Parameter	LB073161.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	110
Deletin mg/hg 0.2 0.2 0.0 0.1 0.1 Endin mg/kg 0.1 0.2 0.2 0.0.1 0.1 p:PDT mg/kg 0.1 0.15 40:10 101 Present mg/kg 0.1 0.15 40:10 101 Present mg/kg 0.5 0.15 40:10 101 B073161.002 Dichlovos mg/kg 0.5 1.9 2 60:140 103 B073161.002 Phonophylk[Surrogate] mg/kg 0.5 1.4 60:140 110 B073161.002 Phonophylk[Surrogate] mg/kg 0.1 4.2 4 60:140 111			Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	107
Endin mg/kg 0.2 0.2 0.6 111 pr0por mg/kg 0.1 0.2 0.2 60-140 104 Surrogates Tetrahorc-msynen (CMX) (Surrogate) mg/kg 0.1 0.2 0.2 60-140 104 Prestides In Sol Name Nam Nam Nam			Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	103
p.pl-DT mg/g 0.1 0.2 0.2 60-140 104 Suragets Tetrachiore-n-xylene (TCMX) (Surogate) mg/g 0.16 0.15 40.13 107 P Peaticides in Scil Surgets Tetrachiore-n-xylene (TCMX) (Surogate) Surgets			Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	104
Surrogates Tetachloro-m-xylene (TCMX) (Surrogate) mg/kg 0 0.16 0.15 40.130 107 P Pesticides In Soll Method: IE-(AU)-[EN/JAM004/AR Sample Number Parameter Method: Expected Critoria % Recovery % B073161:002 Dicainoro Dicainoro mg/kg 0.5 2.1 2 60-140 94 B073161:002 Dicainoro (Impylate) mg/kg 0.5 1.9 2 60-140 94 Surrogates 2-fluoroprifies Ethyl) mg/kg 0.2 1.6 2 60-140 79 Surrogates 2-fluoroprifies Ethyl) mg/kg 0.2 0.6 40 0.5 40-130 60 Surrogates 2-fluoroprifies Ethyl mg/kg 0.2 0.5 40-130 60 Surrogates 2-fluoroprifies Ethyl mg/kg 0.1 4.0 40 60-140 101 ALP Expected Parameter mg/kg 0.1 4.2 4 60-140 <t< td=""><td></td><td></td><td>Endrin</td><td>mg/kg</td><td>0.2</td><td>0.2</td><td>0.2</td><td>60 - 140</td><td>111</td></t<>			Endrin	mg/kg	0.2	0.2	0.2	60 - 140	111
PP Peticides in Soll Method: Method: <td></td> <td></td> <td>p,p'-DDT</td> <td>mg/kg</td> <td>0.1</td> <td>0.2</td> <td>0.2</td> <td>60 - 140</td> <td>104</td>			p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	104
Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Dichlorvos mg/kg 0.5 2.1 2 60 - 140 103 B073161.002 Dichlorvos mg/kg 0.5 2.1 2 60 - 140 103 B073161.002 Dichlorvors (Chloryrifos Ethyl) mg/kg 0.2 2.2 2 60 - 140 111 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 2.2 2 60 - 140 111 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.5 0.5 40 - 130 82 AH (Polynuclear Aromatic Hydrocarbons) in Soll Method Kerovery % Sample Number Parameter Units LOR Result Expected Criteria % Recovery % AL (Polynuclear Aromatic Hydrocarbons) in Soll Mathhalene mg/kg 0.1 4.2 4 60 - 140 100 s.8073161.002 Naphthalene mg/kg 0.1 4.5 4<		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	107
BB073161.002 Dickioros mg/kg 0.5 2.1 2 60-140 103 Diazion (Dimpylate) mg/kg 0.5 1.9 2 60-140 94 Chlorpyrifis (Chlorpyrifis Ethyl) mg/kg 0.2 1.6 2 60-140 94 Surogates 2-fluorobiphenyl (Surogate) mg/kg 0.2 2.2 2 60-140 111 Surogates 2-fluorobiphenyl (Surogate) mg/kg - 0.5 0.5 40-130 82 Sample Number Parameter Mg/kg - 0.5 0.5 40-130 94 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % Sample Number Parameter mg/kg 0.1 4.3 4 60-140 107 Acenaphthylene mg/kg 0.1 4.5 4 60-140 111 Acenaphthylene mg/kg 0.1 4.5 4 60-140 111 <td< td=""><td>OP Pesticides in So</td><td>bil</td><td></td><td></td><td></td><td></td><td>Method:</td><td>ME-(AU)-[EN</td><td>/JAN400/AN42</td></td<>	OP Pesticides in So	bil					Method:	ME-(AU)-[EN	/JAN400/AN42
Diazion (Dimpylate) mg/kg 0.5 1.9 2 60-140 94 Chiorpyrifos (Chiorpyrifos (Chior	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Chlorpyrifios (Chlorpyrifios Ethyl) mg/kg 0.2 1.6 2 60.140 79 Ethion mg/kg 0.2 2.2 2 60.140 111 Surrogates 2.fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40.130 82 AH (Polynuclear Aromatic Hydrocarbors) in Soll mg/kg - 0.5 0.5 40.130 94 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Naphthalene mg/kg 0.1 4.2 4 60.140 100 Caenaphthylene mg/kg 0.1 4.3 4 60.140 101 Acenaphthylene mg/kg 0.1 4.5 4 60.140 111 Anthracene mg/kg 0.1 4.5 4 60.140 111 Prenamthrene mg/kg 0.1 4.6 4 60.140 111 Prene mg/kg 0.1 4.6 </td <td>LB073161.002</td> <td></td> <td>Dichlorvos</td> <td>mg/kg</td> <td>0.5</td> <td>2.1</td> <td>2</td> <td>60 - 140</td> <td>103</td>	LB073161.002		Dichlorvos	mg/kg	0.5	2.1	2	60 - 140	103
Ethion mg/kg 0.2 2.2 2 60-140 111 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40-130 82 Atl (Polynuclear Aromatic Hydrocarbons) in Soil mg/kg - 0.5 0.5 40-130 94 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Acenaphthylene mg/kg 0.1 4.2 4 60-140 100 Acenaphthylene mg/kg 0.1 4.5 4 60-140 112 Phenanthrene mg/kg 0.1 4.5 4 60-140 112 Phenanthrene mg/kg 0.1 4.5 4 60-140 111 Anthracene mg/kg 0.1 4.5 4 60-140 111 Pyrene mg/kg 0.1 4.6 4 60-140 101 Brozolapyrene mg/kg 0.1 4.6 4<			Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	94
Surogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 82 AH (Polynuclear Aromatic Hydrocarbons) in Soll mg/kg - 0.5 0.5 40 - 130 94 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 ACenaphthylene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthene mg/kg 0.1 4.5 4 60 - 140 107 Phenanthrene mg/kg 0.1 4.5 4 60 - 140 107 Acenaphthene mg/kg 0.1 4.5 4 60 - 140 111 Antracene mg/kg 0.1 4.5 4 60 - 140 101 Prene mg/kg 0.1 4.6 4 60 - 140 101 Burogates G5-nitrobenzene (Surrogate) mg/kg <td></td> <td></td> <td>Chlorpyrifos (Chlorpyrifos Ethyl)</td> <td>mg/kg</td> <td>0.2</td> <td>1.6</td> <td>2</td> <td>60 - 140</td> <td>79</td>			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	2	60 - 140	79
d14-p-terphenyl (Surrogate) mg/kg 0.5 0.5 40 - 130 94 AH (Polynuclear Aromatic Hydrocarbor) in Sol Sample Number Parameter Muthod LOR Result Expected Criteria % Recovery % Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.3 4 60 - 140 112 Acenaphthene mg/kg 0.1 4.5 4 60 - 140 111 Actracene mg/kg 0.1 4.6 4 60 - 140 111 Anthracene mg/kg 0.1 4.6 4 60 - 140 111 Pyrene mg/kg 0.1 4.6 4 60 - 140 101 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 101 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 1014 Benzo(a)pyrene <td></td> <td></td> <td>Ethion</td> <td>mg/kg</td> <td>0.2</td> <td>2.2</td> <td>2</td> <td>60 - 140</td> <td>111</td>			Ethion	mg/kg	0.2	2.2	2	60 - 140	111
AH (Polynuclear Aromatic Hydrocarbons) In Soil Method: ME-(AU)-[ENV]AVA Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Naphthalene mg/kg 0.1 4.2 4 60-140 106 B073161.002 Naphthalene mg/kg 0.1 4.3 4 60-140 107 Acenaphthylene mg/kg 0.1 4.5 4 60-140 112 Phenanthrene mg/kg 0.1 4.5 4 60-140 111 Actinzene mg/kg 0.1 4.5 4 60-140 111 Phenanthrene mg/kg 0.1 4.6 4 60-140 115 Fluoranthene mg/kg 0.1 4.6 4 60-140 106 Pyrene mg/kg 0.1 4.6 4 60-140 106 Berzo(a)pyrene mg/kg 0.1 4.6 4 60-140 106 Surrogates		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
Sample Number Parameter Units LOR Result Expected Criteria % Recovery % B073161.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.5 4 60 - 140 112 Phenanthrene mg/kg 0.1 4.5 4 60 - 140 111 Acenaphthylene mg/kg 0.1 4.5 4 60 - 140 111 Acenaphthylene mg/kg 0.1 4.5 4 60 - 140 111 Anthracene mg/kg 0.1 4.6 4 60 - 140 101 Pyrene mg/kg 0.1 4.6 4 60 - 140 101 Berzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 104 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.6 40 - 130			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
BR073161.002 Naphthalene Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.5 4 60 - 140 112 Phenanthrene mg/kg 0.1 4.5 4 60 - 140 111 Anthracene mg/kg 0.1 4.5 4 60 - 140 111 Fluoranthene mg/kg 0.1 4.6 4 60 - 140 111 Pyrene mg/kg 0.1 4.6 4 60 - 140 101 Fluoranthene mg/kg 0.1 4.6 4 60 - 140 101 Pyrene mg/kg 0.1 4.6 4 60 - 140 101 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg -1 0.4 0.5 4	PAH (Polynuclear A	romatic Hydroca	arbons) in Soil				N	Nethod: ME-(A	U)-[ENV]AN42
Acenaphthylene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.5 4 60 - 140 112 Acenaphthene mg/kg 0.1 4.5 4 60 - 140 112 Phenanthrene mg/kg 0.1 4.5 4 60 - 140 111 Anthracene mg/kg 0.1 4.6 4 60 - 140 115 Fluoranthene mg/kg 0.1 4.6 4 60 - 140 101 Pyrene mg/kg 0.1 4.6 4 60 - 140 101 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 106 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 101 Quirobiphenyl (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 Quirobiphenyl (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 Quirobiphenyl (Su	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Acenaphthene mg/kg 0.1 4.5 4 60 - 140 112 Phenanthrene mg/kg 0.1 4.5 4 60 - 140 111 Anthracene mg/kg 0.1 4.5 4 60 - 140 111 Fluoranthene mg/kg 0.1 4.6 4 60 - 140 115 Pyrene mg/kg 0.1 4.6 4 60 - 140 101 Pyrene mg/kg 0.1 4.1 4 60 - 140 106 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 101 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 <td>LB073161.002</td> <td></td> <td>Naphthalene</td> <td>mg/kg</td> <td>0.1</td> <td>4.2</td> <td>4</td> <td>60 - 140</td> <td>106</td>	LB073161.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	106
Phenanthrene mg/kg 0.1 4.5 4 60 - 140 111 Anthracene mg/kg 0.1 4.6 4 60 - 140 115 Fluoranthene mg/kg 0.1 4.6 4 60 - 140 115 Pyrene mg/kg 0.1 4.1 4 60 - 140 101 Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 106 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CEB in Soli			Acenaphthylene	mg/kg	0.1	4.3	4	60 - 140	107
Anthracene mg/kg 0.1 4.6 4 60 - 140 115 Fluoranthene mg/kg 0.1 4.1 4 60 - 140 101 Pyrene mg/kg 0.1 4.1 4 60 - 140 101 Benzo(a)pyrene mg/kg 0.1 4.2 4 60 - 140 106 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 114-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CBs in Soll Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			Acenaphthene	mg/kg	0.1	4.5	4	60 - 140	112
Fluoranthene mg/kg 0.1 4.1 4 60 - 140 101 Pyrene mg/kg 0.1 4.2 4 60 - 140 106 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 106 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.6 4 60 - 140 114 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CBs in Soll CEs in Soll Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			Phenanthrene	mg/kg	0.1	4.5	4	60 - 140	111
Pyrene mg/kg 0.1 4.2 4 60 - 140 106 Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 114 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 cBs in Soll mg/kg - 0.4 0.5 40 - 130 78 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			Anthracene	mg/kg	0.1	4.6	4	60 - 140	115
Benzo(a)pyrene mg/kg 0.1 4.6 4 60 - 140 114 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CBs in Soll Kethod: KE-(AU)-[ENV]AN400/AN42 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			Fluoranthene	mg/kg	0.1	4.1	4	60 - 140	101
Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 72 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CBs in Soil Method: KE-(AU)-[ENV]AN400/AN42 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			Pyrene	mg/kg	0.1	4.2	4	60 - 140	106
2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 74 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CBs in Soil mg/kg - 0.4 0.5 40 - 130 78 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			Benzo(a)pyrene	mg/kg	0.1	4.6	4	60 - 140	114
d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 CBs in Soll Method: ME-(AU)-[ENV]AN400/AN42 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	72
CBs in Soll CBs in Soll Method: ME-(AU)-[ENV]AN400/AN42 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	74
Sample Number Parameter Units LOR Result Expected Criteria % Recovery %			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
	PCBs in Soil						Method:	ME-(AU)-[EN	/JAN400/AN42
.B073161.002 Arochior 1260 mg/kg 0.2 0.5 0.4 60 - 140 119	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
	LB073161.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	119

