MIXED USE DEVELOPMENT

TRAFFIC \& PARKING IMPACT ASSESSMENT

75 Mary Street, St Peters

Final Issue: A - 21st September 2015

Address: Shop 7, 720 Old Princes Highway Sutherland NSW 2232

 Postal: P.O Box 66 Sutherland NSW 1499Telephone: +61 283552440
Fax: +61 295451227
Web: www.mclarentraffic.com.au
Email: admin@mclarentraffic.com.au
Division of RAMTRANS Australia ABN: 45067491678
Transport Planning, Traffic Impact Assessments, Road Safety Audits, Expert Witness

MIXED USE DEVELOPMENT
75 MARY STREET, ST PETERS
NSW 2044

Prepared for: Caliph
Job reference: 2014/313
Final issue: A- 21st September 2015

Status	Issue	Prepared By	Checked By	Date
Draft	E	HC	CM	$27^{\text {th }}$ August 2015
Final	A	HC	CM	$21^{\text {st }}$ September 2015

Please be aware that all information and material contained in this report is the property of McLaren Traffic Engineering. The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or if to be implied as being made to any third party. Any third party wishing to distribute this document in whole or in part for personal or commercial use must obtain written confirmation from McLaren Traffic Engineering prior to doing so. Failure to obtain written permission may constitute an infringement of copyright and may be liable for legal action.

TABLE OF CONTENTS
1 INTRODUCTION 1
1.1 State Environmental Planning Policy (Infrastructure) 2007 1
2 EXISTING CONDITIONS 2
2.1 Site Description 2
2.2 Road Hierarchy 2
2.3 Existing Traffic Management 3
2.4 Existing Traffic Flows 3
2.5 Public Transport 6
2.6 Future Infrastructure \& Development 7
3 DISCUSSION OF EXISTING DATA AND ANALYSIS 8
4 SCALE OF DEVELOPMENT 10
4.1 Proposed Development 10
4.2 Vehicle Access 10
5 PARKING ASSESSMENT 11
5.1 Council Parking Requirement 11
5.2 Disabled Parking 12
5.3 Servicing \& Loading 13
5.4 Bicycle \& Motorcycle Requirements 14
5.5 GoGet Car Share 14
5.6 Car Park Design \& Compliance 15
6 TRAFFIC ASSESSMENT 16
6.1 Existing Traffic Generation \& Impact 16
6.2 Future Traffic Generation 16
6.3 Traffic Assignment 17
6.4 SIDRA ANALYSIS \& IMPACT 18
6.5 Residential Amenity 20
6.6 RECOMMENDATIONS 21
7 CONCLUSION 22

1 INTRODUCTION

M${ }^{C}$ Laren Traffic Engineering was commissioned by Tonkin Zulaikha Greer Architects on behalf of Caliph to prepare a traffic and parking impact assessment for the Planning Proposal for a residential development at 75 Mary Street, St Peters as part of a Master Plan Development identified as Precinct 75.

The development has proposed a total of 180 residential units including 38 adaptable units, $5,662 \mathrm{~m}^{2}$ of commercial office space and $9,676 \mathrm{~m}^{2}$ of light industrial being retained.

As shown in Annexure A, three basement levels are also proposed providing a total of 340 car parking spaces.

1.1 State Environmental Planning Policy (Infrastructure) 2007

The proposed development does qualify as a development with relevant size or capacity under Clause 104 of the SEPP (Infrastructure) 2007. Accordingly, formal referral to the Roads and Maritime Services (RMS) is necessary and both Marrickville Council and regional planning officers can determine this proposal accordingly.

2 EXISTING CONDITIONS

2.1 Site Description

The subject site is located at 75 Mary Street, St Peters, as shown in Figures 1 \& 2 and is currently occupied by a number of buildings with varying usages, much of which will be demolished during construction. The site is situated within a low-medium residential area with industrial and commercial business opposite Unwins Bridge Road (Marrickville Council Depot).

The site is occupied by a number of existing commercial / warehouse operations. The total gross leasable floor area is $12,854 \mathrm{~m}^{2}$ with an on-site parking provision of some 80 car parking spaces.

2.2 Road Hierarchy

Mary Street has the following characteristics within close proximity to the site:

- Unclassified LOCAL Road
- Variable $6-11 \mathrm{~m}$ wide carriageway
- Signposted $50 \mathrm{~km} / \mathrm{h}$ speed limit
- ONE-WAY traffic flow east-to-west
- Parking generally permitted along both sides of the road at wider areas, and only on the northern side at narrower segments

Edith Street has the following characteristics within close proximity to the site:

- Unclassified LOCAL Road
- Approximately $7-8 \mathrm{~m}$ in variable width facilitating two-way traffic flow with kerbside parking on both sides
- Signposted $50 \mathrm{~km} / \mathrm{h}$ speed limit
- Generally unrestricted kerbside parking on both sides of the road

Unwins Bridge Road has the following characteristics within close proximity to the site:

- Classified REGIONAL Road (Road No. 2099)
- Approximately $12-14 \mathrm{~m}$ wide two-way carriageway
- Signposted $60 \mathrm{~km} / \mathrm{h}$ speed limit
- Parking permitted on either side of the road subject to "No Parking" restrictions signs which are generally 7-9am northbound and 4-6pm southbound.

Roberts Lane has the following characteristics within close proximity to the site:

- Unclassified LOCAL Road
- Approximately 7 m in width at Edith Street whilst widening at the Mary Street end to accommodate angled 90 degree parking.
- $50 \mathrm{~km} / \mathrm{h}$ carriageway
- Two-way traffic permitted

2.3 Existing Traffic Management

The following existing traffic management and calming devices are found in close proximity to the site:

- Mary Street is one-way east-to-west
- Three (3) localised speed humps in Mary Street from Unwins Bridge Road to the Princes Highway
- Two (3) localised speed humps in Edith Street from Unwins Bridge Road to the Princes Highway
- Edith Street is signposted as a Local Traffic Area with speed zoning of $50 \mathrm{~km} / \mathrm{h}$
- Edith Street is signposted at Unwins Bridge Road restricting vehicles to 3 tonnes or less
- Mary Street is signposted at the Princes Highway restricting vehicles to 3 tonnes or less and no buses.
- Pedestrian phases are provided across the Princess Highway as well as at Unwins Bridge Road intersection with Mary Street
- Princes Highway employs contra flow, whereby the lane configuration during the morning and evening peak reflects the tidal demand (i.e. northbound demand during the morning for capacity and southbound demand for capacity during the evening)
- A pedestrian refuge is provided on Unwins Bridge Road near the Edith Street intersection

2.4 Existing Traffic Flows

At Council's request, peak hour intersection surveys were conducted in 2015 on Thursday 12th February 2015during peak commuter periods from 7:00-10:00am and 3:00-6:00pm at the following junctions:

- Princes Highway / Canal Road / Mary Street
- Princes Highway / Edith Street
- Mary Street / Roberts Lane
- Edith Street / Roberts Road
- Unwins Bridge Road / Mary Street
- Unwins Bridge Road / Edith Street

Traffic conditions for the above intersections was observed in 2014 however surveys have been undertaken in 2015 due to recent completed works undertaken by Council at the intersection of Unwins Bridge Rd / Mary St. Recent works at this intersection undertaken by Council is a direct response in attempting to constrain traffic in Mary Street by reducing the Mary Street approach from 3 lanes to 2 lanes, such that it becomes an undesirable route for motorists.

The intersection surveys sheets are provided in Annexure B for reference. SIDRA INTERSECTION 5.1 has been used to model the respective intersections and assess their performance with respect to Degree of Saturation, Average Delay and Level of Service. Table 1 summarises the intersection performances, with the SIDRA output summaries provided in Annexure C.

TABLE 1: EXISTING INTERSECTION PERFORMANCES
(SIDRA INTERSECTION 5.1)

Intersection	Peak Hour	Degree of Saturation ${ }^{(1)}$	Average Delay ${ }^{(2)}$ (sec/vehicle)	Level of Service ${ }^{(3)}$	Control Type	Worst Movement
Year 2015 Baseline						
Princes Hwy / Canal Rd	AM	0.936	32.6	C	Signals	N/A
	PM	1.029	>70	F		N/A
Princes Hwy / Edith St	AM	0.509	$\begin{gathered} \hline 7.1 \\ (8.3) \end{gathered}$	A (A)	Priority	Left turn from Edith St
	PM	0.266	$\begin{gathered} \hline 7.1 \\ (8.2) \end{gathered}$	A (A)		Left turn from Princes Hwy (S)
Mary St / Roberts Ln	AM	0.270	$\begin{gathered} 0.6 \\ (16.4) \end{gathered}$	A (B)	Priority	Right turn from Roberts Ln
	PM	0.376	$\begin{gathered} 0.9 \\ (25.4) \end{gathered}$	A (B)		Right turn from Roberts Ln
Edith Street / Roberts St	AM	0.059	$\begin{gathered} 5.6 \\ (6.8) \end{gathered}$	A (A)	Priority	Right turn from Edith St (W)
	PM	0.035	$\begin{gathered} \hline 6.3 \\ (6.9) \end{gathered}$	A (A)		Right turn into Edith St (W)
Unwins Bridge Rd / Mary St	AM	0.785	14.0	A	Signals	N/A
	PM	0.718	19.4	B		N/A
Unwins Bridge Rd / Edith Street	AM	0.334	$\begin{gathered} \hline 2.0 \\ (19.8) \end{gathered}$	A (B)	Priority	Right turn from Edith St
	PM	0.466	$\begin{gathered} 0.4 \\ (20.5) \end{gathered}$	A (B)		Right turn from Edith St

NOTES:
(1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
(2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
(3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.

Based on the SIDRA intersection performances, the critical link identified in the surrounding road network is the intersection of Unwins Bridge Road / Mary Street and Princes Highway / Canal Road. Whilst the SIDRA models report queuing in both Mary Street and Unwins Bridge Road, observations during these times show that any queue generally clears during the cycle, however based on the future access arrangement, it is anticipated that majority of outbound traffic flow will pass through this intersection.

The intersection of Princes Highway / Canal Road will not carry the same level of additional traffic volumes as a result of the development.

Based on the intersection surveys conducted, the following mid-block traffic flows have been adopted for the assessment.

TABLE 2: ADOPTED MID-BLOCK TRAFFIC FLOWS

Location	AM	PM
Mary Street (south of Roberts)	466	845
Mary Street (north of Roberts)	518	746
Unwins Bridge Rd (west of Mary)	1490	1672
Unwins Bridge Rd (east of Edith	1615	1722
Edith Street (south of Roberts)	106	34
Edith Street (north of Roberts)	101	56
Roberts Street	58	74

Based on the mid-block traffic flows, Mary Street is operating at traffic levels above the RMS residential amenity thresholds for a collector road, whilst Edith Street is below the residential amenity thresholds for a local street along with Roberts Street operating below residential amenity thresholds for a local street / access way.