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

otal Necoverable Metals III c	Soli by ICPOES IIOIII EPA 200.6 Digest				Method.	ME-(70)-[EIN	1 1411040/411320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB073144.002	Arsenic, As	mg/kg	3	50	50	80 - 120	100
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	98
	Chromium, Cr	mg/kg	0.3	48	50	80 - 120	97
	Copper, Cu	mg/kg	0.5	49	50	80 - 120	99
	Lead, Pb	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	48	50	80 - 120	96
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	99
race Metals (Dissolved) in W	Vater by ICPMS				N	/ethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB073152.002	Arsenic, As	μg/L	1	20	20	80 - 120	98
	Cadmium, Cd	μg/L	0.1	20	20	80 - 120	101
	Chromium, Cr	μg/L	1	20	20	80 - 120	101
	Copper, Cu	μg/L	1	21	20	80 - 120	106
	Lead, Pb	μg/L	1	20	20	80 - 120	100
	Nickel, Ni	µg/L	1	21	20	80 - 120	104
	Zinc, Zn	µg/L	5	21	20	80 - 120	106

Method: ME_(ALI)_TENVIAN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number LB073161.002 TRH F Bands TRH (Total Recoverable Hydrocart Sample Number LB073162.002 TRH F Bands VOC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates VOCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Votatile Petroleum Hydrocarbons ir Sample Number LB073167.002 Votatile Petroleum Hydrocarbons ir	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg	LOR 20 45 45 25 90 120 LOR 50 200 200 60 500 500 500 500 0.1 0.1 0.1 0.1 0.1 0.2 0.1 - - LOR LOR	Result 35 <45 35 <90 <120 Result 1000 1100 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1 5.1 5.1	Expected 1200 1200 1200 1200 600 Method: Expected 2.9 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AU) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60	Recovery 84 95 96 89 99 94 (AN433/AN Recovery 103 99 83 88 88 88 93 100 101 101 101
TRH F Bands RH (Total Recoverable Hydrocart Sample Number LB073162.002 TRH F Bands /OC's in Soll Sample Number LB073167.002 Monocyclic Aromatic Surrogates /OC's in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates /Octatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH C15-C28 TRH C29-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) ns) in Water Parameter TRH C10-C14 TRH C29-C36 TRH C15-C28 TRH C10-C14 TRH C29-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg	45 45 25 90 120 LOR 50 200 60 500 500 500 500 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 1 - -	<45 <45 35 <90 <120 Result 1000 1100 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	40 40 40 20 Expected 1200 1200 1200 1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.8 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AU) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60	85 78 88 83 80 ()-[ENV]AN Recovery 84 95 96 89 99 94 (AN433/AN Recovery 103 99 83 88 88 88 88 93 100 101 101
RH (Total Recoverable Hydrocart Sample Number LB073162.002 TRH F Bands OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Iolatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH C29-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) ns) in Water Parameter TRH C10-C14 TRH C26-C36 TRH >C16-C34 (F3) TRH C26-C36 TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/kg mg/kg	45 25 90 120 50 200 200 60 500 500 500 500 500 500 500 500 50	<45 35 90 <120 Result 1000 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	40 40 40 20 Expected 1200 1200 1200 1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.8 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 Acthod: ME-(AU Criteria % 60 - 140 60 - 140	78 88 83 80))-[ENV]AN Recover 84 95 96 89 99 94 (AN433/A) Recover 103 99 83 88 88 93 100 101 101 AN433/A)
RH (Total Recoverable Hydrocart Sample Number LB073162.002 TRH F Bands OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Iolatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) ns) In Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C16-C16 (F2) TRH >C16-C34 (F3) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg g/L μg/L μg/kg mg/kg mg/kg <	25 90 120 50 200 200 60 500 500 500 500 500 500 500 500 50	35 <90 <120 Result 1000 1100 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	40 40 20 Expected 1200 1200 1200 1200 600 Method: 2.9 2.9 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Aethod: ME-(AU Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	88 83 80)-[ENV]Al Recover 84 95 96 89 99 94 (AN433/Al Recover 103 99 83 88 88 88 93 100 101 101
RH (Total Recoverable Hydrocart Sample Number LB073162.002 TRH F Bands OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates OCcs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH >C16-C34 (F3) TRH >C34-C40 (F4) ns) In Water Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg µg/L	90 120 50 200 60 500 500 500 500 500 500 500 500 50	<90 <120 Result 1000 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	40 20 Expected 1200 1200 1200 1200 600 Method: 2.9 2.9 2.9 2.9 2.9 2.9 5.8 2.9 5.8 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Vethod: ME-(AU) 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] 60 - 140 60 - 140 ME-(AU)-[ENV]	83 80)-[ENV]A Recover 84 95 96 89 99 94 (AN433/A) Recover 103 99 83 88 88 88 93 100 101 101 101
Sample Number LB073162.002 TRH F Bands OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Surrogates	TRH >C34-C40 (F4) ns) in Water Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg μg/L μg/kg mg/kg mg/kg	120 LOR 50 200 60 500 500 500 0.1 0.1 0.1 0.1 0.2 0.1 - - LOR LOR	<120 Result 1000 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	20 Expected 1200 1200 1200 1200 1200 200 Expected 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.5 5 5 5 5 Kethod:	60 - 140 Aethod: ME-(AU) 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	80)-[ENV]A Recover 84 95 96 89 99 94 AN433/A Recover 103 99 83 88 88 93 100 101 101 AN433/A
Sample Number LB073162.002 TRH F Bands VOC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates VOCs In Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	Units μg/L	LOR 50 200 200 60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	Result 1000 1100 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	Expected 1200 1200 1200 1200 600 Method: Expected 2.9 2.9 2.9 2.9 2.9 5.8 2.9 5.8 5 5 5 5 5 5 Method:	Aethod: ME-(AU) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140)-[ENV]A Recover 84 95 96 89 99 94 (AN433/A Recover 103 99 83 88 88 88 93 100 101 101 101
Sample Number LB073162.002 TRH F Bands /OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates /OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates /olatile Petroleum Hydrocarbons in Sample Number LB073167.002	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/kg mg/kg mg/kg	50 200 60 500 500 LOR 0.1 0.1 0.1 0.1 0.2 0.1 - - - - LOR	1000 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	Expected 1200 1200 1200 1200 600 Method: Expected 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.5 5 5 5 5 Method:	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	Recover 84 95 96 89 99 94 (AN433/A Recover 103 99 83 88 88 88 93 100 101 101 101
LB073162.002 TRH F Bands TOC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates COCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Colatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/kg mg/kg mg/kg	50 200 60 500 500 LOR 0.1 0.1 0.1 0.1 0.2 0.1 - - - - LOR	1000 1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	1200 1200 1200 600 Method: 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5.8 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	84 95 96 89 99 94 (AN433/A Recover 103 99 83 88 88 88 93 100 101 101 101
'OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates 'OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates 'Olatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH C15-C28 TRH C29-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	μg/L	200 200 60 500 500 0.1 0.1 0.1 0.1 0.2 0.1 - - - - - LOR	1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	1200 1200 1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	95 96 89 99 94 (AN433/A Recover 103 99 83 88 88 88 93 100 101 101
'OC's in Soll Sample Number LB073167.002 Monocyclic Aromatic Surrogates 'OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates 'OLatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH C29-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	μg/L μg/L μg/L μg/L μg/L μg/L g/kg mg/kg	200 60 500 500 0.1 0.1 0.1 0.2 0.1 - - - - - LOR	1100 1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	1200 1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	96 89 99 94 (AN433/A Recover 103 99 83 88 88 88 93 100 101 101 101
/OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates /OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates /Octatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L g/kg mg/kg	60 500 500 0.1 0.1 0.1 0.2 0.1 - - - - - LOR	1100 1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	1200 1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	89 99 94 AN433/A Recovel 103 99 83 88 88 88 93 100 101 101 101
/OC's in Soil Sample Number LB073167.002 Monocyclic Aromatic Surrogates /OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates /Octatile Petroleum Hydrocarbons in Sample Number LB073167.002	TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	500 500 0.1 0.1 0.1 0.2 0.1 - - - - - - LOR	1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 Method:	60 - 140 60 - 140 ME-(AU)-[ENV], Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV],	99 94 (AN433/A Recovel 103 99 83 88 88 88 93 100 101 101 101
Sample Number LB073167.002 Monocyclic Aromatic Surrogates VOCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons ir Sample Number LB073167.002	TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	500 500 0.1 0.1 0.1 0.2 0.1 - - - - - - LOR	1200 560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	1200 600 Method: 2.9 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 Method:	60 - 140 60 - 140 ME-(AU)-[ENV], Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV],	99 94 (AN433/A Recovel 103 99 83 88 88 88 93 100 101 101 101
Sample Number LB073167.002 Monocyclic Aromatic Surrogates VOCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons ir Sample Number LB073167.002	TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	500 LOR 0.1 0.1 0.2 0.1 - - - - LOR	560 Result 3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	600 Method: 2.9 2.9 2.9 5.8 2.9 5.8 5.5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 ME-(AU)-[ENV] Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	94 AN433/A Recove 103 99 83 88 88 93 100 101 101 4N4433/A
Sample Number LB073167.002 Monocyclic Aromatic Surrogates VOCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons ir Sample Number LB073167.002	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	Units mg/kg	0.1 0.1 0.2 0.1 - - - LOR	3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	Expected 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 8 Method:	Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	Recove 103 99 83 88 88 93 100 101 101 101
Sample Number LB073167.002 Monocyclic Aromatic Surrogates COCs In Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Colatile Petroleum Hydrocarbons in Sample Number LB073167.002	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg tunits μg/L	0.1 0.1 0.2 0.1 - - - LOR	3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	Expected 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 8 Method:	Criteria % 60 - 140 60 - 140 ME-(AU)-[ENV]	Recovel 103 99 83 88 88 93 100 101 101 101
LB073167.002 Monocyclic Aromatic Surrogates VOCs in Water LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg tunits μg/L	0.1 0.1 0.2 0.1 - - - LOR	3.0 2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 Method:	60 - 140 60 - 140 ME-(AU)-[ENV]	103 99 83 88 88 93 100 101 101 101 AN433/A
Aromatic Aromatic Aromatic Surrogates VOCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons ir Sample Number LB073167.002	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg	0.1 0.1 0.2 0.1 - - - LOR	2.9 2.4 5.1 2.6 4.6 5.0 5.1 5.1	2.9 2.9 5.8 2.9 5 5 5 5 5 5 Method:	60 - 140 60 - 140 ME-(AU)-[ENV]	99 83 88 93 100 101 101 101
Surrogates Sample Number LB073232.002 Monocyclic Aromatic Surrogates Surrogates Sample Number LB073167.002	Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg g/kg	0.1 0.2 0.1 - - - LOR	2.4 5.1 2.6 4.6 5.0 5.1 5.1	2.9 5.8 2.9 5 5 5 5 5 5 Method:	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	83 88 93 100 101 101 4N433/A
'OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates 'olatile Petroleum Hydrocarbons in Sample Number LB073167.002	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L	0.2 0.1 - - -	5.1 2.6 4.6 5.0 5.1 5.1	5.8 2.9 5 5 5 5 5 5 Method:	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	88 88 93 100 101 101 4 N433//
'OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates 'olatile Petroleum Hydrocarbons in Sample Number LB073167.002	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L	0.1 - - - LOR	2.6 4.6 5.0 5.1 5.1	2.9 5 5 5 5 5 Method:	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	88 93 100 101 101 AN433/A
OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg Units μg/L	- - - LOR	4.6 5.0 5.1 5.1	5 5 5 5 Method:	60 - 140 60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	93 100 101 101 AN433//
'OCs in Water Sample Number LB073232.002 Monocyclic Aromatic Surrogates 'olatile Petroleum Hydrocarbons in Sample Number LB073167.002	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg mg/kg Units μg/L	LOR	5.0 5.1 5.1	5 5 5 Method:	60 - 140 60 - 140 60 - 140 ME-(AU)-[ENV]	100 101 101 AN433//
Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg mg/kg Units μg/L	LOR	5.1 5.1	5 5 Method:	60 - 140 60 - 140 ME-(AU)-[ENV]	101 101 AN433// 4
Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Bromofluorobenzene (Surrogate) Parameter Benzene	mg/kg Units μg/L	LOR	5.1	5 Method:	60 - 140 ME-(AU)-[ENV],	101 AN433/A
Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Parameter Benzene	Units μg/L			Method:	ME-(AU)-[ENV]	AN433/A
Sample Number LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Benzene	µg/L		Result			
LB073232.002 Monocyclic Aromatic Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002	Benzene	µg/L		Result	Expected	Criteria %	
Aromatic Aromatic Surrogates Volatile Petroleum Hydrocarbons ir Sample Number LB073167.002							Recover
Surrogates Volatile Petroleum Hydrocarbons in Sample Number LB073167.002		µg/L	0.5	50	45.45	60 - 140	110
<mark>/olatile Petroleum Hydrocarbons ir</mark> Sample Number LB073167.002	Toluene		0.5	50	45.45	60 - 140	110
<mark>/olatile Petroleum Hydrocarbons ir</mark> Sample Number LB073167.002	Ethylbenzene	µg/L	0.5	49	45.45	60 - 140	108
<mark>/olatile Petroleum Hydrocarbons ir</mark> Sample Number LB073167.002	m/p-xylene	µg/L	1	98	90.9	60 - 140	107
<mark>/olatile Petroleum Hydrocarbons ir</mark> Sample Number LB073167.002	o-xylene	µg/L	0.5	49	45.45	60 - 140	108
Sample Number LB073167.002	Dibromofluoromethane (Surrogate)	µg/L	-	5.0	5	60 - 140	99
Sample Number LB073167.002	d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.3	5	60 - 140	105
Sample Number LB073167.002	d8-toluene (Surrogate)	µg/L	-	4.7	5	60 - 140	95
Sample Number LB073167.002	Bromofluorobenzene (Surrogate)	µg/L	-	4.5	5	60 - 140	89
LB073167.002	Soll				Method: ME-(Al	J)-[ENV]AN433/	AN434/A
	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
Surrogates	TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	89
Surrogates	TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	86
	Dibromofluoromethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	93
	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.0	5	60 - 140	100
	d8-toluene (Surrogate)	mg/kg	-	5.1	5	60 - 140	101
	Bromofluorobenzene (Surrogate)	mg/kg	-	5.1	5	60 - 140	101
VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	84
olatile Petroleum Hydrocarbons ir	Vater				Method: ME-(Al	J)-[ENV]AN433/	AN434/A
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	
_B073232.002	TRH C6-C10	µg/L	50	870	946.63	60 - 140	92
LUU. ULUL.UUL			40	820	818.71	60 - 140	100
P		μg/L	- 40				
Surrogates	TRH C6-C9	µg/L		5.0	5	60 - 140	99
	Dibromofluoromethane (Surrogate)		-	5.3	5	60 - 140	105
	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L		4.7	5	60 - 140	95
VPH F Bands	Dibromofluoromethane (Surrogate)		-	4.5	5	60 - 140	89