Additionally, reference is made to the RMS Guide Table 4.3 which stipulates typical mid-block capacities for urban roads. The Guide outlines the mid-block capacity for a single lane is 900 vehicles per hour if a designated parking lane is provided, reducing to 600 vehicles per hour where occasional parked cars occur.

Based on this criteria, it is evident that Mary Street is operating at or near its mid-block capacity, particularly with due consideration to residential amenity.

2.5 Public Transport

There are multiple bus stops along Princes Highway within 400 m walking distance. These bus routes provide links between major suburbs. Bus route 422 provides services between Kogarah and Sydney CBD via Temp and St Peters, whilst bus route 348 provides services between Wolli Creek and Bondi Junction via Alexandria, UNSW and Randwick Junction.

Site Location
The subject site is also serviced by rail with St Peters Railway Station located approximately 1.0 km walking distance from the site to the east and Sydenham Railway Station located approximately 900 m walking distance from the site to the west. St Peters Station services the T3 Bankstown Line whilst Sydenham Station also services the T3 Bankstown Line as well as the T2 Airport Line, T4 Eastern Suburbs \& Illawarra Line, South Coast Line and Southern Highlands Line. Train frequencies during the morning and evening peak period are high will more than one service every 10 minutes.

2.6 Future Infrastructure \& Development

According to Marrickville Council's DA notifications, there are no significant development proposals near the subject site that will impact on future traffic and parking conditions.

The WestConnex proposes to introduce an interchange under Stage 2 development. The planning and traffic modelling details of the interchange at the time of writing this report are still in progress, with only preliminary and feasibility identified, as shown in Annexure D. The most recent public notification identifies the following:

The St Peters Interchange will be located in the industrial area bounded by Canal Road, Burrows Road, Campbell Road and Princes Highway.... The St Peters Interchange will allow traffic to move between the M5 and M4 corridors, as well as providing access to Sydney Airport and Port Botany precincts and the local road network.

It is proposed to widen Campbell Street and Euston Road and construct a new bridge over the Alexandria Canal to Bourke Road. These roads are subject to longstanding road widening orders, where a significant amount of the land is already owned by the RMS.

3 DISCUSSION OF EXISTING DATA AND ANALYSIS

As part of this traffic impact assessment, preliminary advice was provided to both the Applicant's design team and Marrickville Council in order to ameliorate any forecast traffic impacts associated with the scale of development.

Intersection surveys were conducted at the junction of Unwins Bridge Road \& Mary Street as part of the preliminary advice. The surveys were conducted in October 2014.

It has come to MCLaren Traffic Engineering's attention that the surveys undertaken in October 2014 are not reliable and both human and equipment error may have been a factor in abnormally high traffic volumes recorded. A review of all available intersection data highlights the abnormality in the intersection volumes.

TABLE 3: PEAK HOUR TURN MOVEMENTS - AM

Approach	Movement	August 2010 Survey	November 2011 Survey	October 2014 Survey	February 2015 Survey	March 2015 Survey
From Brwins Road (south approach) From Unwins Bridge Road (north approach)	Through	N/A	983	1576	855	1256
From Mary Street	Left onto Unwins	Right onto Unwins	N/A	143	139	141
N/A	346	375	325	273		
Total	N/A	$\mathbf{1 9 7 5}$	$\mathbf{2 7 4 3}$	$\mathbf{1 8 1 5}$	$\mathbf{2 2 8 1}$	

TABLE 4: PEAK HOUR TURN MOVEMENTS - PM

Approach	Movement	$\begin{aligned} & \text { August } \\ & 2010 \\ & \text { Survey } \end{aligned}$	$\begin{gathered} \text { November } \\ 2011 \\ \text { Survey } \\ \hline \end{gathered}$	$\begin{aligned} & \text { October } \\ & 2014 \\ & \text { Survey } \end{aligned}$	$\begin{gathered} \text { February } \\ 2015 \\ \text { Survey } \\ \hline \end{gathered}$	$\begin{gathered} \text { March } \\ 2015 \end{gathered}$ Survey
From Unwins Bridge Road (south approach)	Through	439	N/A	1282	482	774
From Unwins Bridge Road (north approach)	Through	983	N/A	1932	814	1276
From	Left onto Unwins	199	N/A	170	376	311
Street	Right onto Unwins	376	N/A	487	469	538
Total		1997	N/A	3871	2141	2899

It is evident that the intersection surveys undertaken in October 2014 are inconsistent with more recent data. As such, it is concluded that the development scale and access arrangements can be modified based on previous preliminary advice and discussion whereby vehicular access from Roberts Street is no longer necessary in order to alleviate any pressures on Mary Street.

Additionally, the staging of development may not be required given the intersection of Mary Street \& Unwins Bridge Road has capacity for additional vehicle movements beyond what was previously considered under the October 2014 survey and preliminary advice.

Additionally, Marrickville Council has provided information with regards to its submission to the Roads \& Maritime Services (RMS) to modify traffic conditions at both the intersection of Unwins Bridge Road / Mary Street and Princes Highway / Canal Road. Based on the modified approach to Unwins Bridge Road, the LoS remained unchanged with LoS A/B reported. This is consistent with the intersection performance outlined in Table 1.

The modification to these intersections involved reducing the Mary Street approach to Unwins Bridge Road from three (3) lanes, to two (2) lanes, which was accepted based on the supporting analysis. It is understood the proposed modification to the Princes Highway intersection was not accepted by the RMS, which involved adjustment to green time allocation as well as modify lane arrangements in order to reduce the Mary Street exit from two (2) lanes to one (1) lane.

4 SCALE OF DEVELOPMENT

4.1 Proposed Development

The proposed mixed use development (as depicted Annexure A) has the following scale across buildings A, B, C and Building 8:

- Two (2) x studio apartments
- Sixty-one (61) x 1 bedroom apartments
- One hundred (100) x 2 bedroom apartments
- Seventeen (17) x 3 bedroom apartments
- A total of 340 car parking spaces across two basement levels
- Existing 9,676m² industrial/commercial GFA to be retained
- Additional $5,662 \mathrm{~m}^{2}$ of new commercial office GFA

4.2 Vehicle Access

The site fronts Mary Street, Edith Street and Roberts Street, and access to the basement level car parks are from Mary Street and Edith Street respectively.

Mary Street access will be exit only for cars, and entry / exit for service vehicles. The driveway width is proposed to be 6.7 m in width. It is anticipated, as a result of the development and recommendations within this report, that parking restrictions will be required at the driveway location, to provide sufficient view lines and manoeuvrability to / from the driveway.

Edith Street access will be entry only for cars and facilitate left and right turn entry. The driveway width proposed is approximately 5.1 m in width, sufficient for single lane entry. It is anticipated, as a result of the development and recommendations within this report, that parking restrictions will be required at the driveway location, to provide sufficient manoeuvrability to the driveway.

There will be no vehicular access from Roberts Street, although there is planned to be a pedestrian connection.

5 PARKING ASSESSMENT

5.1 Council Parking Requirement

Reference is made to Marrickville Development Control Plan 2011 Part 2.10 -Parking which prescribes the following parking rates applicable to the proposed development within Parking Area 3 :

Parking Area 3
Non-adaptable units:
0.6 per studio
0.8 per 1 bedroom unit
1.2 per 2 bedroom unit
1.2 per 3+ bedroom unit
0.1 per unit for visitors

Adaptable Residential units:
1 mobility space per studio, 1 bedroom, 2 bedroom or 3+ bedroom unit
0.25 visitor mobility spaces per resident mobility space

Office
1 per 60m² GFA for staff \& visitors

Light industry
1 per $200 m^{2}$ GFA for staff \& customers

The resultant car parking requirements based upon the current Council DCP for residential development is presented in Table 3 below. The car parking rate for the existing light industrial uses has been applied to reflect a robust assessment, as it reflects a higher car parking rate and therefore a worst case scenario.

TABLE 5: CAR PARKING REQUIREMENTS

Allocation	Type	Scale	Rate	Spaces Required
Residents (nonadaptable)	Studio	2	0.6 spaces per unit	1.2
	1 bedroom	61	0.8 spaces per unit	48.8
	2 bedroom	100	1.2 spaces per unit	120
	$\begin{gathered} 3 \\ \text { bedroom } \\ \hline \end{gathered}$	17	1.2 spaces per unit	20.4
Subtotal		180		$\begin{aligned} & 190.4 \\ & (190) \\ & \hline \end{aligned}$
Resident (adaptable)	-	38	1 mobility space per unit	Of which 38 are disabled
Visitor	-	180	0.1 spaces per unit	18
Sub Total				18
Existing Light Industrial	-	9,676m²	1 space per $200 \mathrm{~m}^{2}$	48.4
Additional Commercial Office	-	5,662m²	1 space per $60 \mathrm{~m}^{2}$	94.3
Sub Total				$\begin{aligned} & 142.7 \\ & (143) \\ & \hline \end{aligned}$
Total				351 of which 38 are for disabled residents

As summarised in Table 5, the proposed development requires a total of 351 car parking spaces, including 190 spaces for residents, 18 visitor, and 112 spaces for the existing light industrial and proposed commercial office. The proposed basement car parking area provides 340 parking spaces, representing a shortfall of 11 spaces above Council's requirement.

Whilst there is a shortfall of 11 car parking spaces, it is anticipated that the provision of GoGet car share vehicles will negate this shortfall.

5.2 Disabled Parking

Disabled parking for residents is specified in Section 4.1 and Table 5. The proposed plans provide sufficient car parking for disabled users.

Disabled parking for non-residential uses, as per Marrickville Council DCP 2011 Part 2.5 requires 1 space for every 10 car parking spaces to be provided. This disabled car parking rate is excessive when compared to BCA requirements, which is generally $1-2 \%$ of the total provision.

It is therefore considered that 3-6 disabled car parking spaces for non-residential uses is sufficient for their likely demand.

5.3 Servicing \& Loading

Marrickville Council 2011 DCP Part 2.10 prescribes the following service and delivery vehicle requirements:

Residential Flat Buildings

One service vehicle space per 50 flats (above first 50) or home units up to 200, plus
One space per 100 thereafter, plus
One space per 1,000m² of public area set aside for bar, tavern, lounge and restaurant (50% of spaces adequate for trucks)

Industrial
One truck per $800 m^{2}$ GFA up to $8,000 m^{2}$ GFA, plus
One truck per 1,000m² thereafter (all spaces adequate for trucks)

Commercial Premises
One truck space per 4,000m² GFA up to 20,000m². Plus
One truck space per $8,000 m^{2}$ thereafter (50% of spaces adequate for trucks
TABLE 6: SERVICE/DELIVERY PARKING REQUIREMENTS

Land Use	Scale	Parking Rate	Parking Required
Residential	180 units	1 per 50	4
No Change	$9,676 \mathrm{~m}^{2}$	1 per $800 \mathrm{~m}^{2}$ up to $8,000 \mathrm{~m}^{2}+$ 1 per 1,000 ${ }^{2}$	12
Commercial	$5,662 \mathrm{~m}^{2}$	1 space for 4,000 $-20,000 \mathrm{~m}^{2}$ GFA	1
Total	-	-	$\mathbf{1 7}$

The loading and servicing requirements, as per Councils DCP, are summarised in Table 6. It is evident, based on the number of loading bays required, that Council's DCP does not adequately consider large mixed use developments, where loading areas and loading bays can be shared and managed under an operational site loading management plan.