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water				Method: ME	-(AU)-[ENV	AN311/AN312
QC Sample Sample Number Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE136661.015 LB073294.004 Mercury	mg/L	0.0001	0.0084	-0.0784	0.008	106

Mercury in Soil

Mercury in Soil						Meth	od: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE136767.003	LB073148.004	Mercury	mg/kg	0.01	0.23	0.05425257696	0.2	90

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE136783.003	LB073161.008		Naphthalene	mg/kg	0.1	4.6	<0.1	4	115
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	5.0	0.2	4	119
			Acenaphthene	mg/kg	0.1	4.5	<0.1	4	113
			Fluorene	mg/kg	0.1	<0.1	0.3	-	-
			Phenanthrene	mg/kg	0.1	6.4	2.0	4	110
			Anthracene	mg/kg	0.1	5.8	0.4	4	135
			Fluoranthene	mg/kg	0.1	5.8	2.6	4	80
			Pyrene	mg/kg	0.1	5.6	2.5	4	80
			Benzo(a)anthracene	mg/kg	0.1	<0.1	1.2	-	-
			Chrysene	mg/kg	0.1	<0.1	1.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	1.0	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.9	-	
			Benzo(a)pyrene	mg/kg	0.1	5.9	1.3	4	116
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.7	-	-
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.6	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>5.9</td><td>1.8</td><td>-</td><td>-</td></lor=0*<>	TEQ	0.2	5.9	1.8	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>6.0</td><td>1.8</td><td>_</td><td>_</td></lor=lor*<>	TEQ (mg/kg)	0.3	6.0	1.8	_	_
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>6.0</td><td>1.8</td><td>_</td><td>_</td></lor=lor>	TEQ (mg/kg)	0.2	6.0	1.8	_	_
			Total PAH	mg/kg	0.8	44	15	_	_
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4	_	94
		Gunogutoo	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	_	90
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5		104
otal Recoverabl	e Metals in Soil by ICI	POES from EPA					Method: ME-	(AU)-[ENV	AN040/AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE136767.003	LB073144.004		Arsenic, As	mg/kg	3	55	1.84629705530	50	106
21001011000	EBOTOTTILOOT		Cadmium, Cd	mg/kg	0.3	51	0.20917347136	50	102
			Chromium, Cr	mg/kg	0.3	65	12.55980245567	50	105
			Copper, Cu	mg/kg	0.5	67	11.53229981705	50	111
			Lead, Pb	mg/kg	1	63	12.22595254010	50	102
			Nickel, Ni	mg/kg	0.5	55	3.51404534900	50	102
			Zinc, Zn	mg/kg	0.5	86	27.62674940191	50	102
RH (Total Reco	verable Hydrocarbons) in Soil			0.0			od: ME-(AL	
QC Sample	Sample Number	,	Parameter	Units	LOR	Result	Original	Spike	Recove
E136783.003	LB073161.008		TRH C10-C14	mg/kg	20	39	<20	40	98
			TRH C15-C28	mg/kg	45	<45	<45	40	98
			TRH C29-C36	mg/kg	45	<45	<45	40	78
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	39	<25	40	98
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	39	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	88
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
OC's in Soil							Method: ME-		IAN433/AF
70 3 IT 00I						_	WOULDO. WE		p a 4400//4
QC Sample	Sample Number		Parameter	Units	LOR				

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (co	ntinued)						Method: ME	-(AU)-[ENV	JAN433/AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE136783.001	LB073167.004	Monocyclic	Benzene	mg/kg	0.1	2.6	<0.1	2.9	91
		Aromatic	Toluene	mg/kg	0.1	2.5	<0.1	2.9	88
			Ethylbenzene	mg/kg	0.1	2.7	<0.1	2.9	93
			m/p-xylene	mg/kg	0.2	5.8	<0.2	5.8	99
			o-xylene	mg/kg	0.1	2.9	<0.1	2.9	99
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	4.5	5	79
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5.1	5	89
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.8	5	87
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.6	4.7	5	111
		Totals	Total Xylenes*	mg/kg	0.3	8.6	<0.3	-	-
			Total BTEX*	mg/kg	0.6	17	<0.6	-	-
olatile Petroleu	m Hydrocarbons in	Soil				Meth	nod: ME-(AU)-[I	ENVJAN433	/AN434/AN41
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE136783.001	LB073167.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	91
			TRH C6-C9	mg/kg	20	20	<20	23.2	87
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	4.5	5	79
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5.1	5	89
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.8	5	87
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.6	4.7	5	111
		VPH F	Benzene (F0)	mg/kg	0.1	2.6	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	82

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

SE136783 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- IOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Daniel Soliman	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Daniel.Soliman@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 - 36 Lonsdale Street - Lilyfield	SGS Reference	SE136783 R0
Order Number	E22390	Report Number	0000104337
Samples	8	Date Reported	05 Mar 2015
		Date Received	02 Mar 2015

COMMENTS -

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique. Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

Duoms

Deanne Norris Organic Chemist

kinty

Ly Kim Ha Organic Section Head

flores

Huong Crawford Production Manager

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499 Australia

Member of the SGS Group

www.au.sgs.com

ANALYTICAL REPORT

Fibre Identifica	tion in soil				Me	thod AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification		Est.%w/w
SE136783.001	BH1_0.2-0.4	Soil	69g Sand,soil,rocks	02 Mar 2015	No Asbestos Found		<0.01
SE136783.002	BH2_0.2-0.4	Soil	60g Sand,soil,rocks	02 Mar 2015	No Asbestos Found Organic Fibres Detected		<0.01
SE136783.004	BH3_0.2-0.4	Soil	55g Sand,rocks	02 Mar 2015	No Asbestos Found		<0.01
SE136783.005	BH4_0.2-0.4	Soil	120g Sand	02 Mar 2015	No Asbestos Found		<0.01
SE136783.006	BH5_0.2-0.4	Soil	51g Sand,soil	02 Mar 2015	No Asbestos Found		<0.01
SE136783.009	BH6_0.2-0.4	Soil	39g Sand,soil,rocks	02 Mar 2015	No Asbestos Found		<0.01
SE136783.010	BH6_0.5-0.7	Soil	64g Sand,soil,rocks	02 Mar 2015	No Asbestos Found Organic Fibres Detected		<0.01
SE136783.011	BH7_0.15-0.3	Soil	75g Sand,rocks	02 Mar 2015	No Asbestos Found		<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	Not Accredited
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarized light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarized light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarized light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact	Voula Terlegas	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Voula.Terlegas@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 -36 Lonsdale Street-Lilyfield-Add	SGS Reference	SE136783A R0
Order Number	E22390	Report Number	0000104912
Samples	15	Date Reported	11 Mar 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	1 Soil	Type of documentation received	Email
Date documentation received	5/3/15@6:23pm	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	3.6°C
Sample container provider	SGS	Turnaround time requested	Three Days
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes
Complete documentation received	Yes		

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 A Alexandria NSW 2015 A

Australia t +61 2 8594 0400 Australia

00 **f** +61 2 8594 0499

www.au.sgs.com

HOLDING TIME SUMMARY

Method: ME-(AU)-[ENV]AN433/AN434/AN410

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content							Method:	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5_1.0-1.2	SE136783A.015	LB073562	02 Mar 2015	02 Mar 2015	16 Mar 2015	10 Mar 2015	15 Mar 2015	11 Mar 2015
PAH (Polynuclear Aroma	atic Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5_1.0-1.2	SE136783A.015	LB073376	02 Mar 2015	02 Mar 2015	16 Mar 2015	06 Mar 2015	15 Apr 2015	11 Mar 2015
TRH (Total Recoverable	Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5_1.0-1.2	SE136783A.015	LB073376	02 Mar 2015	02 Mar 2015	16 Mar 2015	06 Mar 2015	15 Apr 2015	11 Mar 2015
VOC's in Soil							Method: ME-(AL	J)-[ENV]AN433/AN43

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5_1.0-1.2	SE136783A.015	LB073382	02 Mar 2015	02 Mar 2015	16 Mar 2015	06 Mar 2015	15 Apr 2015	11 Mar 2015

Volatile Petroleum Hydrocarbons in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5 1.0-1.2	SE136783A.015	LB073382	02 Mar 2015	02 Mar 2015	16 Mar 2015	06 Mar 2015	15 Apr 2015	11 Mar 2015

Method: ME-(AU)-[ENV]AN420

97

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Dibromofluoromethane (Surrogate)

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	70 - 130%	102
d14-p-terphenyl (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	70 - 130%	110
d5-nitrobenzene (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	70 - 130%	100
VOC's in Soil				Method: ME-(AU)-	[ENV]AN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	102
d4-1,2-dichloroethane (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	103
d8-toluene (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	103
Dibromofluoromethane (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	97
Volatile Petroleum Hydrocarbons in Soil			Metho	d: ME-(AU)-[ENV]A	N433/AN434/AN41
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	102
d4-1,2-dichloroethane (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	103
d8-toluene (Surrogate)	BH5_1.0-1.2	SE136783A.015	%	60 - 130%	103

SE136783A.015

%

60 - 130%

BH5_1.0-1.2

SE136783A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Sample Number Parameter Units LOR Result LB073376.001 Naphthalene mg/kg 0.1 < 0.1 2-methylnaphthalene mg/kg 0.1 <0.1 0.1 <0.1 1-methylnaphthalene mg/kg Acenaphthylene mg/kg 0.1 < 0.1 Acenaphthene 0.1 <0.1 mg/kg Fluorene 0.1 <0.1 mg/kg Phenanthrene <0.1 mg/kg 0.1 Anthracene mg/kg 0.1 <0.1 <0.1 Fluoranthene 0.1 mg/kg < 0.1 Pyrene mg/kg 0.1 Benzo(a)anthracene mg/kg 0.1 <0.1 Chrysene 0.1 <0.1 mg/kg <0.1 Benzo(a)pyrene mg/kg 0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 Dibenzo(a&h)anthracene 0.1 <0.1 mg/kg Benzo(ghi)perylene mg/kg 0.1 < 0.1 Total PAH 0.8 <0.8 mg/kg Surrogates d5-nitrobenzene (Surrogate) 106 % 2-fluorobiphenyl (Surrogate) % -82 d14-p-terphenyl (Surrogate) % 130 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Units LOR Result Parameter LB073376.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total mg/kg 110 <110 VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434 Sample Numb Parameter LOR Result LB073382.001 Monocyclic Aromatic Benzene mg/kg 0.1 < 0.1 <0.1 Hydrocarbons Toluene 0.1 mg/kg <0.1 Ethylbenzene mg/kg 0.1 m/p-xylene mg/kg 0.2 <0.2 <0.1 o-xylene 0.1 mg/kg Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Surrogates Dibromofluoromethane (Surrogate) % 93 d4-1,2-dichloroethane (Surrogate) % 99 -% 104 d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) % 95 Totals Total BTEX* 0.6 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410 Sample Number LOR Result Parameter Units LB073382.001 TRH C6-C9 mg/kg 20 <20 Surrogates 93 Dibromofluoromethane (Surrogate) % d4-1,2-dichloroethane (Surrogate) % 99 d8-toluene (Surrogate) % 104

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Molsture Content Method: ME-(AU)-[ENV]AN								[ENV]AN00:
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE136844.001	LB073562.011	% Moisture	%w/w	0.5	26	23	34	13
SE136844.011	LB073562.022	% Moisture	%	0.5	32	31	33	2
SE136844.015	LB073562.027	% Moisture	%	0.5	12	11	39	5
PAH (Polynuclear	Aromatic Hydrocarbons) in S	Soil				Meth	nod: ME-(AU)-	ENVJAN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE136936.011	LB073376.018	Naphthalene	mg/kg	0.1	0	0	200	0
		2-methylnaphthalene	mg/kg	0.1	0	0	200	0
		1-methylnaphthalene	mg/kg	0.1	0	0	200	0
		Acenaphthylene	mg/kg	0.1	0	0	200	0
		Acenaphthene	mg/kg	0.1	0	0	200	0
		Fluorene	mg/kg	0.1	0	0	200	0
		Phenanthrene	mg/kg	0.1	0	0	200	0
		Anthracene	mg/kg	0.1	0	0	200	0
		Fluoranthene	mg/kg	0.1	0	0	200	0
		Pyrene	mg/kg	0.1	0	0	200	0
		Benzo(a)anthracene	mg/kg	0.1	0	0	200	0
		Chrysene	mg/kg	0.1	0	0	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	0	0	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	0	0	200	0
		Benzo(a)pyrene	mg/kg	0.1	0	0	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0	0	200	0
		Dibenzo(a&h)anthracene	mg/kg	0.1	0	0	200	0
		Benzo(ghi)perylene	mg/kg	0.1	0	0	200	0
		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	0	0	200	0
		Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.242</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	TEQ (mg/kg)	0.3	0.242	0.242	134	0
		Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.121</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	0.121	0.121	175	0
		Total PAH	mg/kg	0.8	0	0	200	0
	Surroga	d5-nitrobenzene (Surrogate)	mg/kg	-	0.38	0.43	30	12
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.49	0.47	30	4
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.53	0.64	30	19

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear	Aromatic Hydroca	bons) in Soli					lethod: ME-(A	U)-[ENV]AN42
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB073376.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	106
		Acenaphthylene	mg/kg	0.1	2.9	4	60 - 140	72
		Acenaphthene	mg/kg	0.1	4.1	4	60 - 140	103
		Phenanthrene	mg/kg	0.1	4.2	4	60 - 140	105
		Anthracene	mg/kg	0.1	4.2	4	60 - 140	105
		Fluoranthene	mg/kg	0.1	4.3	4	60 - 140	107
		Pyrene	mg/kg	0.1	4.1	4	60 - 140	102
		Benzo(a)pyrene	mg/kg	0.1	4.7	4	60 - 140	117
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	76
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
RH (Total Recov	erable Hydrocarbo	ns) in Soil				N	/lethod: ME-(A	U)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB073376.002		TRH C10-C14	mg/kg	20	35	40	60 - 140	88
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	70
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	37	40	60 - 140	93
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	80
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	65
/OC's in Soil						Method:	ME-(AU)-[EN	/JAN433/AN43
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB073382.002	Monocyclic	Benzene	mg/kg	0.1	2.9	2.9	60 - 140	99
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	91
		Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	89
		m/p-xylene	mg/kg	0.2	5.6	5.8	60 - 140	97
		o-xylene	mg/kg	0.1	2.7	2.9	60 - 140	94
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.2	5	60 - 140	105
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5	60 - 140	116
		d8-toluene (Surrogate)	mg/kg	-	5.5	5	60 - 140	110
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.0	5	60 - 140	100
/olatile Petroleum	Hydrocarbons in §	Soil				Vethod: ME-(A	J)-[ENV]AN43	3/AN434/AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB073382.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	96
		TRH C6-C9	mg/kg	20	22	23.2	60 - 140	95
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.2	5	60 - 140	105
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5	60 - 140	116
				-	5.5	5		
		d8-toluene (Surrogate)	mg/kg	-	5.5	5	60 - 140	110
		_d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg	-	5.0	5	60 - 140	110

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

· · ·	r Aromatic Hydrocarbons) in						· · ·	J)-[ENV]AN420
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE136936.002	LB073376.007	Naphthalene	mg/kg	0.1	4.0	0	4	101
		2-methylnaphthalene	mg/kg	0.1	<0.1	0	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	0	-	-
		Acenaphthylene	mg/kg	0.1	3.2	0	4	80
		Acenaphthene	mg/kg	0.1	4.2	0	4	104
		Fluorene	mg/kg	0.1	<0.1	0	-	-
		Phenanthrene	mg/kg	0.1	4.4	0.14	4	106
		Anthracene	mg/kg	0.1	4.3	0	4	108
		Fluoranthene	mg/kg	0.1	4.5	0.16	4	109
		Pyrene	mg/kg	0.1	4.3	0.2	4	103
		Benzo(a)anthracene	mg/kg	0.1	<0.1	0	-	-
		Chrysene	mg/kg	0.1	<0.1	0	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	-	-
		Benzo(a)pyrene	mg/kg	0.1	4.6	0	4	115
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	-	-
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0	-	-
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>4.6</td><td>0</td><td>-</td><td>-</td></lor=0*<>	TEQ	0.2	4.6	0	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.7</td><td>0.242</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	4.7	0.242	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td>0.121</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.7	0.121	-	-
		Total PAH	mg/kg	0.8	34	0.5	-	-
	Surr	gates d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.44	-	78
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	-	70
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.62	-	104

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

SE136783A R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- IOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

LIENT DETAILS		LABORATORY DE	TAILS
Contact	Voula Terlegas	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Voula.Terlegas@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 -36 Lonsdale Street-Lilyfield-Add	SGS Reference	SE136783A R0
Order Number	E22390	Report Number	0000104913
Samples	15	Date Reported	11/3/2015
Date Received	2/3/2015	Date Started	10/3/2015

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

AcmIn

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

VOC's in Soil [AN433/AN434]

			BH5_1.0-1.2 SOIL
PARAMETER	UOM	LOR	SE136783A.015
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	0.3
o-xylene	mg/kg	0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410]

			BH5_1.0-1.2
			SOIL
			- 2/3/2015
PARAMETER	UOM	LOR	SE136783A.015
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

ANALYTICAL RESULTS

SE136783A R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

PARAMETER	UOM	LOR	BH5_1.0-1.2 SOIL - 2/3/2015 SE136783A.015
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	81
TRH C29-C36	mg/kg	45	67
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	130
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	150
TRH C10-C40 Total	mg/kg	210	<210

ANALYTICAL RESULTS

SE136783A R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420]

			BH5_1.0-1.2 SOIL - 2/3/2015
PARAMETER	UOM	LOR	SE136783A.015
Naphthalene	mg/kg	0.1	0.3
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	0.2
Fluorene	mg/kg	0.1	0.2
Phenanthrene	mg/kg	0.1	1.2
Anthracene	mg/kg	0.1	0.2
Fluoranthene	mg/kg	0.1	1.9
Pyrene	mg/kg	0.1	1.6
Benzo(a)anthracene	mg/kg	0.1	1.1
Chrysene	mg/kg	0.1	0.8
Benzo(b&j)fluoranthene	mg/kg	0.1	1.0
Benzo(k)fluoranthene	mg/kg	0.1	0.5
Benzo(a)pyrene	mg/kg	0.1	1.0
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.6
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.6
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>1.4</td></lor=0*<>	TEQ	0.2	1.4
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.5</td></lor=lor*<>	TEQ (mg/kg)	0.3	1.5
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.4</td></lor=lor>	TEQ (mg/kg)	0.2	1.4
Total PAH	mg/kg	0.8	11

ANALYTICAL RESULTS

Moisture Content [AN002]

			BH5_1.0-1.2
			SOIL
			-
			2/3/2015
PARAMETER	UOM	LOR	SE136783A.015
% Moisture	%	0.5	20

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

- FOOTNO	DTES							
* ** ^	Analysis not covered by the scope of accreditation. Indicative data, theoretical holding time exceeded. Performed by outside laboratory.	- NVL IS LNR	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.			
Solid san	analysed as received. Iples expressed on a dry weight basis. als may not appear to add up because the	total is rounded	after adding up the raw values.					
	riteria are subject to internal review accord w.sgs.com.au/~/media/Local/Australia/Docu	•						
http://ww	ument is issued, on the Client's behalf, by th w.sgs.com/en/Terms-and-Conditions/Gener idemnification and jurisdiction issues define	al-Conditions-o						
and with	Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.							
This repo	rt must not be reproduced, except in full.							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

124396

Client: Environmental Investigations

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Attention: Daniel Soliman

Sample log in details:

Your Reference:	E22390, Lily	field	
No. of samples:	1 Soil		
Date samples received / completed instructions received	02/03/15	/	02/03/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 9/03/15
 /
 4/03/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

Client Reference: E22390, Lilyfield

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	124396-1
Your Reference		QT1
Date Sampled		02/03/2015
Type of sample		Soil
Date extracted	-	03/03/2015
Date analysed	-	03/03/2015
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	98

Client Reference:

E22390, Lilyfield

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	124396-1
Your Reference		QT1
Date Sampled		02/03/2015
Type of sample		Soil
Date extracted	-	03/03/2015
Date analysed	-	03/03/2015
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	130
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	95

Client Reference:

E22390, Lilyfield

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled	UNITS	124396-1 QT1 02/03/2015
Type of sample		Soil
Date digested	-	03/03/2015
Date analysed	-	03/03/2015
Arsenic	mg/kg	11
Cadmium	mg/kg	<0.4
Chromium	mg/kg	10
Copper	mg/kg	26
Lead	mg/kg	180
Mercury	mg/kg	0.4
Nickel	mg/kg	5
Zinc	mg/kg	110

Client Reference: E22390, Lilyfield

Moisture		
Our Reference:	UNITS	124396-1
Your Reference		QT1
Date Sampled		02/03/2015
Type of sample		Soil
Date prepared	-	3/03/2015
Date analysed	-	4/03/2015
Moisture	%	12

Client Reference: E22390, Lilyfield

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	ent Referenc	Blank	22390, Lilyf Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin	UNITS	PQL	METHOD	ыапк	Sm#	Base II Duplicate II % RPD	Spike Sm#	Recovery
Soil								
Date extracted	-			03/03/2	[NT]	[NT]	LCS-3	03/03/2015
				015				
Date analysed	-			03/03/2 015	[NT]	[NT]	LCS-3	03/03/2015
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	105%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	105%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-3	109%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-3	109%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	101%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-3	104%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	101%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	101	[NT]	[NT]	LCS-3	93%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			03/03/2 015	[NT]	[NT]	LCS-3	03/03/2015
Date analysed	-			03/03/2 015	[NT]	[NT]	LCS-3	03/03/2015
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	115%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	115%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	83%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	115%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	115%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	83%
Surrogate o-Terphenyl	%		Org-003	94	[NT]	[NT]	LCS-3	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date digested	-			03/03/2 015	[NT]	[NT]	LCS-1	03/03/2015
Date analysed	-			03/03/2 015	[NT]	[NT]	LCS-1	03/03/2015
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-1	113%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-1	107%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	108%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	108%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	103%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-1	93%

Client Reference: E22390, Lilyfield										
QUALITYCONTROL Acid Extractable metals	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery		
in soil										
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	104%		
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	105%		