Generally, one loading bay for the residential component, to accommodate a 12.5 m Heavy Rigid Vehicle (HRV) would be desirable. For the non-residential uses, excluding industry, two (2) loading bays able to accommodate a HRV and two (2) loading bays able to accommodate vehicles equivalent to an SRV is desirable.

Waste collection for the site will be detailed under a waste management plan, in order to avoid multiple mixed use components conducting waste collection at the same time, and thus significantly reducing the amount of loading bays required for the entire development. Details of waste collection and requirements are provided in the supporting waste management plan.

5.4 Bicycle \& Motorcycle Requirements

Marrickville Council 2011 DCP Part 2.10 specifies the following bicycle parking requirements:

Residential Flat Building
1 per 2 units for residents, plus
1 per 10 units for visitors

Office

1 per 200m² GFA for staff, plus
1 per $500 m^{2}$ GFA for customers if premises over $1,000 \mathrm{~m}^{2}$

Industry

1 per $150 m^{2}$ GFA for staff
TABLE 7: BICYCLE PARKING REQUIREMENTS

Land Use	Scale	Parking Rate	Parking Required
Residential	180 units	1 per 2 units +1 per 10	108
Commercial office	$5,662 \mathrm{~m}^{2}$	1 per 200 ${ }^{2}+1$ per $500 \mathrm{~m}^{2}$	40
Retained Light Industrial	$9,676 \mathrm{~m}^{2}$	1 per 150m²	65
Total	-	-	$\mathbf{2 1 3}$

As summarised in Table 7 above, the proposed development requires a total of 213 bicycle spaces.

Council's DCP specifies motorcycle parking shall be provided at a rate of 5% of the car parking required. Therefore, sixteen (16) motorcycle spaces are required.

5.5 GoGet Car Share

Car share facilities are on the rise in popularity with numerous locations for such car share schemes such as GoGet, Flexicar and Charter Drive which are found within close proximity to the site. The popularity of car share is largely due to the ease of availability as well as the low expense to rent the vehicle. The figure below shows the available GoGet car locations surrounding 75 Mary Street, St Peters. Currently there are 2 GoGet cars within 200m of the site.

Site 2

Members of car share schemes typically have to hire / use a car share vehicle for a minimum of 1 hour and have typically already paid joining fees in order to rent the vehicle. Marrickville Council's DCP identifies car share vehicles are effective in all areas within the Marrickville LGA, especially Parking Areas 1 and 2. Given the increase in residential density expected with the development, as well as other land uses it is beneficial to provide additional GoGet vehicles in close proximity to the site, or on-site for the area.

It is understood that Council have suggested the provision of 7 car share vehicles onsite for the use of the surrounding public and future residents. This spaces will be located within the first parking level and accessible from Mary Street. It is anticipated that the usage of these vehicles utilising Mary Street for entry and exit can be easily managed and detailed further at D.A stage.

5.6 Car Park Design \& Compliance

As this is a planning proposal, compliance of the car park can be undertaken at DA stage when further details regarding column locations etc. are available. However the proposed plans shown in Annexure A generally comply with relevant clauses of AS2890.1-2004, AS2890.2:2002 \& AS2890.6:2009 (or better) subject to a detailed compliance review. It should be noted that it is usual that a construction certificate is required prior to construction due to possible changes during or after D.A approval.

6 TRAFFIC ASSESSMENT

6.1 Existing Traffic Generation \& Impact

Reference is made to the RMS Guide to Traffic Generating Development which prescribes trip generation rates for applicable land uses.

The site is currently occupied with $12,854 \mathrm{~m}^{2}$ floor area consisting of commercial / industrial and warehouse uses. As per the RMS Guide, the following traffic generation rates are applicable:

Factories

Evening peak hour vehicle trips $=1$ per $100 m^{2}$ GFA

Warehouses
Morning peak hour vehicle trips $=0.5$ per $100 m^{2}$ GFA
Business Parks
1.1 vehicles per hour two-way per $100 m^{2}$ of GLA

Given the various commercial / industrial / warehouse uses that exist on site, a traffic generation of 1 trip per $100 \mathrm{~m}^{2}$ of floor area is applicable. Therefore, based on $12,854 \mathrm{~m}^{2}$ of floor area, the site has existing generation of up to 139 vehicle trips.

For the purpose of this analysis, it has been assumed that only 20% of the existing site's traffic generation occurs during the peak times surveyed, as warehouse / industrial uses can typically have earlier peaks to the commuter morning and evening peak i.e. 28 trips during peak commuter hours.

6.2 Future Traffic Generation

With respect to future traffic generation, the existing traffic generation of 129 vehicle trips needs to be considered, and credited where appropriate. The following traffic generation rates, as per the RMS Guide, are applicable to the future development

High Rise Residential- Sub Regional
0.29 trips per apartment

Commercial
2 trips per 100m²

Table 6 summarises the traffic generation of the proposed development.

TABLE 8: FORECAST TRAFFIC GENERATION

Land Use	Scale	Peak Hour Traffic Generation	AM		PM	
		In	Out	In	Out	
Residential	180	52	10	42	42	10
Retained Light Industrial	$9,676 \mathrm{~m}^{2}$	19	10	9	9	10
Commercial Office	$5,662 \mathrm{~m}^{2}$	113	113	0	0	113
Sub Total		$\mathbf{1 8 4}$	$\mathbf{1 3 3}$	$\mathbf{5 1}$	$\mathbf{5 1}$	$\mathbf{1 3 3}$
Less Existing Light Industrial	$13,884 \mathrm{~m}^{2}$	-28	-14	-14	$\mathbf{- 1 4}$	$\mathbf{- 1 4}$
Total		$\mathbf{+ 1 5 6}$	$\mathbf{+ 1 1 9}$	$\mathbf{+ 3 7}$	$\mathbf{+ 3 7}$	$\mathbf{+ 1 1 9}$

The proposed development is expected to generate a total of $\mathbf{1 5 6}$ additional peak hour vehicle trips. Based on the existing intersection performances and traffic flows, it was identified that the signalised intersection of Unwins Bridge Road / Mary Street and Princes Highway / Mary Street is critical to the development along with the mid-block capacity and residential amenity of Mary Street.

It should be noted that recent publicised RMS figures for residential traffic generation is lower than the 0.29 trips per unit adopted. Therefore, it is considered that the traffic generation provided for residential in Table 8 is a worst case assessment.

6.3 Traffic Assignment

The traffic assignment adopted has been based on Journey to Work Data provided from the 2011 Census Data. An output of the JTW data is provided in Annexure E. For the purpose of this assessment, the JTW traffic assignment has been utilised for non-residential land uses as well.

The traffic split adopted is summarised in Table 9 \& 10 below.

TABLE 9: TRAFFIC ASSIGNMENT PERCENTAGE SPLIT

Movement	AM		PM	
	Inbound	Outbound	Inbound	Outbound
Left from Mary Street onto Unwins Bridge Rd		67%		67%
Right from Mary Street onto Unwins Bridge Rd		33%		33%
Right into Edith Street from Unwins Bridge Rd	22%		22%	
Left into Edith Street from Unwins Bridge Rd	50%		50%	
Left into Edith Street from Princes Hwy	22%		22%	
Through into Mary Street from Canal Rd	6%	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 0 \%}$
Total	$\mathbf{1 0 0 \%}$		6%	

TABLE 10: TRAFFIC ASSIGNMENT TURNING MOVEMENTS

Movement	AM		PM	
	Inbound	Outbound	Inbound	Outbound
Left from Mary Street onto Unwins Bridge Rd		25		80
Right from Mary Street onto Unwins Bridge Rd	26	12		39
Right into Edith Street from Unwins Bridge Rd	60		8	
Left into Edith Street from Unwins Bridge Rd	26		19	
Left into Edith Street from Princes Hwy	7	$\mathbf{3 7}$	$\mathbf{3 7}$	$\mathbf{1 1 9}$
Through into Mary Street from Canal Rd	$\mathbf{7 1 9}$			
Total				

6.4 SIDRA Analysis \& Impact

The traffic generation outlined in Section 5.3 above has been added to the existing traffic volumes recorded. SIDRA INTERSECTION 5.1 was used to assess the intersection performance at the surveyed sites. The purpose of this assessment is to compare the existing intersection operations to the future scenario under the increased traffic load. The results of this assessment are shown in Table 11:

TABLE 11: FUTURE INTERSECTION PERFORMANCES
(SIDRA INTERSECTION 5.1)

Intersection	Peak Hour	Degree of Saturation ${ }^{(1)}$	Average Delay ${ }^{(2)}$ (sec/vehicle)	Level of Service ${ }^{(3)}$	Control Type	Worst Movement
Year 2015 Baseline + Development						
Princes Hwy / Canal Rd	AM	0.936	32.7	C	Signals	N/A
	PM	1.029	>70	F		N/A
Princes Hwy / Edith St	AM	0.513	$\begin{gathered} \hline 7.1 \\ (8.3) \end{gathered}$	A (A)	Priority	Left turn from Edith St
	PM	0.267	$\begin{aligned} & \hline 7.1 \\ & (8.2) \end{aligned}$	A (A)		Left turn from Princes Hwy
Mary St / Roberts Ln	AM	0.272	$\begin{gathered} 0.7 \\ (16.6) \end{gathered}$	A (B)	Priority	Right turn from Roberts Ln
	PM	0.377	$\begin{gathered} 0.9 \\ (25.5) \end{gathered}$	A (B)		Right turn from Roberts Ln
Edith Street / Roberts St	AM	0.059	$\begin{gathered} 2.1 \\ (7.5) \end{gathered}$	A (A)	Priority	Right turn from Roberts St
	PM	0.035	$\begin{gathered} \hline 4.4 \\ (7.0) \end{gathered}$	A (A)		Right turn from Edith St (W)
Unwins Bridge Rd / Mary St	AM	0.802	14.4	A	Signals	N/A
	PM	0.738	20.3	B		N/A
Unwins Bridge Rd / Edith Street	AM	0.357	$\begin{gathered} 2.3 \\ (20.4) \end{gathered}$	A (B)	Priority	Right turn from Edith St
	PM	0.477	$\begin{gathered} 0.5 \\ (20.9) \end{gathered}$	A (B)		Right turn from Edith St

(1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
(2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
(3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.

It is evident from the SIDRA performances that the intersection of Unwins Bridge Road / Mary Street will maintain its performance of LoS B under the additional traffic load.

The intersection of Princes Highway / Canal Road has also maintained its LoS with little change in saturation or delay. This is largely due to a low amount of additional traffic loaded onto the road network at this location.