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22390 - 36 Lonsdale St - Lilyfield	SGS Reference	SE137034 R0
Order Number	E22390	Report Number	0000105024
Samples	3	Date Reported	12 Mar 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample container	n received without headspace provider in correct containers ethod	3 Waters 9/3/2015 Yes SGS Yes Ice Bricks Yes	Type of documenta Samples received Sample temperatu Turnaround time re Sufficient sample f Samples clearly la	in good orde re upon rece equested or analysis	er	COC Yes 3.8°C Three Days Yes Yes	
SGS Australia Pty Ltd	Environmental Services	Unit 16 33 Maddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	f +61 2 8594 0499	www.au.sqs.c

ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

www.au.sgs.com

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW1	SE137034.001	LB073717	09 Mar 2015	09 Mar 2015	06 Apr 2015	12 Mar 2015	06 Apr 2015	12 Mar 2015
GWQD1	SE137034.002	LB073717	09 Mar 2015	09 Mar 2015	06 Apr 2015	12 Mar 2015	06 Apr 2015	12 Mar 2015
PAH (Polynuclear Aromatic	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW1	SE137034.001	LB073515	09 Mar 2015	09 Mar 2015	16 Mar 2015	10 Mar 2015	19 Apr 2015	12 Mar 2015
GWQD1	SE137034.002	LB073515	09 Mar 2015	09 Mar 2015	16 Mar 2015	10 Mar 2015	19 Apr 2015	12 Mar 2015
Trace Metals (Dissolved) in	Water by ICPMS						Method: I	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW1	SE137034.001	LB073572	09 Mar 2015	09 Mar 2015	05 Sep 2015	10 Mar 2015	05 Sep 2015	11 Mar 2015
GWQD1	SE137034.002	LB073572	09 Mar 2015	09 Mar 2015	05 Sep 2015	10 Mar 2015	05 Sep 2015	11 Mar 2015
TRH (Total Recoverable Hydrocarbons) in Water Method: ME					ME-(AU)-[ENV]AN403			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW1	SE137034.001	LB073515	09 Mar 2015	09 Mar 2015	16 Mar 2015	10 Mar 2015	19 Apr 2015	12 Mar 2015
GWQD1	SE137034.002	LB073515	09 Mar 2015	09 Mar 2015	16 Mar 2015	10 Mar 2015	19 Apr 2015	12 Mar 2015
VOCs in Water							Method: ME-(AU)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW1	SE137034.001	LB073651	09 Mar 2015	09 Mar 2015	16 Mar 2015	11 Mar 2015	20 Apr 2015	12 Mar 2015
GWQD1	SE137034.002	LB073651	09 Mar 2015	09 Mar 2015	16 Mar 2015	11 Mar 2015	20 Apr 2015	12 Mar 2015
GWQTB1	SE137034.003	LB073651	09 Mar 2015	09 Mar 2015	16 Mar 2015	11 Mar 2015	20 Apr 2015	12 Mar 2015
Volatile Petroleum Hydroca	rbons in Water						Method: ME-(AU)-[ENV]	AN433/AN434/AN410
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW1	SE137034.001	LB073651	09 Mar 2015	09 Mar 2015	16 Mar 2015	11 Mar 2015	20 Apr 2015	12 Mar 2015
GWQD1	SE137034.002	LB073651	09 Mar 2015	09 Mar 2015	16 Mar 2015	11 Mar 2015	20 Apr 2015	12 Mar 2015
GWQTB1	SE137034.003	LB073651	09 Mar 2015	09 Mar 2015	16 Mar 2015	11 Mar 2015	20 Apr 2015	12 Mar 2015

SURROGATES

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbons) in Water	Method: ME-(AU)-[ENV]AN42				
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	MW1	SE137034.001	%	40 - 130%	66
d14-p-terphenyl (Surrogate)	MW1	SE137034.001	%	40 - 130%	92
d5-nitrobenzene (Surrogate)	MW1	SE137034.001	%	40 - 130%	42
VOCs in Water	Method: ME-(AU)-	[ENV]AN433/AN434			

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	MW1	SE137034.001	%	40 - 130%	97
	GWQD1	SE137034.002	%	40 - 130%	92
	GWQTB1	SE137034.003	%	40 - 130%	92
d4-1,2-dichloroethane (Surrogate)	MW1	SE137034.001	%	40 - 130%	106
	GWQD1	SE137034.002	%	40 - 130%	110
	GWQTB1	SE137034.003	%	40 - 130%	107
d8-toluene (Surrogate)	MW1	SE137034.001	%	40 - 130%	99
	GWQD1	SE137034.002	%	40 - 130%	101
	GWQTB1	SE137034.003	%	40 - 130%	97
Dibromofluoromethane (Surrogate)	MW1	SE137034.001	%	40 - 130%	107
	GWQD1	SE137034.002	%	40 - 130%	113
	GWQTB1	SE137034.003	%	40 - 130%	110

Volatile Petroleum Hydrocarbons in Water

Sample Name	Sample Number	Units	Criteria	Recovery %
MW1	SE137034.001	%	40 - 130%	91
GWQD1	SE137034.002	%	40 - 130%	92
MW1	SE137034.001	%	60 - 130%	109
GWQD1	SE137034.002	%	60 - 130%	110
MW1	SE137034.001	%	40 - 130%	100
GWQD1	SE137034.002	%	40 - 130%	101
MW1	SE137034.001	%	40 - 130%	108
GWQD1	SE137034.002	%	40 - 130%	113
	MW1 GWQD1 MW1 GWQD1 MW1 GWQD1 MW1	MW1 SE137034.001 GWQD1 SE137034.002 MW1 SE137034.001 GWQD1 SE137034.002 MW1 SE137034.001 GWQD1 SE137034.001 GWQD1 SE137034.001 GWQD1 SE137034.002 MW1 SE137034.002 MW1 SE137034.001	MW1 SE137034.001 % GWQD1 SE137034.002 % MW1 SE137034.001 % GWQD1 SE137034.002 % GWQD1 SE137034.002 % GWQD1 SE137034.002 % MW1 SE137034.001 % GWQD1 SE137034.001 % GWQD1 SE137034.002 % MW1 SE137034.001 %	MW1 SE137034.001 % 40 - 130% GWQD1 SE137034.002 % 40 - 130% MW1 SE137034.001 % 60 - 130% GWQD1 SE137034.001 % 60 - 130% GWQD1 SE137034.002 % 60 - 130% GWQD1 SE137034.001 % 40 - 130% MW1 SE137034.001 % 40 - 130% GWQD1 SE137034.002 % 40 - 130% MW1 SE137034.001 % 40 - 130%

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN318

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water Method:			Method: ME-	(AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB073717.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Sample Number	Parameter	Units	LOR	Result
.B073515.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	µg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(a&h)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	108
	2-fluorobiphenyl (Surrogate)	%	-	104
	d14-p-terphenyl (Surrogate)	%	-	122

Trace Metals (Dissolved) in Water by ICPMS

· · · · · · · · · · · · · · · · · · ·				
Sample Number	Parameter	Units	LOR	Result
LB073572.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	µg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

TRH (Total Recoverable Hydrocarbons) in Water			Method: ME-(
Sample Number	Parameter	Units	LOR	Result	
LB073515.001	TRH C10-C14	μg/L	50	<50	
	TRH C15-C28	μg/L	200	<200	
	TRH C29-C36	µg/L	200	<200	
	TRH C37-C40	μg/L	200	<200	

			10		
VOCs in Water				Method: ME-	(AU)-[ENV]AN433/AN434
Sample Number		Parameter	Units	LOR	Result
LB073651.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	μg/L	5	<5
		1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene	μg/L	0.5	<0.5

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

mple Number		Parameter	Units	LOR	Result
73651.001	Halogenated Aliphatics	Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	µg/L	0.5	<0.5
		1,1,1-trichloroethane	µg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride	µg/L	0.5	<0.5
		Dibromomethane	µg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5
		1,1,2-trichloroethane	µg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane		0.5	<0.5
			μg/L	0.5	<0.5
		1,2,3-trichloropropane	µg/L		
		trans-1,4-dichloro-2-butene	µg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	µg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	µg/L	0.5	<0.5
		1,2,4-trichlorobenzene	µg/L	0.5	<0.5
		1,2,3-trichlorobenzene	µg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
					<0.5
		o-xylene	μg/L	0.5	
		Styrene (Vinyl benzene)	µg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	µg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	µg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	μg/L	2	<1
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide		2	<0.5
			μg/L		
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	107
		d4-1,2-dichloroethane (Surrogate)	%	-	104
		d8-toluene (Surrogate)	%		98
		Bromofluorobenzene (Surrogate)	%	-	96
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	µg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
				Method: ME-(AU)-[E	
atile Petroleum Hyd					

SE137034 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)

Method:	ME-(AU)-	ENVIAN4	33/AN434/AN410	1

Sample Number		Parameter	Units	LOR	Result
LB073651.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	109
		d4-1,2-dichloroethane (Surrogate)	%	-	107
		d8-toluene (Surrogate)	%	-	100
		Bromofluorobenzene (Surrogate)	%	-	89

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)) in Water					Method: ME	-(AU)-[ENV]AI	N311/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE137063.001	LB073717.015	Mercury	µg/L	0.0001	0	0	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number	-	Parameter	Units	LOR	Result	Expected	Criteria %	W)-[ENV]AN4 Recovery
LB073515.002		Naphthalene	μg/L	0.1	33	40	60 - 140	84
		Acenaphthylene	μg/L	0.1	42	40	60 - 140	106
		Acenaphthene	μg/L	0.1	44	40	60 - 140	110
		Phenanthrene	μg/L	0.1	46	40	60 - 140	116
		Anthracene	µg/L	0.1	41	40	60 - 140	103
		Fluoranthene	µg/L	0.1	41	40	60 - 140	103
		Pyrene	µg/L	0.1	47	40	60 - 140	117
		Benzo(a)pyrene	μg/L	0.1	45	40	60 - 140	114
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.4	0.5	40 - 130	78
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)	µg/L	-	0.5	0.5	40 - 130	104
race Metals (Diss	olved) in Water by	ICPMS					Method: ME-(A	U)-IENVIAN
· · · ·		Parameter	Units	LOR	Result	Expected	Criteria %	·· ·
-								
LDU/35/2.002		Arsenic, As	μg/L	1	20	20	80 - 120	102
		Cadmium, Cd	μg/L	0.1	19	20	80 - 120	97
		Chromium, Cr	μg/L	1	20	20	80 - 120	101
ace Metals (Dissolved) in Wa Sample Number B073572.002 RH (Total Recoverable Hydro Sample Number B073515.002 TRH F Bar DCs in Water Sample Number B073651.002 Halogenat Monocyclic Aromatic		Copper, Cu	μg/L	1	20	20	80 - 120	101
		Lead, Pb	μg/L	1	20	20	80 - 120	100
		Nickel, Ni	μg/L	1	20	20	80 - 120	101
		Zinc, Zn	µg/L	5	21	20	80 - 120	104
RH (Total Recove	arable Hydrocarbo	ns) in Water					Method: ME-(A	U)-[ENV]AN
	-	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
Sample Number								-
_B073515.002		TRH C10-C14	μg/L	50	1100	1200	60 - 140	93
		TRH C15-C28	µg/L	200	1100	1200	60 - 140	95
		TRH C29-C36	µg/L	200	1200	1200	60 - 140	97
	TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1100	1200	60 - 140	94
		TRH >C16-C34 (F3)	µg/L	500	1200	1200	60 - 140	96
		TRH >C34-C40 (F4)	µg/L	500	600	600	60 - 140	100
OCs in Water						Method:	ME-(AU)-[EN	VJAN433/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
	Halogenated	1,1-dichloroethene	µg/L	0.5	44	45.45	60 - 140	98
20070001.002	-	1,2-dichloroethane	μg/L	0.5	44	45.45	60 - 140	97
	Aliphatics			0.5	44	45.45		100
		Trichloroethene (Trichloroethylene, TCE)	µg/L				60 - 140	
Sample Number LB073572.002 RH (Total Recoveral Sample Number LB073515.002 /OCs in Water Sample Number LB073651.002 /olatile Petroleum Hy Sample Number LB073651.002		Chlorobenzene	μg/L	0.5	45	45.45	60 - 140	100
		Benzene	µg/L	0.5	44	45.45	60 - 140	97
	Aromatic	Toluene	μg/L	0.5	45	45.45	60 - 140	100
		Ethylbenzene	μg/L	0.5	46	45.45	60 - 140	100
		m/p-xylene	μg/L	1	91	90.9	60 - 140	100
		o-xylene	μg/L	0.5	45	45.45	60 - 140	100
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.6	5	60 - 140	91
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.7	5	60 - 140	94
		d8-toluene (Surrogate)	µg/L	-	4.6	5	60 - 140	92
		Bromofluorobenzene (Surrogate)	µg/L	-	4.9	5	60 - 140	98
	Trihalomethan	Chloroform (THM)	µg/L	0.5	44	45.45	60 - 140	96
/olatile Petroleum						Method: ME-(A		
	-			1.000				
-		Parameter	Units	LOR	Result	Expected		Recovery
_B073651.002		TRH C6-C10	µg/L	50	950	946.63	60 - 140	100
		TRH C6-C9	μg/L	40	770	818.71	60 - 140	94
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.8	5	60 - 140	97
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.0	5	60 - 140	99
		difficient (our ogate)	F-3-					
		d8-toluene (Surrogate)		-	4.7	5	60 - 140	94
			μg/L	-				94 95