Additional traffic past Roberts Street from Princes Highway is low and as a result has not adjusted existing intersection performance of its intersection with Mary Street or Edith Street respectively.

Based on the additional traffic volumes, the expected increase in mid-block traffic flows are identified in Table 12.

TABLE 12: FORECAST MID-BLOCK TRAFFIC FLOWS

Location	AM	PM
Mary Street (south of Roberts)	$466+7=473$	$845+2=847$
Mary Street (north of Roberts)	$518+37=555$	$746+119=865$
Unwins Bridge Rd (west of Mary)	$1490+51=1541$	$1672+88=1760$
Unwins Bridge Rd (east of Edith)	$1615+72=1687$	$1722+58=1780$
Edith Street (south of Roberts)	$106+26=1132$	$34+8=42$
Edith Street (north of Roberts)	$101+33=134$	$56+10=66$
Roberts Street (East-West)	$58+7=65$	$74+2=76$

As shown in Table 12, the additional traffic within Mary Street will increase, however this is towards the northern end of Mary Street based on the development site's proposed exit driveway which will be away from dwellings further to the south on Mary Street.

The expected traffic flow increase within Edith Street remains within the RMS Guide for residential amenity of $200-300$ for local streets. Additionally, as per the recommendations to follow this section, two-way passing has been promoted near to the site.

The forecast increase in traffic within Roberts Street within the east-west is unlikely to exceed the residential amenity threshold for a local access way. There will be no traffic associated with the development accessing the cul-de-sac of Roberts Street to the development.

6.5 Residential Amenity

In terms of residential amenity considerations the current flows along Edith Street are well below the 'environmental' goal of 200 vehicles per hour and well below the 'maximum' goal of 300 vehicles per hour for a local street.

However, the current traffic volumes on Mary Street have already exceeded the maximum goal. The additional 156 peak hour vehicle trips associated with the development will alter the existing traffic flows however, is largely contained to the
northern end of Mary Street and does not strictly apply to the mixed use nature of the site and localised access road network.

6.6 Recommendations

From observations at the intersection of Edith Street / Unwins Bridge Road, it was evident that kerbside parking reduces Edith Street to a single lane, which has intermittent flow on effects to Unwins Bridge Road. Based on the queue lengths within Edith Street at the Unwins Bridge Road intersection, it is recommended that kerbside parking be modified by either of the following:

1. Remove kerbside parking in Edith Street within 20 m of Unwins Bridge Road
2. Time restrict kerbside parking in Edith Street within 20 m of Unwins Bridge Road, such that No Parking is permitted during the morning and evening peak periods.

Additionally, based on the increase in traffic flows along Edith Street as a result of the development, passing opportunities should be provided. It is recommended that two passing opportunities be provided along Edith Street, in addition to the recommendation above in Edith Street at Unwins Bridge Road:
> Provide "No Stopping" along the site frontage, 10 m either side of the Edith Street driveway (total 20m)
> Provide "No Stopping" along the site frontage for approximately 20 m near the existing speed hump in Edith Street (near to the existing loading dock driveway to the north of the site which provides existing passing opportunity).

7 CONCLUSION

The subject Planning Proposal at 75 Mary Street, St Peters for residential and commercial development with associated off-street parking is fully supportable in terms of its traffic and parking impacts subject to the following recommendations:

- Development scale is to be consistent with 180 residential units, $45,662 \mathrm{~m}^{2}$ commercial office and $9,676 \mathrm{~m}^{2}$ to remain as light industrial use.
- On-site car parking for residential tenants and disabled tenants complies with Council's DCP requirement. The numeric shortfall of parking can be adequately accommodated by the provision of GoGet car share vehicles.
- On-site car parking for non-commercial uses complies with Council's DCP requirements, however a degree of dual use parking between residential visitors and commercial office can be established and detailed at D.A stage.
- Provision of bicycle and motorcycle requirements complies with Council's DCP
- Servicing and waste collection is detailed under a management plan in order to avoid multiple mixed use components conducting waste collection at the same time, and thus significantly reducing the amount of loading bays required for the entire development.
- The car park and loading area complies with AS2890.1:2004, AS2890.2:2002 \& AS2890.6:2009 where applicable.
- It is recommended that kerbside parking within Edith Street be modified by the following:
> Remove kerbside parking in Edith Street within 20m of Unwins Bridge Road, OR
> Time restrict kerbside parking in Edith Street within 20 m of Unwins Bridge Road, such that No Parking is permitted during the morning and evening peak periods.
AND
> Install "No Stopping" along the site frontage, 10 m either side of the Edith Street driveway (total of 20m)
$>$ Install "No Stopping" along the site frontage for approximately 20m near the existing speed hump in Edith Street (near to the existing loading dock driveway to the north of the site which provides existing passing opportunity).

At Site Location

MIXED USE
75 MARY STREET, ST PETERS

$-\mathrm{OH}$

FIGURE 1:
AERIAL SITE LOCATION
PREPARED FOR: TONKIN ZULAIKHA GREER ARCHITECTS

BY: MCAREN TRAFFIC ENGINEERING

Site Location

MIXED USE
75 MARY STREET, ST PETERS

FIGURE 2:
MAP LOCATION
PREPARED FOR: TONKIN ZULAIKHA GREER ARCHITECTS

BY: M LAREN TRAFFIC ENGINEERING

ANNEXURE A: PROPOSED PLANS (Sheet 1 of 3)

ANNEXURE A: PROPOSED PLANS (Sheet 2 of 3)

ANNEXURE A: PROPOSED PLANS (Sheet 3 of 3)

ANNEXURE B: TRAFFIC SURVEYS (Sheet 1 of 6)

ANNEXURE B: TRAFFIC SURVEYS (Sheet 2 of 6)

QUALITY ENDORSED COMPANY BY AS/NZS ISO 9001:2008

TURNING MOVEMENT SURVEY
Edith St and Princes Hwy, St Peters
Thursday, 12 February 2015

Survey Start	
AM:	$7: 00$
PM:	$15: 00$

Peakhour	
AM:	$7: 30$ AM-8:30 AM
PM:	$4: 30$ PM-5:30 PM

Time		North Approach Edith St			East Approach Princes Hwy			West Approach Princes Hwy			Hourly Total	
Period Start	Period End	U	R	L	U	R	WB	U	EB	L	Hour	Peak
7:00	7:15	0	0	5	0	0	124	0	459	2	2555	
7:15	7:30	0	0	24	0	0	143	0	480	1	2551	
7:30	7:45	0	0	24	0	0	122	0	531	0	2560	Peak
7:45	8:00	0	0	23	0	0	125	0	486	6	2500	
8:00	8:15	0	0	28	0	0	117	0	441	0	2452	
8:15	8:30	0	0	24	0	0	152	0	480	1		
8:30	8:45	0	0	17	0	0	132	0	466	2		
8:45	9:00	0	0	20	0	0	153	0	417	2		
15:00	15:15	0	0	4	0	0	447	0	222	4	2647	
15:15	15:30	0	0	5	0	0	419	0	230	3	2705	
15:30	15:45	0	0	6	0	0	423	0	199	5	2706	
15:45	16:00	0	0	4	0	0	404	0	269	3	2769	
16:00	16:15	0	0	5	0	0	495	0	232	3	2801	
16:15	16:30	0	0	7	0	0	421	0	228	2	2795	
16:30	16:45	0	0	5	0	0	435	0	251	5	2872	Peak
16:45	17:00	0	0	8	0	0	460	0	244	0	2856	
17:00	17:15	0	0	5	0	0	479	0	243	2	2819	
17:15	17:30	0	0	0	0	0	457	0	272	6		
17:30	17:45	0	0	9	0	0	413	0	257	1		
17:45	18:00	0	0	4	0	0	422	0	247	2		

Peak	Time	North Approach Edith St			East Approach Princes Hwy			West Approach Princes Hwy			Peak total
Period Start	Period End	U	R	L	U	R	WB	U	EB	L	
7:30	8:30	0	0	99	0	0	516	0	1938	7	2560
16:30	17:30	0	0	18	0	0	1831	0	1010	13	2872

Graphic
Edith St

ANNEXURE B: TRAFFIC SURVEYS (Sheet 3 of 6)

TURNING MOVEMENT SURVEY
Mary St and Robert Ln, St Peters
Thursday, 12 February 2015

Time		North Approach Mary St			East Approach Robert Ln			South Approach Mary St			Hourly Total	
Period Start	Period End	U	SB	L	U	R	L	U	R	NB	Hour	Peak
7:00	7:15	0	0	0	0	3	0	0	1	96	499	
7:15	7:30	0	0	0	0	4	0	0	2	133	526	Peak
7:30	7:45	0	0	0	0	5	0	0	2	114	490	
7:45	8:00	0	0	0	0	3	0	0	3	133	508	
8:00	8:15	0	0	0	0	3	0	0	1	123	487	
8:15	8:30	0	0	0	0	4	0	0	0	99		
8:30	8:45	0	0	0	0	3	0	0	1	135		
8:45	9:00	0	0	0	0	3	0	0	1	114		
15:00	15:15	0	0	0	0	4	0	0	2	166	695	
15:15	15:30	0	0	0	0	7	0	0	0	201	680	
15:30	15:45	0	0	0	0	5	0	0	2	147	636	
15:45	16:00	0	0	0	0	8	0	0	1	152	641	
16:00	16:15	0	0	0	0	2	0	0	4	151	660	
16:15	16:30	0	0	0	0	9	0	0	0	155	689	
16:30	16:45	0	0	0	0	7	0	0	1	151	703	
16:45	17:00	0	0	0	0	9	0	0	3	168	753	Peak
17:00	17:15	0	0	0	0	9	0	0	2	175	750	
17:15	17:30	0	0	0	0	2	0	0	1	175		
17:30	17:45	0	0	0	0	4	0	0	1	204		
17:45	18:00	0	0	0	0	2	0	0	3	172		

Peak Time		North Approach Mary St			East Approach Robert Ln			South Approach Mary St			Peak total
Period Start	Period End	U	T	L	U	R	L	U	R	T	
7:15	8:15	0	0	0	0	15	0	0	8	503	526
16:45	17:45	0	0	0	0	24	0	0	7	722	753

Graphic
Mary St

Mary St

ANNEXURE B: TRAFFIC SURVEYS (Sheet 4 of 6)

 SURVEㄴ

 QUALITY ENDORSED COMPANY BY AS/NZS ISO 9001:2008 OH\&S SYSTEM CERTIFIED TO AS/NZS ISO 4801:2001

TURNING MOVEMENT SURVEY
Edith St and Robert St, St Peters
Thursday, 12 February 2015

Survey Start	
AM:	$7: 00$
PM:	$15: 00$

Peakhour	
AM:	$7: 15 \mathrm{AM}-8: 15 \mathrm{AM}$
PM:	$3: 00 \mathrm{PM}-4: 00 \mathrm{PM}$

Time		North Approach Edith St			South Approach Edith St			West Approach Robert St			Hourly Total	
Period Start	Period End	U	R	SB	U	NB	L	U	R	L	Hour	Peak
7:00	7:15	0	1	5	0	1	1	0	0	0	98	
7:15	7:30	0	5	20	0	0	1	0	4	1	121	Peak
7:30	7:45	0	2	20	0	0	0	0	4	0	119	
7:45	8:00	0	3	20	0	0	6	0	3	1	115	
8:00	8:15	0	3	26	0	0	0	0	2	0	109	
8:15	8:30	0	4	22	0	0	1	0	2	0		
8:30	8:45	0	3	13	0	1	1	0	4	0		
8:45	9:00	0	4	19	0	2	0	0	1	1		
15:00	15:15	0	6	2	0	1	3	0	2	2	68	Peak
15:15	15:30	2	10	3	0	2	1	0	2	1	61	
15:30	15:45	0	2	4	0	3	2	0	2	2	56	
15:45	16:00	1	7	4	0	3	0	0	0	1	58	
16:00	16:15	0	1	3	0	3	0	0	2	0	60	
16:15	16:30	0	7	4	0	2	0	0	3	0	65	
16:30	16:45	0	5	4	0	3	2	0	1	2	60	
16:45	17:00	0	9	5	0	0	0	0	3	1	59	
17:00	17:15	0	7	3	0	0	2	0	2	0	51	
17:15	17:30	0	2	0	0	5	1	0	0	3		
17:30	17:45	0	5	9	0	1	0	0	0	1		
17:45	18:00	0	3	2	0	2	0	0	2	1		

Peak Time		North Approach Edith St			South Approach Edith St			West Approach Robert St			Peak total
Period Start	Period End	U	R	SB	U	NB	L	U	R	L	
7:15	8:15	0	13	86	0	0	7	0	13	2	121
15:00	16:00	3	25	13	0	9	6	0	6	6	68

Graphic
Edith St

ANNEXURE B: TRAFFIC SURVEYS (Sheet 5 of 6)

SBVY TRAFIIC
SUAVE
URNING MOVEMENT SURVEY
Mary St and Unwins Bridge Rd, St Peters
Thursday, 12 February 2015

Peakhour	
AM:	$7: 45$ AM-8:45 AM
PM:	4:45 PM-5:45 PM

Time		East Approach Unwins Bridge Rd			South Approach Mary St			West Approach Unwins Bridge R			Hourly Total	
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	Hour	Peak
7:00	7:15	0	82	0	0	67	20	0	0	171	1713	
7:15	7:30	0	116	0	0	73	28	0	0	243	1814	
7:30	7:45	0	99	0	0	82	39	0	0	215	1788	
7:45	8:00	0	123	0	0	94	45	0	0	216	1815	Peak
8:00	8:15	0	125	0	0	80	31	0	0	205	1768	
8:15	8:30	0	121	0	0	77	30	0	0	206		
8:30	8:45	0	125	0	0	74	35	0	0	228		
8:45	9:00	0	118	0	0	80	28	0	0	205		
15:00	15:15	0	157	0	0	74	49	0	0	94	1839	
15:15	15:30	0	230	0	0	75	63	0	0	138	1953	
15:30	15:45	0	205	0	0	92	64	0	0	135	1961	
15:45	16:00	0	202	0	0	93	46	0	0	122	1957	
16:00	16:15	0	227	0	0	78	68	0	0	115	2008	
16:15	16:30	0	194	0	0	131	84	0	0	105	2075	
16:30	16:45	0	201	0	0	80	85	0	0	126	2104	
16:45	17:00	0	209	0	0	95	92	0	0	118	2141	Peak
17:00	17:15	0	214	0	0	132	96	0	0	113	2107	
17:15	17:30	0	205	0	0	107	98	0	0	133		
17:30	17:45	0	186	0	0	135	90	0	0	118		
17:45	18:00	0	185	0	0	106	73	0	0	116		

Peak Time		East Approach Unwins Bridge Rd			South Approach Mary St			West Approach Unwins Bridge R \|			Peak total
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	
7:45	8:45	0	494	0	0	325	141	0	0	855	1815
16:45	17:45	0	814	0	0	469	376	0	0	482	2141

Graphic

ANNEXURE B: TRAFFIC SURVEYS (Sheet 6 of 6)

BYY TAAFIL" SURVEY								QUALITY ENDORSED COMPANYBY ASNZS ISO 9001:2008 OH\& S SYSTEM CERTIFIED TO ASINZS ISO 4801:2001				
TURNING MOVEMENT SURVEY Edith St and Unwins Bridge Rd, St Peters Thursday, 12 February 2015												
Weather: Overcast				Survey Start			Peakhour					
Suburban:	St Peters			AM: $\quad 1 \begin{aligned} & \text { S }\end{aligned}$			AM:	$\begin{aligned} & \text { 7:45 AM-8:45 AM } \\ & \text { 4:45 PM-5:45 PM } \end{aligned}$				
Customer:	McLaren			PM:	15:00		PM					
Time		East Approach Unwins Bridge Rd			South Approach Edith St			West Approach Unwins Bridge R			Hourly Total	
Period Start Period End		U	WB	L	U	R	L	U	R	EB	Hour	Peak
7:00	7:15	0	82	4	0	1	0	0	5	233	1611	
7:15	7:30	0	116	12	0	0	0	0	29	287	1706	
7:30	7:45	0	98	5	0	1	1	1	19	278	1677	
7:45	8:00	0	122	6	0	0	1	0	18	292	1708	Peak
8:00	8:15	0	122	7	0	3	3	0	26	259	1681	
8:15	8:30	0	119	10	0	1	2	0	26	257		
8:30	8:45	0	121	5	0	2	4	0	13	289		
8:45	9:00	0	116	8	0	1	2	0	9	276		
15:00	15:15	0	156	4	0	0	1	0	11	157	1634	
15:15	15:30	0	230	4	0	1	0	0	16	197	1728	
15:30	15:45	0	204	4	0	1	1	0	14	213	1713	
15:45	16:00	0	200	3	0	0	2	0	13	202	1685	
16:00	16:15	0	227	2	0	1	0	0	14	179	1689	
16:15	16:30	0	193	2	0	1	1	0	12	224	1726	
16:30	16:45	0	199	1	0	1	2	0	12	194	1738	
16:45	17:00	0	209	1	0	1	0	0	12	201	1769	Peak
17:00	17:15	0	213	1	0	0	1	0	12	233	1752	
17:15	17:30	0	204	0	0	0	1	0	11	229		
17:30	17:45	0	186	0	0	1	0	0	10	243		
17:45	18:00	0	185	0	0	0	0	0	10	212		

Peak Time		East Approach Unwins Bridge R 0			South Approach Edith St			West Approach Unwins Bridge R			
Period Start	Period End	U	WB	L	U	R	L	U	R	EB	eak
7:45	8:45	0	484	28	0	6	10	0	83	1097	1708
16:45	17:45	0	812	2	0	2	2	0	45	906	1769

Graphic

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 1 of 10)
Existing AM

MOVEMENT SUMMARY

Site: Princes Hwy \& Canal Rd-
AM EX
Princes Hwy \& Canal Rd
AM Peak
Existing Conditions
Signals - Fixed Time Cycle Time $=125$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average Speed
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Canal Rd										
21 L	467	31.5	0.212	15.1	LOS B	4.5	39.8	0.34	0.74	43.3
22 T	322	1.9	0.813	63.2	LOS E	12.9	91.9	1.00	0.93	21.0
23 R	71	9.9	0.813	72.0	LOS F	12.5	90.8	1.00	0.93	20.7
Approach	860	18.6	0.813	37.8	LOS C	12.9	91.9	0.64	0.82	29.1
North East: Princes Hwy (N)										
24 L	54	24.1	0.848	71.4	LOS F	16.8	137.2	1.00	0.99	21.0
25 T	462	17.7	0.848	62.3	LOS E	17.2	138.5	1.00	0.99	21.3
Approach	516	18.4	0.848	63.2	LOS E	17.2	138.5	1.00	0.99	21.2
South West: Princes Hwy (S)										
30 L	99	0.0	0.665	15.0	LOS B	27.2	194.7	0.51	0.98	44.1
31 T	1874	2.9	0.665	6.8	LOS A	27.3	195.8	0.51	0.47	48.4
32 R	1746	3.9	0.936	49.6	LOS D	66.2	478.5	0.95	0.97	25.5
Approach	3719	3.3	0.936	27.1	LOS B	66.2	478.5	0.72	0.72	33.9
All Vehicles	5095	7.4	0.936	32.6	LOS C	66.2	478.5	0.73	0.77	31.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Description	Demand Flow	AverageDelay	Level of Service	Average Back of Queue		$\begin{aligned} & \text { Prop. } \\ & \text { Queued } \end{aligned}$	Effective Stop Rate
					Pedestrian	Distance		
		ped/h	sec		ped	m		per ped
P9	Across SE approach	53	56.6	LOS E	0.2	0.2	0.95	0.95
P11	Across NE approach	53	56.6	LOS E	0.2	0.2	0.95	0.95
P13	Across NW approach	53	46.7	LOS E	0.2	0.2	0.86	0.86
All Pedestrians		159	53.3	LOS E			0.92	0.92

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Processed: Thursday, 26 February 2015 10:23:10 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd
SIDRA INTERSECTION 5.1.13.2093
www.sidrasolutions.com

Project: Z:\Jobs\2014\14313IMTE SIDRA\15 0225 Mary St, St Peters.sip
8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 2 of 10)
Existing PM

MOVEMENT SUMMARY

Site: Princes Hwy \& Canal Rd-
PM EX
Princes Hwy \& Canal Rd
PM Peak
Existing Conditions
Signals - Fixed Time Cycle Time $=145$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average Speed
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Canal Rd										
21 L	1304	4.0	0.595	26.8	LOS B	27.8	201.3	0.67	0.83	34.6
22 T	543	0.7	0.997	110.2	LOS F	32.2	226.7	1.00	1.22	14.5
23 R	117	2.6	0.997	118.6	LOS F	31.5	223.4	1.00	1.22	14.3
Approach	1964	3.0	0.997	55.3	LOS D	32.2	226.7	0.78	0.96	23.5
North East: Princes Hwy (N)										
24 L	88	2.3	1.014	119.9	LOS F	61.6	439.3	1.00	1.27	14.3
25 T	1721	2.3	1.014	111.5	LOS F	62.0	442.2	1.00	1.28	14.4
Approach	1809	2.3	1.014	111.9	LOS F	62.0	442.2	1.00	1.28	14.4
South West: Princes Hwy (S)										
30 L	98	0.0	0.352	14.9	LOS B	11.9	84.4	0.37	0.94	43.6
31 T	908	1.8	0.352	6.7	LOS A	12.0	85.3	0.37	0.34	49.0
32 R	722	5.7	1.029	125.6	LOS F	78.1	573.5	1.00	1.16	13.5
Approach	1728	3.3	1.029	56.9	LOS E	78.1	573.5	0.64	0.71	23.3
All Vehicles	5501	2.9	1.029	74.4	LOS F	78.1	573.5	0.81	0.99	19.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Description	Demand Flow	$\begin{array}{r} \text { Average } \\ \text { Delay } \end{array}$	Level of Service	Average Back of Queue		$\begin{aligned} & \text { Prop. } \\ & \text { Queued } \end{aligned}$	Effective Stop Rate
					Pedestrian	Distance		
		ped/h	sec		ped	m		per ped
P9	Across SE approach	53	46.4	LOS E	0.2	0.2	0.80	0.80
P11	Across NE approach	53	61.0	LOS F	0.2	0.2	0.92	0.92
P13	Across NW approach	53	38.0	LOS D	0.2	0.2	0.72	0.72
All Pedestrians		159	48.5	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Processed: Thursday, 26 February 2015 10:24:54 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd
SIDRA INTERSECTION 5.1.13.2093
www.sidrasolutions.com