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	ed) in Water					Method: MI	E-(AU)-[EN\	/JAN311/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE136922.002	LB073717.004	Mercury	mg/L	0.0001	0.0073	<0.00005	0.008	91

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

SE137034 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- IOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DETAI	LABORATORY DETAILS					
Contact	Emmanuel Woelders	Manager	Huong Crawford					
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental					
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 9516 0722	Telephone	+61 2 8594 0400					
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499					
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com					
Project	E22390 - 36 Lonsdale St - Lilyfield	SGS Reference	SE137034 R0					
Order Number	E22390	Report Number	0000105023					
Samples	3	Date Reported	12 Mar 2015					
Date Started	11 Mar 2015	Date Received	09 Mar 2015					

COMMENTS _

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

VPH/VOC - The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES .

flores

Huong Crawford Production Manager

Kamrul Ahsan Senior Chemist

/km/m/

Ly Kim Ha Organic Section Head

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 Australia

t +61 2 8594 0400 f +61 2 8

f +61 2 8594 0499

www.au.sgs.com

Member of the SGS Group 12-March-2015

ANALYTICAL REPORT

SE137034 R0

	S	ample Numbe Sample Matri: Sample Date Sample Name	x Water e 09 Mar 2015	SE137034.002 Water 09 Mar 2015 GWQD1	SE137034.003 Water 09 Mar 2015 GWQTB1
Parameter	Units	LOR			
VOCs in Water Method: AN433/AN434 Fumigants					
2,2-dichloropropane	µg/L	0.5	<25↑	-	-
1,2-dichloropropane	µg/L	0.5	<25↑	-	-
cis-1,3-dichloropropene	µg/L	0.5	<25↑	-	-
trans-1,3-dichloropropene	µg/L	0.5	<25↑	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<25↑	-	-
Halogenated Aliphatics				1	
Dichlorodifluoromethane (CFC-12)	µg/L	5	<250↑	-	-
Chloromethane	µg/L	5	<250↑	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	<15↑	-	-
Bromomethane	µg/L	10	<500↑	-	-
Chloroethane	µg/L	5	<250↑	-	-
Trichlorofluoromethane	µg/L	1	<50↑	-	-
lodomethane	µg/L	5	<250↑	-	-
1,1-dichloroethene	µg/L	0.5	<25↑	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<250↑	-	-
Allyl chloride	µg/L	2	<100↑	-	-
trans-1,2-dichloroethene	µg/L	0.5	<25↑	-	-
1,1-dichloroethane	µg/L	0.5	<25↑	-	-
cis-1,2-dichloroethene	µg/L	0.5	<25↑	-	-
Bromochloromethane	µg/L	0.5	<25↑	-	-
1,2-dichloroethane	µg/L	0.5	<25↑	-	-
1,1,1-trichloroethane	µg/L	0.5	<25↑	-	-
1,1-dichloropropene	µg/L	0.5	<25↑	-	-
Carbon tetrachloride	µg/L	0.5	<25↑	-	-
Dibromomethane	µg/L	0.5	<25↑	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<25↑	-	-
1,1,2-trichloroethane	µg/L	0.5	<25↑	-	-
1,3-dichloropropane	µg/L	0.5	<25↑	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<25↑	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<25↑	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<50↑	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<25↑	-	-
1,2,3-trichloropropane	µg/L	0.5	<25↑	-	-
trans-1,4-dichloro-2-butene	µg/L	1	<50↑	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<25↑	-	-
Hexachlorobutadiene	µg/L	0.5	<25↑	-	-
Halogenated Aromatics					
Chlorobenzene	µg/L	0.5	<25↑	-	-
Bromobenzene	µg/L	0.5	<25↑	-	-
2-chlorotoluene	µg/L	0.5	<25↑	-	-
4-chlorotoluene	µg/L	0.5	<25↑	-	-
1,3-dichlorobenzene	µg/L	0.5	<25↑	-	-
1,4-dichlorobenzene	µg/L	0.3	<15↑	-	-
1,2-dichlorobenzene	µg/L	0.5	<25↑	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<25↑	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<25↑	-	-

Monocyclic Aromatic Hydrocarbons

Benzene	µg/L	0.5	<25↑	<25↑	<0.5
Toluene		0.5	<25↑	<25↑	<0.5
Ethylbenzene	µg/L	0.5	<25↑	<25↑	<0.5
m/p-xylene	µg/L	1	<50↑	<50↑	<1
o-xylene	µg/L	0.5	<25↑	<25↑	<0.5
Styrene (Vinyl benzene)	µg/L	0.5	<25↑	-	-
Isopropylbenzene (Cumene)	µg/L	0.5	<25↑	-	-
n-propylbenzene	µg/L	0.5	<25↑	-	-

ANALYTICAL REPORT

	ŝ	Sample Numbe Sample Matrix Sample Date Sample Name	k Water e 09 Mar 2015	SE137034.002 Water 09 Mar 2015 GWQD1	SE137034.003 Water 09 Mar 2015 GWQTB1
Parameter	Units	LOR			
VOCs in Water Method: AN433/AN434 (continued)					
1,3,5-trimethylbenzene	µg/L	0.5	<25↑	-	-
tert-butylbenzene	μg/L	0.5	<25↑	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<25↑	-	-
sec-butylbenzene	µg/L	0.5	<25↑	-	-
p-isopropyltoluene	μg/L	0.5	<25↑	-	-
n-butylbenzene	µg/L	0.5	<25↑	-	-
Nitrogenous Compounds					
Acrylonitrile	µg/L	0.5	<25↑	-	-
2-nitropropane	μg/L	100	<5000↑	-	-
Oxygenated Compounds					
Acetone (2-propanone)	μg/L	10	<500↑	-	-
MtBE (Methyl-tert-butyl ether)	μg/L	2	<100↑	-	-
Vinyl acetate	μg/L	10	<500↑	-	-
MEK (2-butanone)	μg/L	10	<500↑	-	-
MIBK (4-methyl-2-pentanone)	μg/L	5	<250↑	-	-
2-hexanone (MBK)	µg/L	5	<250↑	-	-
Polycyclic VOCs Naphthalene		0.5	<25↑	<25↑	<0.5
марнинанене	µg/L	0.5	~251	~231	-0.5
Sulphonated Compounds					
Carbon disulfide	µg/L	2	<100↑	-	-
Surrogates					
Dibromofluoromethane (Surrogate)	%	-	107	113	110
d4-1,2-dichloroethane (Surrogate)	%	-	106	110	107
d8-toluene (Surrogate)	%	-	99	101	97
Bromofluorobenzene (Surrogate)	%	-	97	92	92
Totals					
Total Xylenes	μg/L	1.5	<75↑	<75↑	<1.5
Total BTEX	µg/L	3	<150↑	<150↑	<3
Total VOC	μg/L	10	-	-	-
Trihalomethanes					
Chloroform (THM)	µg/L	0.5	<25↑	-	-
Bromodichloromethane (THM)	μg/L	0.5	<25↑	-	-
Dibromochloromethane (THM)	µg/L	0.5	<25↑	-	-
Bromoform (THM)	μg/L	0.5	<25↑	-	-
Volatile Petroleum Hydrocarbons in Water Method: AN433/AN	434/AN410)			
TRH C6-C10	µg/L	50	<2500↑	<2500↑	-
TRH C6-C9	µg/L	40	<2000↑	<2000↑	-
Surrogates		,			

Dibromofluoromethane (Surrogate)	%	-	108	113	-
d4-1,2-dichloroethane (Surrogate)	%	-	109	110	-
d8-toluene (Surrogate)	%	-	100	101	-
Bromofluorobenzene (Surrogate)	%	-	91	92	-

ANALYTICAL REPORT

		Sample Number Sample Matrix Sample Date Sample Name	SE137034.001 Water 09 Mar 2015 MW1	SE137034.002 Water 09 Mar 2015 GWQD1	SE137034.003 Water 09 Mar 2015 GWQTB1
Parameter	Units	LOR			
Volatile Petroleum Hydrocarbons in Water Method: AN433	/AN434/AN41() (continued)			
VPH F Bands					
Benzene (F0)	µg/L	0.5	<25↑	<25↑	-
TRH C6-C10 minus BTEX (F1)	µg/L	50	<2500↑	<2500↑	-
TRH (Total Recoverable Hydrocarbons) in Water Method: A	AN403				
TRH C10-C14	µg/L	50	<50	<50	-
TRH C15-C28	µg/L	200	2000	2600	-
TRH C29-C36	µg/L	200	2000	2300	-
TRH C37-C40	µg/L	200	<200	<200	-
TRH C10-C36	µg/L	450	4000	4900	-
TRH C10-C40	µg/L	650	4000	4900	-
TRH F Bands					
TRH >C10-C16 (F2)	µg/L	60	62	<60	-
TRH >C16-C34 (F3)	µg/L	500	3500	4600	-
TRH >C34-C40 (F4)	µg/L	500	570	<500	-
PAH (Polynuclear Aromatic Hydrocarbons) in Water Metho	od: AN420				
Naphthalene	µg/L	0.1	0.3	-	-
2-methylnaphthalene	µg/L	0.1	0.2	-	-
1-methylnaphthalene	µg/L	0.1	0.3	-	-
Acenaphthylene	µg/L	0.1	0.8	-	-
Acenaphthene	µg/L	0.1	0.4	-	-
Fluorene	µg/L	0.1	0.6	-	-
Phenanthrene	µg/L	0.1	5.4	-	-
Anthracene	µg/L	0.1	1.4	-	-
Fluoranthene	µg/L	0.1	8.0	-	-
Pyrene Ponze(c)enthroppe	µg/L	0.1	8.1 4.1	-	-
Benzo(a)anthracene Chrysene	μg/L μg/L	0.1	2.8	-	-
Benzo(b&j)fluoranthene	μg/L	0.1	4.6	_	-
Benzo(k)fluoranthene	μg/L	0.1	2.0	-	-
Benzo(a)pyrene	μg/L	0.1	4.0	-	-
Indeno(1,2,3-cd)pyrene	μg/L	0.1	2.9	-	-
Dibenzo(a&h)anthracene	μg/L	0.1	0.3	-	-
Benzo(ghi)perylene	µg/L	0.1	2.8	-	-
Total PAH (18)	µg/L	1	49	-	-
Surrogates		I	1		
-	0/		42		
d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	%	-	42 66	-	-
d14-p-terphenyl (Surrogate)	%	-	92	-	-
Trace Metals (Dissolved) in Water by ICPMS Method: AN31			<u>.</u>		
Arsenic, As	µg/L	1	17	2	-
Cadmium, Cd	µg/L	0.1	0.1	0.2	-
Chromium, Cr	µg/L	1	37	2	-
Copper, Cu	µg/L	1	1	1	-
Lead, Pb	µg/L	1	4	<1	-
Nickel, Ni	µg/L	1	10	4	-
Zinc, Zn	µg/L	5	110	<5	-

Mercury	mg/L	0.0001	<0.0001	<0.0001	-

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB073717	mg/L	0.0001	<0.0001	0%	104%	91%

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Naphthalene	LB073515	µg/L	0.1	<0.1	84%
2-methylnaphthalene	LB073515	µg/L	0.1	<0.1	NA
1-methylnaphthalene	LB073515	µg/L	0.1	<0.1	NA
Acenaphthylene	LB073515	µg/L	0.1	<0.1	106%
Acenaphthene	LB073515	µg/L	0.1	<0.1	110%
Fluorene	LB073515	µg/L	0.1	<0.1	NA
Phenanthrene	LB073515	µg/L	0.1	<0.1	116%
Anthracene	LB073515	µg/L	0.1	<0.1	103%
Fluoranthene	LB073515	µg/L	0.1	<0.1	103%
Pyrene	LB073515	µg/L	0.1	<0.1	117%
Benzo(a)anthracene	LB073515	µg/L	0.1	<0.1	NA
Chrysene	LB073515	µg/L	0.1	<0.1	NA
Benzo(b&j)fluoranthene	LB073515	µg/L	0.1	<0.1	NA
Benzo(k)fluoranthene	LB073515	µg/L	0.1	<0.1	NA
Benzo(a)pyrene	LB073515	µg/L	0.1	<0.1	114%
Indeno(1,2,3-cd)pyrene	LB073515	µg/L	0.1	<0.1	NA
Dibenzo(a&h)anthracene	LB073515	µg/L	0.1	<0.1	NA
Benzo(ghi)perylene	LB073515	µg/L	0.1	<0.1	NA
Total PAH (18)	LB073515	µg/L	1	<1	