Project: Z:\Jobs\2014\14313IMTE SIDRA\15 0225 Mary St, St Peters.sip
8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 3 of 10)

Existing AM

MOVEMENT SUMMARY

Site: Princes Hwy \& Edith St-
Princes Hwy \& Edith St
AM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
North West: Edith St										
27 L	99	2.0	0.054	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
Approach	99	2.0	0.054	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
South West: Princes Hwy (S)										
30 L	7	0.0	0.509	8.2	LOS A	0.0	0.0	0.00	0.72	49.0
31 T	1938	3.2	0.509	7.1	LOS A	0.0	0.0	0.00	0.59	50.
Approach	1945	3.2	0.509	7.1	LOS A	0.0	0.0	0.00	0.59	50.
All Vehicles	2044	3.1	0.509	7.1	NA	0.0	0.0	0.00	0.59	50.

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Existing PM

MOVEMENT SUMMARY
Site: Princes Hwy \& Edith St-
PM EX
Princes Hwy \& Edith St
PM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles													
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average Speed km/h			
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate				
	veh/h	\%	v/c	sec		veh	m		per veh				
North West: Edith St													
27 L	18	0.0	0.010	8.2	LOS A	0.0	0.0	0.00	0.67	49.0			
$\begin{array}{llllllllll}\text { Approach } & 18 & 0.0 & 0.010 & 8.2 & \text { LOS A } & 0.0 & 0.0 & 0.00 & 0.67 \\ \text { South West: Princes Hwy (S) } & & & & & & \\ \text { l }\end{array}$													
30 L	13	0.0	0.266	8.2	LOS A	0.0	0.0	0.00	0.72	49.0			
31 T	1010	2.3	0.266	7.0	LOS A	0.0	0.0	0.00	0.59	50.			
Approach	1023	2.2	0.266	7.0	LOS A	0.0	0.0	0.00	0.59	50			
	1041	2.2	0.266	7.1	NA	0.0	0.0	0.00	0.59	50			

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 4 of 10)

Existing AM

MOVEMENT SUMMARY

Mary Street \& Roberts Lane
AM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St (E)										
22 T	503	4.4	0.270	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
23 R	8	0.0	0.270	8.9	LOS A	0.0	0.0	0.00	1.32	48.
Approach	511	4.3	0.270	0.1	NA	0.0	0.0	0.00	0.02	59.
North East: Roberts L										
26 R	15	0.0	0.042	16.4	LOS B	0.1	1.0	0.61	0.85	41.2
Approach	15	0.0	0.042	16.4	LOS B	0.1	1.0	0.61	0.85	41.
All Vehicles	526	4.2	0.270	0.6	NA	0.1	1.0	0.02	0.04	59.

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Existing PM

MOVEMENT SUMMARY
Mary Street \& Roberts Lane
PM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn Demand Flow	HV Deg. Satn		Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
			Vehicles		Distance					
veh/h	\%	v/c		sec		veh	m		per veh	km/h
South East: Mary St (E)										
22 T 722	0.8	0.376	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
23 R 7	0.0	0.376	8.9	LOS A	0.0	0.0	0.00	1.33	48.1	
Approach 729	0.8	0.376	0.1	NA	0.0	0.0	0.00	0.01	59.9	
North East: Roberts L										
26 R 24	0.0	0.118	25.4	LOS B	0.4	2.7	0.80	0.94	35.2	
Approach 24	0.0	0.118	25.4	LOS B	0.4	2.7	0.80	0.94	35.2	
All Vehicles 753	0.8	0.376	0.9	NA	0.4	2.7	0.03	0.04	58.6	

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 5 of 10)
Existing AM

MOVEMENT SUMMARY

Edith St \& Roberts St
AM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St (E)										
21 L	7	0.0	0.004	6.4	LOS A	0.0	0.0	0.00	0.62	43.3
22 T	1	0.0	0.004	5.1	LOS A	0.0	0.0	0.00	0.48	44.5
Approach	8	0.0	0.004	6.3	LOS A	0.0	0.0	0.00	0.60	43.4
North West: Edith St (W)										
28 T	86	1.2	0.059	5.2	LOS A	0.4	3.1	0.08	0.47	44.1
29 R	13	0.0	0.059	6.8	LOS A	0.4	3.1	0.08	0.70	42.8
Approach	99	1.0	0.059	5.4	LOS A	0.4	3.1	0.08	0.50	44.0
South West: Roberts St										
30 L	2	0.0	0.008	6.4	LOS A	0.0	0.0	0.00	0.58	43.3
32 R	13	0.0	0.008	6.8	LOS A	0.0	0.0	0.00	0.66	43.0
Approach	15	0.0	0.008	6.7	LOS A	0.0	0.0	0.00	0.65	43.0
All Vehicles	122	0.8	0.059	5.6	NA	0.4	3.1	0.06	0.52	43.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0225 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 6 of 10)
Existing PM

MOVEMENT SUMMARY

Edith St \& Roberts St
PM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	of Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St (E)										
21 L	6	0.0	0.008	6.4	LOS A	0.0	0.0	0.00	0.65	43.3
22 T	9	11.1	0.008	5.4	LOS A	0.0	0.0	0.00	0.50	44.5
Approach	15	6.7	0.008	5.8	LOS A	0.0	0.0	0.00	0.56	44.0
North West: Edith St (W)										
28 T	13	0.0	0.035	5.3	LOS A	0.2	1.2	0.10	0.43	44.0
29 R	25	0.0	0.035	6.9	LOS A	0.2	1.2	0.10	0.64	42.7
Approach	38	0.0	0.035	6.3	LOS A	0.2	1.2	0.10	0.57	43.1
South West: Roberts St										
30 L	6	0.0	0.006	6.4	LOS A	0.0	0.0	0.00	0.59	43.3
32 R	6	0.0	0.006	6.8	LOS A	0.0	0.0	0.00	0.67	43.0
Approach	12	0.0	0.006	6.6	LOS A	0.0	0.0	0.00	0.63	43.1
All Vehicles	65	1.5	0.035	6.3	NA	0.2	1.2	0.06	0.58	43.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0225 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 7 of 10)

Existing AM

MOVEMENT SUMMARY

Unwins Bridge Road \& Mary Street
AM Peak
Existing Conditions
Signals - Fixed Time Cycle Time $=40$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow		g. Satn	Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St										
21 L	141	2.1	0.343	23.2	LOS B	2.5	17.5	0.88	0.78	36.7
23 R	325	1.2	0.785	28.3	LOS B	7.1	50.3	1.00	0.95	33.7
Approach	466	1.5	0.785	26.7	LOS B	7.1	50.3	0.96	0.90	34.5
North East: Unwins Br Rd (N)										
25 T	494	5.9	0.521	8.0	LOS A	6.5	48.1	0.73	0.63	46.4
Approach	494	5.9	0.521	8.0	LOS A	6.5	48.1	0.73	0.63	46.4
South West: Unwins Br Rd (S)										
31 T	855	4.2	0.752	10.6	LOS A	12.4	89.8	0.82	0.78	43.7
Approach	855	4.2	0.752	10.6	LOS A	12.4	89.8	0.82	0.78	43.7
All Vehicles	1815	4.0	0.785	14.0	LOS A	12.4	89.8	0.83	0.77	41.6

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 26 February 2015 11:05:00 AM
SIDRA INTERSECTION 5.1.13.2093
Copyright © 2000-2011 Akcelik and Associates Pty Ltd
SIDRA
INTERSECTION

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0225 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 8 of 10)
Existing PM

MOVEMENT SUMMARY

Unwins Bridge Road \& Mary Street
PM Peak
Existing Conditions
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow	HV Deg. Satn		Average Delay	Level of Service	95\% Back Vehicles	Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St										
21 L	376	0.0	0.718	29.6	LOS C	11.8	82.4	0.94	0.88	33.0
23 R	469	0.0	0.718	29.8	LOS C	11.8	82.4	0.94	0.88	32.9
Approach	845	0.0	0.718	29.7	LOS C	11.8	82.4	0.94	0.88	32.9
North East: Unwins Br Rd (N)										
25 T	814	1.0	0.713	14.2	LOS A	15.9	112.2	0.82	0.74	40.8
Approach	814	1.0	0.713	14.2	LOS A	15.9	112.2	0.82	0.74	40.8
South West: Unwins Br Rd (S)										
31 T	482	1.0	0.257	9.9	LOS A	4.2	29.6	0.63	0.53	45.0
Approach	482	1.0	0.257	9.9	LOS A	4.2	29.6	0.63	0.53	45.0
All Vehicles	2141	0.6	0.718	19.4	LOS B	15.9	112.2	0.82	0.75	38.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 26 February 2015 11:04:30 AM
SIDRA INTERSECTION 5.1.13.2093
Copyright © 2000-2011 Akcelik and Associates Pty Ltd
SIDRA
INTERSECTION

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0225 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 9 of 10)

Existing AM

MOVEMENT SUMMARY

Site: Unwins Br Rd \& Edith St-

Unwins Bridge Road \& Edith Street
AM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow		g. Satn	Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St										
21 L	10	0.0	0.056	19.0	LOS B	0.2	1.3	0.66	0.74	39.3
23 R	6	16.7	0.056	19.8	LOS B	0.2	1.3	0.66	0.89	39.3
Approach	16	6.3	0.056	19.3	LOS B	0.2	1.3	0.66	0.80	39.3
North East: Unwins Br Rd (N)										
24 L	28	3.6	0.051	8.3	LOS A	0.0	0.0	0.00	0.91	49.0
25 T	484	6.0	0.223	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach	512	5.9	0.223	0.5	NA	0.0	0.0	0.00	0.05	59.3
South West: Unwins Br Rd (S)										
31 T	1097	3.6	0.344	1.7	LOS A	3.6	25.9	0.24	0.00	55.3
32 R	83	1.2	0.344	12.6	LOS A	3.6	25.9	0.59	1.00	46.7
Approach	1180	3.4	0.344	2.5	NA	3.6	25.9	0.26	0.07	54.6
All Vehicles	1708	4.2	0.344	2.0	NA	3.6	25.9	0.19	0.07	55.7

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0225 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE C: EXISTING SIDRA ANALYSIS (Sheet 10 of 10)

 Existing PM

 Existing PM}

MOVEMENT SUMMARY

Site: Unwins Br Rd \& Edith St-
PM EX
Unwins Bridge Road \& Edith Street
PM Peak
Existing Conditions
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow		g. Satn	Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St										
21 L	2	0.0	0.016	20.3	LOS B	0.0	0.3	0.76	0.78	38.4
23 R	2	0.0	0.016	20.5	LOS B	0.0	0.3	0.76	0.92	38.4
Approach	4	0.0	0.016	20.4	LOS B	0.0	0.3	0.76	0.85	38.4
North East: Unwins Br Rd (N)										
24 L	2	0.0	0.078	8.2	LOS A	0.0	0.0	0.00	1.08	49.0
25 T	812	1.0	0.343	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach	814	1.0	0.343	0.0	NA	0.0	0.0	0.00	0.00	60.0
South West: Unwins Br Rd (S)										
31 T	906	0.6	0.466	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
32 R	45	0.0	0.082	13.0	LOS A	0.2	1.7	0.56	0.83	44.1
Approach	951	0.5	0.466	0.6	NA	0.2	1.7	0.03	0.04	59.0
All Vehicles	1769	0.7	0.466	0.4	NA	0.2	1.7	0.02	0.02	59.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0225 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE D: WESTCONNEX

ANNEXURE E: 2011 JOURNEY TO WORK

Destination Standard Area 3s (SA3s) - where employed residents are travelling to																				
Destinatic Destinatic Train			Bus F	Ferry/Trar Vehicle di Vehicle pi Other mol Walked oı Mode not Worked a Total								Direction Out	Direction In	Outbound	Inbound	Car Drivers	Total W.F	Car \%		\% split
Maitland	10602	0	0	0	3	0	0	0	0	0	3	Right out Unwin	Left in Edith U	Right out Unwin	Left in Edith U	179	330		0.54	0.26
Wollongo	10704	0	0	0	5	0	0	0	0	0	5	Left out Unwin	Left in Edith P	Left out Unwin	Left in Edith P	148	197		0.75	0.22
Baulkham	11501	0	0	0	5	0	0	0	0	3	8	Left out Unwin	Right in Edith U	Left out Unwin	Right in Edith U	147	371		0.40	0.22
Botany	11701	0	7	0	41	3	10	3	3	5	72	right out Unwin	Through Canal	right out Unwin	Through Canal	44	72		0.61	0.06
Marrickvil	11702	11	3	0	77	3	14	43	3	86	240	Left out Unwin	Right in Edith U	Left out Unwin	leftin Edith U	163	753		0.22	0.24
Sydney In	11703	339	64	0	148	15	45	58	7	77	753	Left out Unwin	left in Edith U			681	1723			1
Eastern Sl	11801	12	5	0	19	3	3	0	0	4	46	Right out Unwin	Left in Edith U							
Eastern Sl	11802	0	4	0	26	6	3	0	0	3	42	Right out Unwin	Left in Edith U	Outbound	Inbound	Split				
Bankstow	11901	6	0	0	14	0	0	0	0	3	23	Right out Unwin	Leftin Edith U	Right out Unwin		0.33				
Canterbur	11902	0	0	0	13	4	0	0	0	0	17	Left out Unwin	Left in Edith P	Left out Unwin		0.67				
Hurstville	11903	0	0	0	10	0	0	0	0	3	13	Left out Unwin	Left in Edith P		Left in Edith U		0.5			
Kogarah -	11904	0	0	0	28	0	0	0	0	0	28	Left out Unwin	Left in Edith P		Left in Edith P		0.22			
Canada Bé	12001	0	0	0	9	0	0	0	0	0	9	Right out Unwin	Left in Edith U		Right in Edith U		0.22			
Leichhard	12002	5	0	0	20	0	0	0	0	0	25	Right out Unwin	Left in Edith U		Through Canal		0.06			
Strathfiel,	12003	12	0	0	27	3	4	0	0	5	51	Left out Unwin	Right in Edith U							
Chatswoo	12101	27	0	0	19	0	0	0	0	10	56	right out Unwin	Leftin Edith U							
Ku-ring-ge	12103	0	0	0	6	0	0	0	0	0	6	right out Unwin	Left in Edith U							
North Syd	12104	48	3	0	23	0	0	0	0	7	81	right out Unwin	Leftin Edith U							
Manly	12201	0	0	0	6	0	0	0	0	0	6	right out Unwin	Leftin Edith U							
Warringar	12203	0	3	0	8	0	0	0	0	0	11	right out Unwin	Leftin Edith U							
Campbell	12302	0	0	0	6	0	0	0	0	0	6	left out Unwin	Left in Edith P							
Penrith	12403	0	0	0	11	3	0	0	0	3	17	Left out Unwin	Left in Edith P							
Auburn	12501	14	3	0	22	0	0	0	0	0	39	Left out Unwin	Left in Edith P							
Carlingfor	12502	3	0	0	0	0	0	0	0	0	3	Left out Unwin	Right in Edith U							
Parramatt	12504	28	0	0	7	0	0	0	0	3	38	Left out Unwin	Right in Edith U							
Ryde - Hu	12602	6	0	0	25	0	0	0	0	0	31	Left out Unwin	Right in Edith U							
Fairfield	12702	0	0	0	4	0	0	0	0	0	4	right out Unwin	Leftin Edith U							
Liverpool	12703	0	0	0	13	0	0	0	0	5	18	right out Unwin	Left in Edith U							
Cronulla -	12801	0	0	0	12	0	0	0	0	0	12	left out Unwin	Left in Edith P							
Sutherlan	12802	0	0	0	6	0	0	0	0	0	6	left out Unwin	Left in Edith P							
	19499		3	0	25	3	4	6	0	9	54	left out Unwin	Left in Edith P							
Total		515	95	0	638	43	83	110	13	226	1723									

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 1 of 10)

Future AM

MOVEMENT SUMMARY

Site: Princes Hwy \& Canal Rd-
FUTURE AM
Princes Hwy \& Canal Rd
AM Peak
Existing Conditions + Development
Signals - Fixed Time Cycle Time $=125$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID Turn	Demand	HV Deg. Satn		Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
	Flow			Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
	South East: Canal Rd										
21 L	467	31.5	0.212	15.1	LOS B	4.5	39.8	0.34	0.74	43.3	
22 T	326	1.9	0.821	63.7	LOS E	13.1	93.3	1.00	0.94	20.9	
23 R	71	9.9	0.821	72.4	LOS F	12.7	92.2	1.00	0.94	20.6	
Approach	864	18.5	0.821	38.2	LOS C	13.1	93.3	0.65	0.83	29.0	
North East: Princes Hwy (N)											
24 L	54	24.1	0.848	71.4	LOS F	16.8	137.2	1.00	0.99	21.0	
25 T	462	17.7	0.848	62.3	LOS E	17.2	138.5	1.00	0.99	21.3	
Approach	516	18.4	0.848	63.2	LOS E	17.2	138.5	1.00	0.99	21.2	
South West: Princes Hwy (S)											
30 L	99	0.0	0.665	15.0	LOS B	27.2	194.7	0.51	0.98	44.1	
31 T	1874	2.9	0.665	6.8	LOS A	27.3	195.8	0.51	0.47	48.4	
32 R	1746	3.9	0.936	49.6	LOS D	66.2	478.5	0.95	0.97	25.5	
Approach	3719	3.3	0.936	27.1	LOS B	66.2	478.5	0.72	0.72	33.9	
All Vehicles	5099	7.4	0.936	32.7	LOS C	66.2	478.5	0.73	0.77	31.2	

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Description	DemandFlow	Average Delay	Level of Service	Average Back of Queue		Prop.Queued	Effective Stop Rate
					Pedestrian	Distance		
		ped/h	sec		ped	m		per ped
P9	Across SE approach	53	56.6	LOS E	0.2	0.2	0.95	0.95
P11	Across NE approach	53	56.6	LOS E	0.2	0.2	0.95	0.95
P13	Across NW approach	53	46.7	LOS E	0.2	0.2	0.86	0.86
All Pedestrians		159	53.3	LOS E			0.92	0.92

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Processed: Thursday, 27 August 2015 11:33:07 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip
8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 2 of 10)
 Future PM

MOVEMENT SUMMARY

Site: Princes Hwy \& Canal RdFUTURE PM
Princes Hwy \& Canal Rd
PM Peak
Existing Conditions + Development
Signals - Fixed Time Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Description	DemandFlow	Average Delay	Level of Service	Average Back of Queue		Prop.Queued	Effective Stop Rate
					Pedestrian	Distance		
		ped/h	sec		ped	m		per ped
P9	Across SE approach	53	46.4	LOS E	0.2	0.2	0.80	0.80
P11	Across NE approach	53	61.0	LOS F	0.2	0.2	0.92	0.92
P13	Across NW approach	53	38.0	LOS D	0.2	0.2	0.72	0.72
All Pedestrians		159	48.5	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Processed: Thursday, 27 August 2015 11:34:07 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip
8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 3 of 10)

Future AM

MOVEMENT SUMMARY

Site: Princes Hwy \& Edith St-
FUTURE AM

Princes Hwy \& Edith St
AM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow	HV Deg. Satn		Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
North West: Edith St										
27 L	99	2.0	0.054	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
Approach	99	2.0	0.054	8.3	LOS A	0.0	0.0	0.00	0.67	49.
South West: Princes Hwy (S)										
30 L	21	0.0	0.513	8.2	LOS A	0.0	0.0	0.00	0.72	49.0
31 T	1938	3.2	0.513	7.1	LOS A	0.0	0.0	0.00	0.59	50.
Approach	1959	3.2	0.513	7.1	LOS A	0.0	0.0	0.00	0.59	50.3
All Vehicles	2058	3.1	0.513	7.1	NA	0.0	0.0	0.00	0.60	50.

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Future PM
MOVEMENT SUMMARY
Site: Princes Hwy \& Edith St-
FUTURE PM
Princes Hwy \& Edith St
PM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles												
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	f Queue	Prop.	Effective	Average		
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
	veh/h	\%	v/c	sec		veh	m		per veh	km/h		
North West: Edith St												
27 L	18	0.0	0.010	8.2	LOS A	0.0	0.0	0.00	0.67	49.0		
Approach 18 0.0 0.010 8.2 LOS A 0.0 0.0 0.00 0.67 49.0 South West: Princes Hwy (S)												
30 L	17	0.0	0.267	8.2	LOS A	0.0	0.0	0.00	0.72	49.0		
31 T	1010	2.3	0.267	7.0	LOS A	0.0	0.0	0.00	0.59	50.4		
Approach	1027	2.2	0.267	7.0	LOS A	0.0	0.0	0.00	0.59	50.3		
All Vehicles	1045	2.2	0.267	7.1	NA	0.0	0.0	0.00	0.59	50.3		

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 4 of 10)

Future AM

MOVEMENT SUMMARY

Mary Street \& Roberts Lane
AM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow	HV Deg. Satn		Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St (E)										
22 T	503	4.4	0.272	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
23 R	12	0.0	0.272	8.9	LOS A	0.0	0.0	0.00	1.31	48.1
Approach	515	4.3	0.272	0.2	NA	0.0	0.0	0.00	0.03	59.
North East: Roberts L										
26 R	15	0.0	0.042	16.6	LOS B	0.1	1.0	0.62	0.85	41.
Approach	15	0.0	0.042	16.6	LOS B	0.1	1.0	0.62	0.85	41.
All Vehicles	530	4.2	0.272	0.7	NA	0.1	1.0	0.02	0.05	58.

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Future PM

MOVEMENT SUMMARY

Mary Street \& Roberts Lane
PM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St (E)										
22 T	722	0.8	0.377	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
23 R	9	0.0	0.377	8.9	LOS A	0.0	0.0	0.00	1.32	48.1
Approach	731	0.8	0.377	0.1	NA	0.0	0.0	0.00	0.02	59.8
North East: Roberts L										
26 R	24	0.0	0.119	25.5	LOS B	0.4	2.7	0.80	0.94	35.1
Approach	24	0.0	0.119	25.5	LOS B	0.4	2.7	0.80	0.94	35.1
All Vehicles	755	0.8	0.377	0.9	NA	0.4	2.7	0.03	0.05	58.5

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 5 of 10)

Future AM

MOVEMENT SUMMARY

Site: Edith St \& Roberts St-
FUTURE AM

Edith St \& Roberts St
AM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	f Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St (E)										
21 L	7	0.0	0.011	6.4	LOS A	0.0	0.0	0.00	0.79	43.3
22 T	15	0.0	0.011	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approach	22	0.0	0.011	2.0	NA	0.0	0.0	0.00	0.25	47.6
North West: Edith St (W)										
28 T	86	1.2	0.059	0.2	LOS A	0.5	3.2	0.14	0.00	48.2
29 R	13	0.0	0.059	7.0	LOS A	0.5	3.2	0.14	0.87	42.9
Approach	99	1.0	0.059	1.1	NA	0.5	3.2	0.14	0.11	47.4
South West: Roberts St										
30 L	6	0.0	0.022	7.1	LOS A	0.1	0.6	0.12	0.54	42.6
32 R	13	0.0	0.022	7.5	LOS A	0.1	0.6	0.12	0.64	42.3
Approach	19	0.0	0.022	7.4	LOS A	0.1	0.6	0.12	0.61	42.4
All Vehicles	140	0.7	0.059	2.1	NA	0.5	3.2	0.12	0.20	46.7

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 27 August 2015 11:25:15 AM
SIDRA INTERSECTION 5.1.13.2093

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 6 of 10)
 Future PM

MOVEMENT SUMMARY

Edith St \& Roberts St
PM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	ff Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St (E)										
21	6	0.0	0.010	6.4	LOS A	0.0	0.0	0.00	0.79	43.3
22 T	13	11.1	0.010	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approach	19	7.6	0.010	2.0	NA	0.0	0.0	0.00	0.25	47.7
North West: Edith St (W)										
28 T	13	0.0	0.035	0.2	LOS A	0.2	1.2	0.11	0.00	48.3
29 R	25	0.0	0.035	7.0	LOS A	0.2	1.2	0.11	0.69	42.7
Approach	38	0.0	0.035	4.6	NA	0.2	1.2	0.11	0.46	44.5
South West: Roberts St										
30 L	8	0.0	0.014	6.6	LOS A	0.1	0.4	0.08	0.56	43.0
32 R	6	0.0	0.014	7.0	LOS A	0.1	0.4	0.08	0.65	42.7
Approach	14	0.0	0.014	6.8	LOS A	0.1	0.4	0.08	0.60	42.9
All Vehicles	71	2.0	0.035	4.4	NA	0.2	1.2	0.08	0.43	45.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 27 August 2015 11:26:55 AM
SIDRA INTERSECTION 5.1.13.2093

SIDRA
 INTERSECTION

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 7 of 10)
 Future AM

MOVEMENT SUMMARY

Site: Unwins Br Rd \& Mary St-
FUTURE AM

Unwins Bridge Road \& Mary Street
AM Peak
Existing Conditions + Development
Signals - Fixed Time Cycle Time $=40$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow		g. Satn	Average Delay	Level of Service	95\% Back Vehicles	Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St										
21 L	154	2.1	0.374	23.3	LOS B	2.7	19.3	0.89	0.78	36.6
23 R	332	1.2	0.802	28.9	LOS C	7.4	52.3	1.00	0.97	33.4
Approach	486	1.5	0.802	27.1	LOS B	7.4	52.3	0.96	0.91	34.3
North East: Unwins Br Rd (N)										
25 T	494	5.9	0.521	8.0	LOS A	6.5	48.1	0.73	0.63	46.4
Approach	494	5.9	0.521	8.0	LOS A	6.5	48.1	0.73	0.63	46.4
South West: Unwins Br Rd (S)										
31 T	869	4.2	0.764	11.0	LOS A	12.9	93.4	0.83	0.79	43.4
Approach	869	4.2	0.764	11.0	LOS A	12.9	93.4	0.83	0.79	43.4
All Vehicles	1849	3.9	0.802	14.4	LOS A	12.9	93.4	0.84	0.78	41.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 27 August 2015 11:17:49 AM
SIDRA INTERSECTION 5.1.13.2093

SIDRA
INTERSECTION

Project: Z:JJobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 8 of 10)
 Future PM

MOVEMENT SUMMARY

Site: Unwins Br Rd \& Mary St-
FUTURE PM

Unwins Bridge Road \& Mary Street
PM Peak
Existing Conditions + Development
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov ID TurnDemand Flow veh/h		HV Deg. Satn		Average Delay	Level of Service	95\% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		\%	v/c	sec		veh	m		per veh	km/h
South East: Mary St										
21 L	418	0.0	0.733	29.3	LOS C	12.7	89.0	0.94	0.89	33.1
23 R	490	0.0	0.733	29.6	LOS C	12.7	89.0	0.94	0.89	33.0
Approach	908	0.0	0.733	29.5	LOS C	12.7	89.0	0.94	0.89	33.1
North East: Unwins Br Rd (N)										
25 T	814	1.0	0.738	15.9	LOS B	16.8	118.6	0.84	0.79	39.5
Approach	814	1.0	0.738	15.9	LOS B	16.8	118.6	0.84	0.79	39.5
South West: Unwins Br Rd (S)										
31 T	486	1.0	0.269	10.6	LOS A	4.4	30.8	0.65	0.54	44.3
Approach	486	1.0	0.269	10.6	LOS A	4.4	30.8	0.65	0.54	44.3
All Vehicles	2208	0.6	0.738	20.3	LOS B	16.8	118.6	0.84	0.77	37.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 27 August 2015 11:21:13 AM
SIDRA INTERSECTION 5.1.13.2093
Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA
 INTERSECTION

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 9 of 10)
 Future AM

MOVEMENT SUMMARY

Site: Unwins Br Rd \& Edith St-
FUTURE AM

Unwins Bridge Road \& Edith Street
AM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back	f Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South East: Edith St										
21 L	10	0.0	0.059	19.7	LOS B	0.2	1.4	0.67	0.75	38.8
23 R	6	16.7	0.059	20.4	LOS B	0.2	1.4	0.67	0.90	38.8
Approach	16	6.3	0.059	20.0	LOS B	0.2	1.4	0.67	0.81	38.8
North East: Unwins Br Rd (N)										
24 L	59	3.6	0.054	8.3	LOS A	0.0	0.0	0.00	0.79	49.0
25 T	484	6.0	0.237	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach	543	5.7	0.237	0.9	NA	0.0	0.0	0.00	0.09	58.6
South West: Unwins Br Rd (S)										
31 T	1104	3.6	0.357	1.8	LOS A	3.9	27.9	0.24	0.00	55.2
32 R	97	1.2	0.357	13.1	LOS A	3.9	27.9	0.63	1.02	46.2
Approach	1201	3.4	0.357	2.8	NA	3.9	27.9	0.27	0.08	54.3
All Vehicles	1760	4.1	0.357	2.3	NA	3.9	27.9	0.19	0.09	55.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 27 August 2015 11:13:47 AM
SIDRA INTERSECTION 5.1.13.2093

SIDRA
 INTERSECTION

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE F: FUTURE SIDRA ANALYSIS (Sheet 10 of 10)

Future PM

MOVEMENT SUMMARY

Site: Unwins Br Rd \& Edith St-
FUTURE PM

Unwins Bridge Road \& Edith Street
PM Peak
Existing Conditions + Development
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand	HV Deg. Satn		Average	Level of	95\% Back of Queue		Prop.Queued	Effective Stop Rate per veh	Average Speed
	Flow			Delay	Service	Vehicles	Distance			
	veh/h	\%	v/c	sec		veh	m			km/h
South East: Edith St										
21 L	2	0.0	0.016	20.8	LOS B	0.1	0.4	0.76	0.79	38.1
23 R	2	0.0	0.016	20.9	LOS B	0.1	0.4	0.76	0.93	38.0
Approach	4	0.0	0.016	20.9	LOS B	0.1	0.4	0.76	0.86	38.1
North East: Unwins Br Rd (N)										
24 L	12	0.0	0.079	8.2	LOS A	0.0	0.0	0.00	1.04	49.0
25 T	812	1.0	0.347	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach	824	1.0	0.347	0.1	NA	0.0	0.0	0.00	0.02	59.8
South West: Unwins Br Rd (S)										
31 T	927	0.6	0.477	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
32 R	49	0.0	0.090	13.2	LOS A	0.3	1.9	0.57	0.84	44.0
Approach	976	0.5	0.477	0.7	NA	0.3	1.9	0.03	0.04	58.9
All Vehicles	1804	0.7	0.477	0.5	NA	0.3	1.9	0.02	0.03	59.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 27 August 2015 11:15:58 AM
SIDRA INTERSECTION 5.1.13.2093

Project: Z:\Jobs\2014\14313\MTE SIDRA\15 0826 Mary St, St Peters.sip 8000236, MCLAREN TRAFFIC ENGINEERING, SINGLE

ANNEXURE G: EDITH STREET RECOMMENDATIONS

ANNEXURE H: SITE PHOTOS

Photo 1: Looking towards Unwins Bridge Road from Mary Street

Photo 2: Looking towards Mary Street from Unwins Bridge Road

ANNEXURE H: SITE PHOTOS

Photo 3: Looking towards Unwins Bridge Road from Edith Street

Photo 4: Looking north on Unwins Bridge Road adjacent to Edith Street