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
d5-nitrobenzene (Surrogate)	LB073515	%	-	108%	78%
2-fluorobiphenyl (Surrogate)	LB073515	%	-	104%	82%
d14-p-terphenyl (Surrogate)	LB073515	%	-	122%	104%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Arsenic, As	LB073572	µg/L	1	<1	102%
Cadmium, Cd	LB073572	µg/L	0.1	<0.1	97%
Chromium, Cr	LB073572	µg/L	1	<1	101%
Copper, Cu	LB073572	µg/L	1	<1	101%
Lead, Pb	LB073572	µg/L	1	<1	100%
Nickel, Ni	LB073572	µg/L	1	<1	101%
Zinc, Zn	LB073572	µg/L	5	<5	104%

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
TRH C10-C14	LB073515	µg/L	50	<50	93%
TRH C15-C28	LB073515	µg/L	200	<200	95%
TRH C29-C36	LB073515	µg/L	200	<200	97%
TRH C37-C40	LB073515	µg/L	200	<200	NA
TRH C10-C36	LB073515	µg/L	450	<450	NA
TRH C10-C40	LB073515	µg/L	650	<650	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH >C10-C16 (F2)	LB073515	µg/L	60	<60	94%
TRH >C16-C34 (F3)	LB073515	µg/L	500	<500	96%
TRH >C34-C40 (F4)	LB073515	µg/L	500	<500	100%

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

Fumigants

Parameter	QC Reference	Units	LOR	МВ	LCS %Recovery
2,2-dichloropropane	LB073651	µg/L	0.5	<0.5	NA
1,2-dichloropropane	LB073651	µg/L	0.5	<0.5	NA
cis-1,3-dichloropropene	LB073651	µg/L	0.5	<0.5	NA
trans-1,3-dichloropropene	LB073651	µg/L	0.5	<0.5	NA
1,2-dibromoethane (EDB)	LB073651	µg/L	0.5	<0.5	NA

Halogenated Aliphatics

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dichlorodifluoromethane (CFC-12)	LB073651	µg/L	5	<5	NA
Chloromethane	LB073651	µg/L	5	<5	NA
Vinyl chloride (Chloroethene)	LB073651	µg/L	0.3	<0.3	NA
Bromomethane	LB073651	µg/L	10	<10	NA
Chloroethane	LB073651	µg/L	5	<5	NA
Trichlorofluoromethane	LB073651	µg/L	1	<1	NA
lodomethane	LB073651	µg/L	5	<5	NA
1,1-dichloroethene	LB073651	µg/L	0.5	<0.5	98%
Dichloromethane (Methylene chloride)	LB073651	µg/L	5	<5	NA
Allyl chloride	LB073651	µg/L	2	<2	NA
trans-1,2-dichloroethene	LB073651	µg/L	0.5	<0.5	NA
1,1-dichloroethane	LB073651	μg/L	0.5	<0.5	NA
cis-1,2-dichloroethene	LB073651	µg/L	0.5	<0.5	NA
Bromochloromethane	LB073651	µg/L	0.5	<0.5	NA
1,2-dichloroethane	LB073651	µg/L	0.5	<0.5	97%
1,1,1-trichloroethane	LB073651	µg/L	0.5	<0.5	NA
1,1-dichloropropene	LB073651	µg/L	0.5	<0.5	NA
Carbon tetrachloride	LB073651	µg/L	0.5	<0.5	NA
Dibromomethane	LB073651	µg/L	0.5	<0.5	NA
Trichloroethene (Trichloroethylene,TCE)	LB073651	µg/L	0.5	<0.5	100%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434 (continued)

				MB	LCS
					%Recovery
1,1,2-trichloroethane	LB073651	µg/L	0.5	<0.5	NA
1,3-dichloropropane	LB073651	μg/L	0.5	<0.5	NA
Tetrachloroethene (Perchloroethylene,PCE)	LB073651	μg/L	0.5	<0.5	NA
1,1,1,2-tetrachloroethane	LB073651	µg/L	0.5	<0.5	NA
cis-1,4-dichloro-2-butene	LB073651	µg/L	1	<1	NA
1,1,2,2-tetrachloroethane	LB073651	µg/L	0.5	<0.5	NA
1,2,3-trichloropropane	LB073651	µg/L	0.5	<0.5	NA
trans-1,4-dichloro-2-butene	LB073651	µg/L	1	<1	NA
1,2-dibromo-3-chloropropane	LB073651	µg/L	0.5	<0.5	NA
Hexachlorobutadiene	LB073651	μg/L	0.5	<0.5	NA

Halogenated Aromatics

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Chlorobenzene	LB073651	µg/L	0.5	<0.5	100%
Bromobenzene	LB073651	µg/L	0.5	<0.5	NA
2-chlorotoluene	LB073651	µg/L	0.5	<0.5	NA
4-chlorotoluene	LB073651	µg/L	0.5	<0.5	NA
1,3-dichlorobenzene	LB073651	µg/L	0.5	<0.5	NA
1,4-dichlorobenzene	LB073651	µg/L	0.3	<0.3	NA
1,2-dichlorobenzene	LB073651	µg/L	0.5	<0.5	NA
1,2,4-trichlorobenzene	LB073651	µg/L	0.5	<0.5	NA
1,2,3-trichlorobenzene	LB073651	µg/L	0.5	<0.5	NA

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene	LB073651	µg/L	0.5	<0.5	97%
Toluene	LB073651	µg/L	0.5	<0.5	100%
Ethylbenzene	LB073651	µg/L	0.5	<0.5	100%
m/p-xylene	LB073651	µg/L	1	<1	100%
o-xylene	LB073651	µg/L	0.5	<0.5	100%
Styrene (Vinyl benzene)	LB073651	µg/L	0.5	<0.5	NA
Isopropylbenzene (Cumene)	LB073651	µg/L	0.5	<0.5	NA
n-propylbenzene	LB073651	µg/L	0.5	<0.5	NA
1,3,5-trimethylbenzene	LB073651	µg/L	0.5	<0.5	NA
tert-butylbenzene	LB073651	µg/L	0.5	<0.5	NA
1,2,4-trimethylbenzene	LB073651	µg/L	0.5	<0.5	NA
sec-butylbenzene	LB073651	µg/L	0.5	<0.5	NA
p-isopropyltoluene	LB073651	µg/L	0.5	<0.5	NA
n-butylbenzene	LB073651	µg/L	0.5	<0.5	NA
Nitrogenous Compounds					
Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Acrylonitrile	LB073651	µg/L	0.5	<0.5	NA

Oxygenated Compounds

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Acetone (2-propanone)	LB073651	µg/L	10	<10	NA
MtBE (Methyl-tert-butyl ether)	LB073651	µg/L	2	<1	NA
Vinyl acetate	LB073651	µg/L	10	<10	NA
MEK (2-butanone)	LB073651	µg/L	10	<10	NA
MIBK (4-methyl-2-pentanone)	LB073651	µg/L	5	<5	NA
2-hexanone (MBK)	LB073651	µg/L	5	<5	NA

Polycyclic VOCs

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

VOCs in Water	Method: ME-	(AU)-IENV	IAN433/AN434 ((continued)

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Naphthalene	LB073651	µg/L	0.5	<0.5	NA

Sulphonated Compounds					
Parameter	QC	Units	LOR	MB	LC
	Reference				%Rec
Carbon disulfide	LB073651	μg/L	2	<2	N

Surrogates					
Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB073651	%	-	107%	91%
d4-1,2-dichloroethane (Surrogate)	LB073651	%	-	104%	94%
d8-toluene (Surrogate)	LB073651	%	-	98%	92%
Bromofluorobenzene (Surrogate)	LB073651	%	-	96%	98%

Totals

Parameter	QC	Units	LOR	MB
	Reference			
Total Xylenes	LB073651	µg/L	1.5	<1.5
Total BTEX	LB073651	µg/L	3	<3

Trihalomethanes

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Chloroform (THM)	LB073651	µg/L	0.5	<0.5	96%
Bromodichloromethane (THM)	LB073651	µg/L	0.5	<0.5	NA
Dibromochloromethane (THM)	LB073651	µg/L	0.5	<0.5	NA
Bromoform (THM)	LB073651	µg/L	0.5	<0.5	NA

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH C6-C10	LB073651	µg/L	50	<50	100%
TRH C6-C9	LB073651	µg/L	40	<40	94%

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB073651	%	-	109%	97%
d4-1,2-dichloroethane (Surrogate)	LB073651	%	-	107%	99%
d8-toluene (Surrogate)	LB073651	%	-	100%	94%
Bromofluorobenzene (Surrogate)	LB073651	%	-	89%	95%

VPH F Bands

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene (F0)	LB073651	µg/L	0.5	<0.5	NA
TRH C6-C10 minus BTEX (F1)	LB073651	µg/L	50	<50	102%

METHOD SUMMARY

- METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN083	Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependant on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

SE137034 R0

FOOTNOTES

- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- This analysis is not covered by the scope of
- accreditation.

Performed by outside laboratory.

- ** Indicative data, theoretical holding time exceeded. ۸
- LOR Limit of Reporting
- Raised or Lowered Limit of Reporting 11
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance The sample was not analysed for this analyte
- Not Validated NVL

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Detailed Site Investigation Report 36 Lonsdale Street, Lilyfield, NSW Report No. E22390 AB

APPENDIX F QA/QC Assessment

F1 QUALITY CONTROL PROGRAM

F1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this DSI report, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed QC samples. Details of the field and laboratory QC samples are provided, with the allowable acceptance ranges for the data presented in Table F-1.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR)
	Laboratory – Laboratory control spike and matrix spike	Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage
	Laboratory – Laboratory duplicate and matrix spike duplicate	difference (RPD [%])
	5 5 1 1 1	Prescribed by the laboratories
Representativeness	Field – Trip blank and Trip Spike (laboratory prepared)	< laboratory limit of reporting (LOR)
	Laboratory – Method blank	Prescribed by the laboratories
Completeness	Completion (%)	-

Table F-1 Sampling Data Quality Indicators

F1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

RPD =
$$\frac{([C_0 - C_R] \times 100)}{(C_0 + C_R)}$$

Co = Concentration obtained from the primary sample.

 C_R = Concentration obtained from the blind replicate or split sample.

F2 FIELD QA/QC DATA EVALUATION

F2.1 SOIL INVESTIGATION

The field quality assurance/quality control (QA/QC) soil samples collected during the DSI works were as follows:

- Blind field duplicate;
- Inter laboratory duplicates;
- Trip blanks; and
- Rinsate blanks.

The results of the QA/QC samples collected during the soil investigation, including the calculated RPD values between primary and duplicate samples, are presented in Table F-2.

F2.1.1 Blind Field Duplicate & Inter Laboratory Duplicate

Two (2) blind field duplicate (BFD) samples, being samples B200 and B201, were collected from the primary samples BH205-1 and BH207-2 respectively. The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TPH, BTEX and selected heavy metals with the RPD values calculated found to be within the Data Acceptance Criteria, with the exception of arsenic for primary sample BH205-1 (66.67%) and lead (100%), mercury (176.47%), nickel (51.43%) and zinc (53.33%) for primary sample 207-2 (Appendix H, Table QC5).

F2.1.2 Inter Laboratory Duplicate

One (1) inter laboratory duplicate (ILD) sample, being sample I200, was collected from the primary sample BH105-1. The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TPH, BTEX and selected heavy metals. The RPD values calculated for the ILD sample were found to be within the Data Acceptance Criteria (Appendix H, Table QC5), with the exception of fraction F3 (94.12%), arsenic (52.63%), cadmium (80%), chromium (57.14%), copper (93.58%), mercury (100%), nickel (88%) and zinc (140.23%) indicating that the RPDs for the samples were found to be higher than the expected range for homogenous soils. These exceedances are likely to be indicative of a non-homogenous fill material.

Soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Results of soil sampling indicate that the samples collected are representative of soils at respective sampling locations.

F2.1.3 Trip Blank

One trip blank (TB) sample, was analysed for BTEX by the primary laboratory. The soil TB sample results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

F2.1.4 Rinsate Blank

One rinsate blank (RB) sample was submitted to the primary laboratory for TRH, BTEX and selected heavy metals analysis. The RB sample results were reported below the laboratory LOR, with the exception of zinc which was reported 36µg/L. Further investigation to this concentration revealed that the laboratory prepared water used for the rinsate sample had been prepared with the incorrect water.

Overall, it was concluded that decontamination procedures performed during the field works had been effective.

F2.2 GROUNDWATER INVESTIGATION

The field quality assurance/quality control (QA/QC) groundwater samples collected during the investigation works were as follows:

- Blind field duplicate;
- Inter laboratory duplicate;
- Trip blank; and
- Rinsate Blank.

The results of the QA/QC samples collected during the groundwater investigation, including the calculated RPD values between primary and duplicate samples, are presented in Table F-3.

F2.2.1 Blind Field Duplicate

One blind field duplicate (BFD) sample, being sample QD1, was collected from the primary sample MW201. The preparation of the BFD sample involved the decanting of the groundwater collected from the respective groundwater monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. It should be noted that the sample was not mixed prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TRH, BTEX and selected heavy metals. The RPD values calculated for the all of the tested analytes were found to be within the Data Acceptance Criteria (DAC).

F2.2.2 Inter-Laboratory Duplicate

One inter-laboratory duplicate (ILD) sample, being sample QT1, was collected from the primary sample MW201. The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TRH, BTEX and selected heavy metals. The RPD values calculated for the ILD sample were found to be within the Data Acceptance Criteria, with the exception of a single exceedance in fraction F1 (194.74%).

F2.2.3 Assessment of Field QA/QC Data

All soil samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the investigation works to be appropriate and the results to be generally acceptable.

F3 LABORATORY QA/QC

F1 QUALITY CONTROL PROGRAM

F1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this DSI report, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed QC samples. Details of the field and laboratory QC samples are provided, with the allowable acceptance ranges for the data presented in Table F-1.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR
	Laboratory – Laboratory control spike and matrix spike	Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage
	Laboratory – Laboratory duplicate and matrix spike duplicate	difference (RPD [%])
	····· , ··· , ··· , ··· , ··· , ··· , ··· ,	Prescribed by the laboratories
Representativeness	Field – Trip blank and Trip Spike (laboratory prepared)	< laboratory limit of reporting (LOR
	Laboratory – Method blank	Prescribed by the laboratories
Completeness	Completion (%)	-

Table F-2 Sampling Data Quality Indicators

F1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{([C_0 - C_R] \times 100)}{(C_0 + C_R)}$$

 C_{O} = Concentration obtained from the primary sample.

 C_R = Concentration obtained from the blind replicate or split sample.

F2 FIELD QA/QC DATA EVALUATION

F2.1 SOIL INVESTIGATION

The field quality assurance/quality control (QA/QC) soil samples collected during the DSI works were as follows:

- Blind field duplicate;
- Inter laboratory duplicate;
- Trip blanks; and
- Rinsate blanks.

The results of the QA/QC samples collected during the soil investigation, including the calculated RPD values between primary and duplicate samples, are presented in Table F-2.

F2.1.1 Blind Field Duplicate

One blind field duplicate (BFD) sample, being sample QD1, was collected from the primary sample BH6_0.5-0.7. The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TPH, BTEX and selected heavy metals with the RPD values calculated found outside the DAC to be the following:

- Arsenic (147.06%)
- Lead (146.99%)
- Nickel (65.45%)
- Zinc (59.26%)
- F3 (76.47%)
- Toluene (66.67%)

This indicates that the RPDs for the samples were found to be higher than the expected range for homogenous soils. These exceedances are likely to be indicative of a non-homogenous fill material.

Soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Results of soil sampling indicate that the samples collected are representative of soils at respective sampling locations (Appendix G, Table QC5).

F2.1.2 Inter Laboratory Duplicate

One inter laboratory duplicate (ILD) sample, being sample QT1, was collected from the primary sample BH6_0.5-0.7. The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TPH, BTEX and selected heavy metals. The BFD was analysed for TPH, BTEX and selected heavy metals with the RPD values calculated found to be within the Data Acceptance Criteria (DAC).

F2.1.3 Trip Blank

One trip blank (TB1) sample was analysed for BTEX by the primary laboratory. The soil TB1 sample results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

F2.1.4 Rinsate Blank

One rinsate blank (RB) sample was submitted to the primary laboratory for TRH, BTEX and selected heavy metals analysis. The RB sample results were reported below the laboratory LOR, with the exception of zinc which was reported 79µg/L. Further investigation to this concentration revealed that the laboratory prepared water used for the rinsate sample had been prepared with the incorrect water.

Overall, it was concluded that decontamination procedures performed during the field works had been effective.

F2.2 GROUNDWATER INVESTIGATION

The field quality assurance/quality control (QA/QC) groundwater samples collected during the investigation works were as follows:

- Blind field duplicate;
- Trip blank; and

The results of the QA/QC samples collected during the groundwater investigation, including the calculated RPD values between primary and duplicate samples, are presented in Table F-2.

F2.2.1 Blind Field Duplicate

One blind field duplicate (BFD) sample, being sample GWQD1, was collected from the primary sample MW1. The preparation of the BFD sample involved the decanting of the groundwater collected from the respective groundwater monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. It should be noted that the sample was not mixed prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TPH, BTEX and selected heavy metals with the RPD values calculated found outside the DAC to be the following:

- Arsenic (157.89%)
- Cadmium (66.67%)
- Chromium (147.49%)
- Nickel (85.71%)

This indicates that the RPDs for the samples were found to be higher than the expected range for homogenous groundwater. These exceedances are likely influenced by matrix interference (high turbidity remained after field filtering) as reported in lab results.

F2.2.2 Assessment of Field QA/QC Data

All soil samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the investigation works to be appropriate and the results to be generally acceptable.

F3 LABORATORY QA/QC

F3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy, respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate.

F3.2 SAMPLE HOLDING TIMES

All sample holding times were generally within standard environmental protocols as tabulated in Appendix G, Tables QC1 and QC2.

F3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for the tested parameters during the assessments of soils are presented in Appendix G, Tables QC3 and QC4.

F3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

F3.5 LABORATORY DUPLICATE SAMPLES

All Laboratory Duplicate Samples for the analysis batches were within acceptable ranges and conformed to the DAC with the exception of PAHs and nickel in soils reported as due to either sample heterogeneity or low concentrations.

F3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC.

F3.7 MATRIX SPIKES

The matrix spikes of the analysis batches were within acceptable ranges and conformed to the DAC.

F3.8 SURROGATE

The recovery of surrogates conformed to the DAC.

E			TI	RH			BT	EX							Heavy	Metals			
Sample identification	Description	F	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	m/p-xylene	o-xylene	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborat	tory Duplicate																		
BH6_0.5-0.7	Gravelly SAND	<25	<25	210	<120	<0.1	0.1	<0.1	<0.3	<0.2	<0.1	9	0.5	7.7	30	110	0.51	3.7	140
QD1	Replicate of BH6_0.5-0.7	<25	<25	470	<120	<0.1	0.2	<0.1	<0.3	<0.2	<0.1	59	<0.3	10	29	720	0.82	7.3	76
	RPD	0.00	0.00	76.47	0.00	0.00	66.67	0.00	0.00	0.00	0.00	147.06	61.54	25.99	3.39	146.99	46.62	65.45	59.26
MW1	Groundwater	<2500	62	3500	570	<25	<25	<25	<75	<50	<25	17	0.1	37	1	4	<0.1	10	110
GWQD1	Replicate of MW1	<2500	<60	4600	<500	<25	<25	<25	<75	<50	<25	2	0.2	2	1	<1	<0.1	4	<5
	RPD	0.00	4.35	27.16	17.07	0.00	0.00	0.00	0.00	0.00	0.00	157.89	66.67	179.49	0.00	133.33	0.00	85.71	186.67
Inter-laborat	tory Duplicate																		
BH6_0.5-0.7	Gravelly SAND	<25	<25	210	<120	<0.1	0.1	<0.1	<0.3	<0.2	<0.1	9	0.5	7.7	30	110	0.51	3.7	140
QT1	Replicate of BH6_0.5-0.7	<25	<50	130	<100	<0.2	<0.5	<1	<3	<2	<1	11.0	<0.4	10	26	180	0.4	5	110
	RPD	0.00	NA	47.06	NA	NA	228.57	NA	NA	NA	NA	20.00	28.57	25.99	14.29	48.28	24.18	29.89	24.00
Trip Blanks			-							-		-		-			-		
TB1	Trip Blank - Soils	-	-	-	-	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	-	-	-	-	-	-	-	-
GWQTB1	Trip Blank - Groundwater	-	-	-	-	<0.5	<0.5	<0.5	<1.5			-	-	-	-	-	-	-	-
Rinsate Blar		1		1	1		-	1								1		-	
RB1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	<1	<1	<1	<0.1	<1	79

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in $\mu\text{g/L}.$

 * - to obtain F1 subtract the sum of BTEX concentrations from the C₆-C₁₀ fraction

** - to obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction

Detailed Site Investigation Report 36 Lonsdale Street, Lilyfield, NSW Report No. E22390 AB

APPENDIX G Laboratory QA/QC Policies and DQOs

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil							
Parameter	Container	Preservation	Maximum Holding Time				
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Nil Teflon Lid		6 months				
Mercury	Glass with Teflon Lid	Nil	28 days				
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days				
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days				
Phenols	Glass with Teflon Lid	4°C ¹	14 days				
OCPs, OPPs and total PCBs	Glass with 4°C ¹		14 days				
Asbestos	Sealed Plastic Bag	Nil	N/A				

Table QC2 - Containers, Preservation Requirements and Holding Times - Water							
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time				
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months				
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months				
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days				
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days				

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil									
Parameter	Unit	PQL	Method Reference						
Metals in Soil									
Arsenic - As ¹	mg / kg	1	USEPA 200.7						
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7						
Chromium - Cr ¹	mg / kg	1	USEPA 200.7						
Copper - Cu ¹	mg / kg	1	USEPA 200.7						
Lead - Pb ¹	mg / kg	1	USEPA 200.7						
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A						
Nickel - Ni ¹	mg / kg	1	USEPA 200.7						
Zinc - Zn ¹	mg / kg	1	USEPA 200.7						
	al Petroleum Hyd	rocarbons (TP	Hs) in Soil						
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260						
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000						
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000						
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000						
	BTE	X in Soil	-						
Benzene	mg / kg	1	USEPA 8260						
Toluene	mg / kg	1	USEPA 8260						
Ethylbenzene	mg / kg	1	USEPA 8260						
m & p Xylene	mg / kg	2	USEPA 8260						
o- Xylene	mg / kg	1	USEPA 8260						
	Other Organic C	ontaminants i	n Soil						
PAHs	mg / kg	0.05-0.2	USEPA 8270						
CHCs	mg / kg	1	USEPA 8260						
VOCs	mg / kg	1	USEPA 8260						
SVOCs	mg / kg	1	USEPA 8260						
OCPs	mg / kg	0.1	USEPA 8140, 8080						
OPPs	mg / kg	0.1	USEPA 8140, 8080						
PCBs	mg / kg	0.1	USEPA 8080						
Phenolics	Phenolics mg / kg 5 APHA 5530								
	As	bestos							
Asbestos	mg / kg	Presence / Absence	AS4964-2004						

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

			Method	Parameter	Unit	PQL	Method	
	Heavy	Metals		Chlorinated Hydrocarbons (CHCs)				
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B	
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B	
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B	
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B	
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B	
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B	
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B	
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D	
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B	
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npounds	s (VOCs)	
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B	
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B	
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B	
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B	
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B	
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B	
Total Petrol		drocarb			olic Con			
C_6 - C_9 fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041	
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041	
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041	
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041	
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041	
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041	
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041	
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041	
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous l	Paramet	ers	
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN	
Polyciclic Aro	matic H	lydrocar	bons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C	
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510	
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+	
OrganoCh	lorine F	Pesticide	es (OCPs)	OrganoPhos	phate Pe	esticides	s (OPPs)	
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141	
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141	
DDT Dialdrin	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141	
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081	Dimethoate Fenitrothion	μg/L	0.01	USEPA 8141	
Endosulian	μg/L μg/L	0.001	USEPA 8081 USEPA 8081	Malathion	μg/L μg/L	0.01	USEPA 8141 USEPA 8141	
Heptachlor	μg/L μg/L	0.001	USEPA 8081	Parathion	μg/∟ μg/L	0.01	USEPA 8141	
Lindane	μg/L μg/L	0.001	USEPA 8081	Temephos	μg/∟ μg/L	0.01	USEPA 8141	
Toxaphene	μg/L	0.001	USEPA 8081	Polychlorin				
	~°9' -			Individual PCBs	μg/L	0.01	USEPA 8081	

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
_aboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample resul > 10 LOR
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)
Matrix Spikes .aboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

	-
Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of ±10%

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".			
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.			
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.			
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.			
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests. All recoveries are to be reported to 3 significant figures.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: Inorganics (water samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike^{-#} Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%.* for sample results greater than 10 times LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS [#]/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value. 			
	ine expected value.			

	Organics		
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR. 		
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria. 		
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all organic tests. All recoveries are to be reported to 3 significant figures.	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply. 		
	 Retention times are to vary by no more than 0.2 min. 		
	 At least two of three routine level soil sample Surrogate Spike (SS recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment. 		
	 Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment. 		
	 Lab Duplicates (D) must have a RPD <30%*. 		
	 Sample Matrix Spike Duplicate (MS^{J⁴}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). 		

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ⁴ Matrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS